mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-11-04 14:04:32 +00:00 
			
		
		
		
	Compare commits
	
		
			14 Commits
		
	
	
		
			specflow
			...
			feature/bl
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 
						 | 
					b2493d6d25 | ||
| 
						 | 
					8fd16686dc | ||
| 
						 | 
					23b9c6b5f5 | ||
| 
						 | 
					43943008bf | ||
| 
						 | 
					8ee26f9112 | ||
| 
						 | 
					f91e3af97f | ||
| 
						 | 
					43298ef681 | ||
| 
						 | 
					7e70df27e4 | ||
| 
						 | 
					c55d657736 | ||
| 
						 | 
					b89b1280d5 | ||
| 
						 | 
					ac7090e6d3 | ||
| 
						 | 
					02edbe624f | ||
| 
						 | 
					9266b89ad8 | ||
| 
						 | 
					2db7e6f8ab | 
							
								
								
									
										54
									
								
								.github/ISSUE_TEMPLATE/bug-report.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										54
									
								
								.github/ISSUE_TEMPLATE/bug-report.yml
									
									
									
									
										vendored
									
									
								
							@@ -1,54 +0,0 @@
 | 
				
			|||||||
name: Bug report
 | 
					 | 
				
			||||||
description: Report a bug.
 | 
					 | 
				
			||||||
title: "<insert title>"
 | 
					 | 
				
			||||||
labels: [bug]
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
body:
 | 
					 | 
				
			||||||
  - type: markdown
 | 
					 | 
				
			||||||
    attributes:
 | 
					 | 
				
			||||||
      value: >
 | 
					 | 
				
			||||||
        Thank you for taking the time to file a bug report.
 | 
					 | 
				
			||||||
        Please check that the code is pointing to the HEAD of develop
 | 
					 | 
				
			||||||
        or any commit in master which is tagged with a version number.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  - type: textarea
 | 
					 | 
				
			||||||
    attributes:
 | 
					 | 
				
			||||||
      label: "Describe the issue:"
 | 
					 | 
				
			||||||
      description: >
 | 
					 | 
				
			||||||
        Describe the issue and any previous attempt to solve it.
 | 
					 | 
				
			||||||
    validations:
 | 
					 | 
				
			||||||
      required: true
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  - type: textarea
 | 
					 | 
				
			||||||
    attributes:
 | 
					 | 
				
			||||||
      label: "Code example:"
 | 
					 | 
				
			||||||
      description: >
 | 
					 | 
				
			||||||
        If relevant, show how to reproduce the issue using a minimal working
 | 
					 | 
				
			||||||
        example.
 | 
					 | 
				
			||||||
      placeholder: |
 | 
					 | 
				
			||||||
        << your code here >>
 | 
					 | 
				
			||||||
      render: shell
 | 
					 | 
				
			||||||
    validations:
 | 
					 | 
				
			||||||
      required: false
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  - type: textarea
 | 
					 | 
				
			||||||
    attributes:
 | 
					 | 
				
			||||||
      label: "Target platform:"
 | 
					 | 
				
			||||||
      description: >
 | 
					 | 
				
			||||||
        Give a description of the target platform (CPU, network, compiler).
 | 
					 | 
				
			||||||
        Please give the full CPU part description, using for example
 | 
					 | 
				
			||||||
        `cat /proc/cpuinfo | grep 'model name' | uniq` (Linux)
 | 
					 | 
				
			||||||
        or `sysctl machdep.cpu.brand_string` (macOS) and the full output
 | 
					 | 
				
			||||||
        the `--version` option of your compiler.
 | 
					 | 
				
			||||||
    validations:
 | 
					 | 
				
			||||||
      required: true
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  - type: textarea
 | 
					 | 
				
			||||||
    attributes:
 | 
					 | 
				
			||||||
      label: "Configure options:"
 | 
					 | 
				
			||||||
      description: >
 | 
					 | 
				
			||||||
        Please give the exact configure command used and attach
 | 
					 | 
				
			||||||
        `config.log`, `grid.config.summary` and the output of `make V=1`.
 | 
					 | 
				
			||||||
      render: shell
 | 
					 | 
				
			||||||
    validations:
 | 
					 | 
				
			||||||
      required: true
 | 
					 | 
				
			||||||
							
								
								
									
										7
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										7
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							@@ -1,7 +1,3 @@
 | 
				
			|||||||
# Doxygen stuff
 | 
					 | 
				
			||||||
html/*
 | 
					 | 
				
			||||||
latex/*
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
# Compiled Object files #
 | 
					# Compiled Object files #
 | 
				
			||||||
#########################
 | 
					#########################
 | 
				
			||||||
*.slo
 | 
					*.slo
 | 
				
			||||||
@@ -14,6 +10,8 @@ latex/*
 | 
				
			|||||||
*~
 | 
					*~
 | 
				
			||||||
*#
 | 
					*#
 | 
				
			||||||
*.sublime-*
 | 
					*.sublime-*
 | 
				
			||||||
 | 
					.ctags
 | 
				
			||||||
 | 
					tags
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Precompiled Headers #
 | 
					# Precompiled Headers #
 | 
				
			||||||
#######################
 | 
					#######################
 | 
				
			||||||
@@ -92,7 +90,6 @@ Thumbs.db
 | 
				
			|||||||
# build directory #
 | 
					# build directory #
 | 
				
			||||||
###################
 | 
					###################
 | 
				
			||||||
build*/*
 | 
					build*/*
 | 
				
			||||||
Documentation/_build
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
# IDE related files #
 | 
					# IDE related files #
 | 
				
			||||||
#####################
 | 
					#####################
 | 
				
			||||||
 
 | 
				
			|||||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							@@ -1,2 +0,0 @@
 | 
				
			|||||||
 | 
					 | 
				
			||||||
mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench -DGRID_SYCL
 | 
					 | 
				
			||||||
@@ -1,5 +0,0 @@
 | 
				
			|||||||
CXX=hipcc
 | 
					 | 
				
			||||||
MPICXX=mpicxx 
 | 
					 | 
				
			||||||
CXXFLAGS="-fPIC -I{$ROCM_PATH}/include/ -I${MPICH_DIR}/include -L/lib64 -I/opt/cray/pe/mpich/8.1.28/ofi/gnu/12.3/include -DGRID_HIP"
 | 
					 | 
				
			||||||
LDFLAGS="-L/lib64 -L${MPICH_DIR}/lib -lmpi -L${CRAY_MPICH_ROOTDIR}/gtl/lib -lmpi_gtl_hsa -lamdhip64 -lhipblas -lrocblas -lmpi_gnu_123"
 | 
					 | 
				
			||||||
hipcc $CXXFLAGS $LDFLAGS BatchBlasBench.cc -o BatchBlasBench
 | 
					 | 
				
			||||||
@@ -1,2 +0,0 @@
 | 
				
			|||||||
 | 
					 | 
				
			||||||
mpicxx -qmkl=parallel -fsycl BatchBlasBench.cc -o BatchBlasBench -DGRID_SYCL
 | 
					 | 
				
			||||||
@@ -44,22 +44,14 @@ directory
 | 
				
			|||||||
#ifdef __NVCC__
 | 
					#ifdef __NVCC__
 | 
				
			||||||
 //disables nvcc specific warning in json.hpp
 | 
					 //disables nvcc specific warning in json.hpp
 | 
				
			||||||
#pragma clang diagnostic ignored "-Wdeprecated-register"
 | 
					#pragma clang diagnostic ignored "-Wdeprecated-register"
 | 
				
			||||||
 | 
					 | 
				
			||||||
#ifdef __NVCC_DIAG_PRAGMA_SUPPORT__
 | 
					 | 
				
			||||||
 //disables nvcc specific warning in json.hpp
 | 
					 | 
				
			||||||
#pragma nv_diag_suppress unsigned_compare_with_zero
 | 
					 | 
				
			||||||
#pragma nv_diag_suppress cast_to_qualified_type
 | 
					 | 
				
			||||||
 //disables nvcc specific warning in many files
 | 
					 | 
				
			||||||
#pragma nv_diag_suppress esa_on_defaulted_function_ignored
 | 
					 | 
				
			||||||
#pragma nv_diag_suppress extra_semicolon
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
 //disables nvcc specific warning in json.hpp
 | 
					 | 
				
			||||||
#pragma diag_suppress unsigned_compare_with_zero
 | 
					#pragma diag_suppress unsigned_compare_with_zero
 | 
				
			||||||
#pragma diag_suppress cast_to_qualified_type
 | 
					#pragma diag_suppress cast_to_qualified_type
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 //disables nvcc specific warning in many files
 | 
					 //disables nvcc specific warning in many files
 | 
				
			||||||
#pragma diag_suppress esa_on_defaulted_function_ignored
 | 
					#pragma diag_suppress esa_on_defaulted_function_ignored
 | 
				
			||||||
#pragma diag_suppress extra_semicolon
 | 
					#pragma diag_suppress extra_semicolon
 | 
				
			||||||
#endif
 | 
					
 | 
				
			||||||
 | 
					//Eigen only
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
// Disable vectorisation in Eigen on the Power8/9 and PowerPC
 | 
					// Disable vectorisation in Eigen on the Power8/9 and PowerPC
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -44,10 +44,9 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
#include <Grid/GridStd.h>
 | 
					#include <Grid/GridStd.h>
 | 
				
			||||||
#include <Grid/threads/Pragmas.h>
 | 
					#include <Grid/threads/Pragmas.h>
 | 
				
			||||||
#include <Grid/perfmon/Timer.h>
 | 
					#include <Grid/perfmon/Timer.h>
 | 
				
			||||||
//#include <Grid/perfmon/PerfCount.h>
 | 
					#include <Grid/perfmon/PerfCount.h>
 | 
				
			||||||
#include <Grid/util/Util.h>
 | 
					#include <Grid/util/Util.h>
 | 
				
			||||||
#include <Grid/log/Log.h>
 | 
					#include <Grid/log/Log.h>
 | 
				
			||||||
#include <Grid/perfmon/Tracing.h>
 | 
					 | 
				
			||||||
#include <Grid/allocator/Allocator.h>
 | 
					#include <Grid/allocator/Allocator.h>
 | 
				
			||||||
#include <Grid/simd/Simd.h>
 | 
					#include <Grid/simd/Simd.h>
 | 
				
			||||||
#include <Grid/threads/ThreadReduction.h>
 | 
					#include <Grid/threads/ThreadReduction.h>
 | 
				
			||||||
@@ -59,7 +58,6 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
#include <Grid/lattice/Lattice.h>      
 | 
					#include <Grid/lattice/Lattice.h>      
 | 
				
			||||||
#include <Grid/cshift/Cshift.h>       
 | 
					#include <Grid/cshift/Cshift.h>       
 | 
				
			||||||
#include <Grid/stencil/Stencil.h>      
 | 
					#include <Grid/stencil/Stencil.h>      
 | 
				
			||||||
#include <Grid/stencil/GeneralLocalStencil.h>      
 | 
					 | 
				
			||||||
#include <Grid/parallelIO/BinaryIO.h>
 | 
					#include <Grid/parallelIO/BinaryIO.h>
 | 
				
			||||||
#include <Grid/algorithms/Algorithms.h>   
 | 
					#include <Grid/algorithms/Algorithms.h>   
 | 
				
			||||||
NAMESPACE_CHECK(GridCore)
 | 
					NAMESPACE_CHECK(GridCore)
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -36,7 +36,6 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
#include <Grid/GridCore.h>
 | 
					#include <Grid/GridCore.h>
 | 
				
			||||||
#include <Grid/qcd/QCD.h>
 | 
					#include <Grid/qcd/QCD.h>
 | 
				
			||||||
#include <Grid/qcd/spin/Spin.h>
 | 
					#include <Grid/qcd/spin/Spin.h>
 | 
				
			||||||
#include <Grid/qcd/gparity/Gparity.h>
 | 
					 | 
				
			||||||
#include <Grid/qcd/utils/Utils.h>
 | 
					#include <Grid/qcd/utils/Utils.h>
 | 
				
			||||||
#include <Grid/qcd/representations/Representations.h>
 | 
					#include <Grid/qcd/representations/Representations.h>
 | 
				
			||||||
NAMESPACE_CHECK(GridQCDCore);
 | 
					NAMESPACE_CHECK(GridQCDCore);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -16,7 +16,6 @@
 | 
				
			|||||||
#include <functional>
 | 
					#include <functional>
 | 
				
			||||||
#include <stdio.h>
 | 
					#include <stdio.h>
 | 
				
			||||||
#include <stdlib.h>
 | 
					#include <stdlib.h>
 | 
				
			||||||
#include <strings.h>
 | 
					 | 
				
			||||||
#include <stdio.h>
 | 
					#include <stdio.h>
 | 
				
			||||||
#include <signal.h>
 | 
					#include <signal.h>
 | 
				
			||||||
#include <ctime>
 | 
					#include <ctime>
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -14,11 +14,7 @@
 | 
				
			|||||||
/* NVCC save and restore compile environment*/
 | 
					/* NVCC save and restore compile environment*/
 | 
				
			||||||
#ifdef __NVCC__
 | 
					#ifdef __NVCC__
 | 
				
			||||||
#pragma push
 | 
					#pragma push
 | 
				
			||||||
#ifdef __NVCC_DIAG_PRAGMA_SUPPORT__
 | 
					 | 
				
			||||||
#pragma nv_diag_suppress code_is_unreachable
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
#pragma diag_suppress code_is_unreachable
 | 
					#pragma diag_suppress code_is_unreachable
 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
#pragma push_macro("__CUDA_ARCH__")
 | 
					#pragma push_macro("__CUDA_ARCH__")
 | 
				
			||||||
#pragma push_macro("__NVCC__")
 | 
					#pragma push_macro("__NVCC__")
 | 
				
			||||||
#pragma push_macro("__CUDACC__")
 | 
					#pragma push_macro("__CUDACC__")
 | 
				
			||||||
@@ -34,7 +30,7 @@
 | 
				
			|||||||
#pragma push_macro("__SYCL_DEVICE_ONLY__")
 | 
					#pragma push_macro("__SYCL_DEVICE_ONLY__")
 | 
				
			||||||
#undef __SYCL_DEVICE_ONLY__
 | 
					#undef __SYCL_DEVICE_ONLY__
 | 
				
			||||||
#define EIGEN_DONT_VECTORIZE
 | 
					#define EIGEN_DONT_VECTORIZE
 | 
				
			||||||
#undef EIGEN_USE_SYCL
 | 
					//#undef EIGEN_USE_SYCL
 | 
				
			||||||
#define __SYCL__REDEFINE__
 | 
					#define __SYCL__REDEFINE__
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -66,10 +66,6 @@ if BUILD_FERMION_REPS
 | 
				
			|||||||
  extra_sources+=$(ADJ_FERMION_FILES)
 | 
					  extra_sources+=$(ADJ_FERMION_FILES)
 | 
				
			||||||
  extra_sources+=$(TWOIND_FERMION_FILES)
 | 
					  extra_sources+=$(TWOIND_FERMION_FILES)
 | 
				
			||||||
endif
 | 
					endif
 | 
				
			||||||
if BUILD_SP
 | 
					 | 
				
			||||||
    extra_sources+=$(SP_FERMION_FILES)
 | 
					 | 
				
			||||||
    extra_sources+=$(SP_TWOIND_FERMION_FILES)
 | 
					 | 
				
			||||||
endif
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
lib_LIBRARIES = libGrid.a
 | 
					lib_LIBRARIES = libGrid.a
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -30,14 +30,9 @@ directory
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
#include <type_traits>
 | 
					#include <type_traits>
 | 
				
			||||||
#include <cassert>
 | 
					#include <cassert>
 | 
				
			||||||
#include <exception>
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
#define NAMESPACE_BEGIN(A) namespace A {
 | 
					#define NAMESPACE_BEGIN(A) namespace A {
 | 
				
			||||||
#define NAMESPACE_END(A)   }
 | 
					#define NAMESPACE_END(A)   }
 | 
				
			||||||
#define GRID_NAMESPACE_BEGIN NAMESPACE_BEGIN(Grid)
 | 
					#define GRID_NAMESPACE_BEGIN NAMESPACE_BEGIN(Grid)
 | 
				
			||||||
#define GRID_NAMESPACE_END   NAMESPACE_END(Grid)
 | 
					#define GRID_NAMESPACE_END   NAMESPACE_END(Grid)
 | 
				
			||||||
#define NAMESPACE_CHECK(x) struct namespaceTEST##x {};  static_assert(std::is_same<namespaceTEST##x, ::namespaceTEST##x>::value,"Not in :: at"  ); 
 | 
					#define NAMESPACE_CHECK(x) struct namespaceTEST##x {};  static_assert(std::is_same<namespaceTEST##x, ::namespaceTEST##x>::value,"Not in :: at"  ); 
 | 
				
			||||||
 | 
					 | 
				
			||||||
#define EXCEPTION_CHECK_BEGIN(A) try {
 | 
					 | 
				
			||||||
#define EXCEPTION_CHECK_END(A)   } catch ( std::exception e ) { BACKTRACEFP(stderr); std::cerr << __PRETTY_FUNCTION__ << " : " <<__LINE__<< " Caught exception "<<e.what()<<std::endl; throw; }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 
 | 
				
			|||||||
@@ -29,9 +29,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
#ifndef GRID_ALGORITHMS_H
 | 
					#ifndef GRID_ALGORITHMS_H
 | 
				
			||||||
#define GRID_ALGORITHMS_H
 | 
					#define GRID_ALGORITHMS_H
 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_CHECK(blas);
 | 
					 | 
				
			||||||
#include <Grid/algorithms/blas/BatchedBlas.h>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_CHECK(algorithms);
 | 
					NAMESPACE_CHECK(algorithms);
 | 
				
			||||||
#include <Grid/algorithms/SparseMatrix.h>
 | 
					#include <Grid/algorithms/SparseMatrix.h>
 | 
				
			||||||
#include <Grid/algorithms/LinearOperator.h>
 | 
					#include <Grid/algorithms/LinearOperator.h>
 | 
				
			||||||
@@ -47,11 +44,7 @@ NAMESPACE_CHECK(SparseMatrix);
 | 
				
			|||||||
#include <Grid/algorithms/approx/RemezGeneral.h>
 | 
					#include <Grid/algorithms/approx/RemezGeneral.h>
 | 
				
			||||||
#include <Grid/algorithms/approx/ZMobius.h>
 | 
					#include <Grid/algorithms/approx/ZMobius.h>
 | 
				
			||||||
NAMESPACE_CHECK(approx);
 | 
					NAMESPACE_CHECK(approx);
 | 
				
			||||||
#include <Grid/algorithms/deflation/Deflation.h>
 | 
					#include <Grid/algorithms/iterative/Deflation.h>
 | 
				
			||||||
#include <Grid/algorithms/deflation/MultiRHSBlockProject.h>
 | 
					 | 
				
			||||||
#include <Grid/algorithms/deflation/MultiRHSDeflation.h>
 | 
					 | 
				
			||||||
#include <Grid/algorithms/deflation/MultiRHSBlockCGLinalg.h>
 | 
					 | 
				
			||||||
NAMESPACE_CHECK(deflation);
 | 
					 | 
				
			||||||
#include <Grid/algorithms/iterative/ConjugateGradient.h>
 | 
					#include <Grid/algorithms/iterative/ConjugateGradient.h>
 | 
				
			||||||
NAMESPACE_CHECK(ConjGrad);
 | 
					NAMESPACE_CHECK(ConjGrad);
 | 
				
			||||||
#include <Grid/algorithms/iterative/BiCGSTAB.h>
 | 
					#include <Grid/algorithms/iterative/BiCGSTAB.h>
 | 
				
			||||||
@@ -61,8 +54,6 @@ NAMESPACE_CHECK(BiCGSTAB);
 | 
				
			|||||||
#include <Grid/algorithms/iterative/SchurRedBlack.h>
 | 
					#include <Grid/algorithms/iterative/SchurRedBlack.h>
 | 
				
			||||||
#include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h>
 | 
					#include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h>
 | 
				
			||||||
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
 | 
					#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
 | 
				
			||||||
#include <Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h>
 | 
					 | 
				
			||||||
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrecBatched.h>
 | 
					 | 
				
			||||||
#include <Grid/algorithms/iterative/BiCGSTABMixedPrec.h>
 | 
					#include <Grid/algorithms/iterative/BiCGSTABMixedPrec.h>
 | 
				
			||||||
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
 | 
					#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
 | 
				
			||||||
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>
 | 
					#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>
 | 
				
			||||||
@@ -73,13 +64,11 @@ NAMESPACE_CHECK(BiCGSTAB);
 | 
				
			|||||||
#include <Grid/algorithms/iterative/FlexibleCommunicationAvoidingGeneralisedMinimalResidual.h>
 | 
					#include <Grid/algorithms/iterative/FlexibleCommunicationAvoidingGeneralisedMinimalResidual.h>
 | 
				
			||||||
#include <Grid/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h>
 | 
					#include <Grid/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h>
 | 
				
			||||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
 | 
					#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
 | 
				
			||||||
#include <Grid/algorithms/iterative/SimpleLanczos.h>
 | 
					 | 
				
			||||||
#include <Grid/algorithms/iterative/PowerMethod.h>
 | 
					#include <Grid/algorithms/iterative/PowerMethod.h>
 | 
				
			||||||
#include <Grid/algorithms/iterative/AdefGeneric.h>
 | 
					
 | 
				
			||||||
#include <Grid/algorithms/iterative/AdefMrhs.h>
 | 
					 | 
				
			||||||
NAMESPACE_CHECK(PowerMethod);
 | 
					NAMESPACE_CHECK(PowerMethod);
 | 
				
			||||||
#include <Grid/algorithms/multigrid/MultiGrid.h>
 | 
					#include <Grid/algorithms/CoarsenedMatrix.h>
 | 
				
			||||||
NAMESPACE_CHECK(multigrid);
 | 
					NAMESPACE_CHECK(CoarsendMatrix);
 | 
				
			||||||
#include <Grid/algorithms/FFT.h>
 | 
					#include <Grid/algorithms/FFT.h>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -56,6 +56,243 @@ inline void blockMaskedInnerProduct(Lattice<CComplex> &CoarseInner,
 | 
				
			|||||||
  blockSum(CoarseInner,fine_inner_msk);
 | 
					  blockSum(CoarseInner,fine_inner_msk);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class Geometry {
 | 
				
			||||||
 | 
					public:
 | 
				
			||||||
 | 
					  int npoint;
 | 
				
			||||||
 | 
					  int base;
 | 
				
			||||||
 | 
					  std::vector<int> directions   ;
 | 
				
			||||||
 | 
					  std::vector<int> displacements;
 | 
				
			||||||
 | 
					  std::vector<int> points_dagger;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Geometry(int _d)  {
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    base = (_d==5) ? 1:0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    // make coarse grid stencil for 4d , not 5d
 | 
				
			||||||
 | 
					    if ( _d==5 ) _d=4;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    npoint = 2*_d+1;
 | 
				
			||||||
 | 
					    directions.resize(npoint);
 | 
				
			||||||
 | 
					    displacements.resize(npoint);
 | 
				
			||||||
 | 
					    points_dagger.resize(npoint);
 | 
				
			||||||
 | 
					    for(int d=0;d<_d;d++){
 | 
				
			||||||
 | 
					      directions[d   ] = d+base;
 | 
				
			||||||
 | 
					      directions[d+_d] = d+base;
 | 
				
			||||||
 | 
					      displacements[d  ] = +1;
 | 
				
			||||||
 | 
					      displacements[d+_d]= -1;
 | 
				
			||||||
 | 
					      points_dagger[d   ] = d+_d;
 | 
				
			||||||
 | 
					      points_dagger[d+_d] = d;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    directions   [2*_d]=0;
 | 
				
			||||||
 | 
					    displacements[2*_d]=0;
 | 
				
			||||||
 | 
					    points_dagger[2*_d]=2*_d;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  int point(int dir, int disp) {
 | 
				
			||||||
 | 
					    assert(disp == -1 || disp == 0 || disp == 1);
 | 
				
			||||||
 | 
					    assert(base+0 <= dir && dir < base+4);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    // directions faster index = new indexing
 | 
				
			||||||
 | 
					    // 4d (base = 0):
 | 
				
			||||||
 | 
					    // point 0  1  2  3  4  5  6  7  8
 | 
				
			||||||
 | 
					    // dir   0  1  2  3  0  1  2  3  0
 | 
				
			||||||
 | 
					    // disp +1 +1 +1 +1 -1 -1 -1 -1  0
 | 
				
			||||||
 | 
					    // 5d (base = 1):
 | 
				
			||||||
 | 
					    // point 0  1  2  3  4  5  6  7  8
 | 
				
			||||||
 | 
					    // dir   1  2  3  4  1  2  3  4  0
 | 
				
			||||||
 | 
					    // disp +1 +1 +1 +1 -1 -1 -1 -1  0
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    // displacements faster index = old indexing
 | 
				
			||||||
 | 
					    // 4d (base = 0):
 | 
				
			||||||
 | 
					    // point 0  1  2  3  4  5  6  7  8
 | 
				
			||||||
 | 
					    // dir   0  0  1  1  2  2  3  3  0
 | 
				
			||||||
 | 
					    // disp +1 -1 +1 -1 +1 -1 +1 -1  0
 | 
				
			||||||
 | 
					    // 5d (base = 1):
 | 
				
			||||||
 | 
					    // point 0  1  2  3  4  5  6  7  8
 | 
				
			||||||
 | 
					    // dir   1  1  2  2  3  3  4  4  0
 | 
				
			||||||
 | 
					    // disp +1 -1 +1 -1 +1 -1 +1 -1  0
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if(dir == 0 and disp == 0)
 | 
				
			||||||
 | 
					      return 8;
 | 
				
			||||||
 | 
					    else // New indexing
 | 
				
			||||||
 | 
					      return (1 - disp) / 2 * 4 + dir - base;
 | 
				
			||||||
 | 
					    // else // Old indexing
 | 
				
			||||||
 | 
					    //   return (4 * (dir - base) + 1 - disp) / 2;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					};
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
 | 
					template<class Fobj,class CComplex,int nbasis>
 | 
				
			||||||
 | 
					class Aggregation   {
 | 
				
			||||||
 | 
					public:
 | 
				
			||||||
 | 
					  typedef iVector<CComplex,nbasis >             siteVector;
 | 
				
			||||||
 | 
					  typedef Lattice<siteVector>                 CoarseVector;
 | 
				
			||||||
 | 
					  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
				
			||||||
 | 
					  typedef Lattice<Fobj >        FineField;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  GridBase *CoarseGrid;
 | 
				
			||||||
 | 
					  GridBase *FineGrid;
 | 
				
			||||||
 | 
					  std::vector<Lattice<Fobj> > subspace;
 | 
				
			||||||
 | 
					  int checkerboard;
 | 
				
			||||||
 | 
					  int Checkerboard(void){return checkerboard;}
 | 
				
			||||||
 | 
					  Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) : 
 | 
				
			||||||
 | 
					    CoarseGrid(_CoarseGrid),
 | 
				
			||||||
 | 
					    FineGrid(_FineGrid),
 | 
				
			||||||
 | 
					    subspace(nbasis,_FineGrid),
 | 
				
			||||||
 | 
					    checkerboard(_checkerboard)
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					  };
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
 | 
					  void Orthogonalise(void){
 | 
				
			||||||
 | 
					    CoarseScalar InnerProd(CoarseGrid); 
 | 
				
			||||||
 | 
					    std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
 | 
				
			||||||
 | 
					    blockOrthogonalise(InnerProd,subspace);
 | 
				
			||||||
 | 
					  } 
 | 
				
			||||||
 | 
					  void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
 | 
				
			||||||
 | 
					    blockProject(CoarseVec,FineVec,subspace);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
 | 
				
			||||||
 | 
					    FineVec.Checkerboard() = subspace[0].Checkerboard();
 | 
				
			||||||
 | 
					    blockPromote(CoarseVec,FineVec,subspace);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  virtual void CreateSubspace(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    RealD scale;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    ConjugateGradient<FineField> CG(1.0e-2,100,false);
 | 
				
			||||||
 | 
					    FineField noise(FineGrid);
 | 
				
			||||||
 | 
					    FineField Mn(FineGrid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for(int b=0;b<nn;b++){
 | 
				
			||||||
 | 
					      
 | 
				
			||||||
 | 
					      subspace[b] = Zero();
 | 
				
			||||||
 | 
					      gaussian(RNG,noise);
 | 
				
			||||||
 | 
					      scale = std::pow(norm2(noise),-0.5); 
 | 
				
			||||||
 | 
					      noise=noise*scale;
 | 
				
			||||||
 | 
					      
 | 
				
			||||||
 | 
					      hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      for(int i=0;i<1;i++){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						CG(hermop,noise,subspace[b]);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						noise = subspace[b];
 | 
				
			||||||
 | 
						scale = std::pow(norm2(noise),-0.5); 
 | 
				
			||||||
 | 
						noise=noise*scale;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
 | 
				
			||||||
 | 
					      subspace[b]   = noise;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					  // World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
 | 
				
			||||||
 | 
					  // and this is the best I found
 | 
				
			||||||
 | 
					  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
				
			||||||
 | 
									       int nn,
 | 
				
			||||||
 | 
									       double hi,
 | 
				
			||||||
 | 
									       double lo,
 | 
				
			||||||
 | 
									       int orderfilter,
 | 
				
			||||||
 | 
									       int ordermin,
 | 
				
			||||||
 | 
									       int orderstep,
 | 
				
			||||||
 | 
									       double filterlo
 | 
				
			||||||
 | 
									       ) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    RealD scale;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    FineField noise(FineGrid);
 | 
				
			||||||
 | 
					    FineField Mn(FineGrid);
 | 
				
			||||||
 | 
					    FineField tmp(FineGrid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    // New normalised noise
 | 
				
			||||||
 | 
					    gaussian(RNG,noise);
 | 
				
			||||||
 | 
					    scale = std::pow(norm2(noise),-0.5); 
 | 
				
			||||||
 | 
					    noise=noise*scale;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    // Initial matrix element
 | 
				
			||||||
 | 
					    hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    int b =0;
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      // Filter
 | 
				
			||||||
 | 
					      Chebyshev<FineField> Cheb(lo,hi,orderfilter);
 | 
				
			||||||
 | 
					      Cheb(hermop,noise,Mn);
 | 
				
			||||||
 | 
					      // normalise
 | 
				
			||||||
 | 
					      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
				
			||||||
 | 
					      subspace[b]   = Mn;
 | 
				
			||||||
 | 
					      hermop.Op(Mn,tmp); 
 | 
				
			||||||
 | 
					      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
				
			||||||
 | 
					      b++;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    // Generate a full sequence of Chebyshevs
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      lo=filterlo;
 | 
				
			||||||
 | 
					      noise=Mn;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      FineField T0(FineGrid); T0 = noise;  
 | 
				
			||||||
 | 
					      FineField T1(FineGrid); 
 | 
				
			||||||
 | 
					      FineField T2(FineGrid);
 | 
				
			||||||
 | 
					      FineField y(FineGrid);
 | 
				
			||||||
 | 
					      
 | 
				
			||||||
 | 
					      FineField *Tnm = &T0;
 | 
				
			||||||
 | 
					      FineField *Tn  = &T1;
 | 
				
			||||||
 | 
					      FineField *Tnp = &T2;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      // Tn=T1 = (xscale M + mscale)in
 | 
				
			||||||
 | 
					      RealD xscale = 2.0/(hi-lo);
 | 
				
			||||||
 | 
					      RealD mscale = -(hi+lo)/(hi-lo);
 | 
				
			||||||
 | 
					      hermop.HermOp(T0,y);
 | 
				
			||||||
 | 
					      T1=y*xscale+noise*mscale;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
 | 
				
			||||||
 | 
						
 | 
				
			||||||
 | 
						hermop.HermOp(*Tn,y);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						autoView( y_v , y, AcceleratorWrite);
 | 
				
			||||||
 | 
						autoView( Tn_v , (*Tn), AcceleratorWrite);
 | 
				
			||||||
 | 
						autoView( Tnp_v , (*Tnp), AcceleratorWrite);
 | 
				
			||||||
 | 
						autoView( Tnm_v , (*Tnm), AcceleratorWrite);
 | 
				
			||||||
 | 
						const int Nsimd = CComplex::Nsimd();
 | 
				
			||||||
 | 
						accelerator_forNB(ss, FineGrid->oSites(), Nsimd, {
 | 
				
			||||||
 | 
						  coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
 | 
				
			||||||
 | 
						  coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
 | 
				
			||||||
 | 
					        });
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						// Possible more fine grained control is needed than a linear sweep,
 | 
				
			||||||
 | 
						// but huge productivity gain if this is simple algorithm and not a tunable
 | 
				
			||||||
 | 
						int m =1;
 | 
				
			||||||
 | 
						if ( n>=ordermin ) m=n-ordermin;
 | 
				
			||||||
 | 
						if ( (m%orderstep)==0 ) { 
 | 
				
			||||||
 | 
						  Mn=*Tnp;
 | 
				
			||||||
 | 
						  scale = std::pow(norm2(Mn),-0.5);         Mn=Mn*scale;
 | 
				
			||||||
 | 
						  subspace[b] = Mn;
 | 
				
			||||||
 | 
						  hermop.Op(Mn,tmp); 
 | 
				
			||||||
 | 
						  std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
				
			||||||
 | 
						  b++;
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						// Cycle pointers to avoid copies
 | 
				
			||||||
 | 
						FineField *swizzle = Tnm;
 | 
				
			||||||
 | 
						Tnm    =Tn;
 | 
				
			||||||
 | 
						Tn     =Tnp;
 | 
				
			||||||
 | 
						Tnp    =swizzle;
 | 
				
			||||||
 | 
						  
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    assert(b==nn);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
// Fine Object == (per site) type of fine field
 | 
					// Fine Object == (per site) type of fine field
 | 
				
			||||||
// nbasis      == number of deflation vectors
 | 
					// nbasis      == number of deflation vectors
 | 
				
			||||||
template<class Fobj,class CComplex,int nbasis>
 | 
					template<class Fobj,class CComplex,int nbasis>
 | 
				
			||||||
@@ -87,9 +324,9 @@ public:
 | 
				
			|||||||
  GridBase*        _cbgrid;
 | 
					  GridBase*        _cbgrid;
 | 
				
			||||||
  int hermitian;
 | 
					  int hermitian;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  CartesianStencil<siteVector,siteVector,DefaultImplParams> Stencil; 
 | 
					  CartesianStencil<siteVector,siteVector,int> Stencil; 
 | 
				
			||||||
  CartesianStencil<siteVector,siteVector,DefaultImplParams> StencilEven;
 | 
					  CartesianStencil<siteVector,siteVector,int> StencilEven;
 | 
				
			||||||
  CartesianStencil<siteVector,siteVector,DefaultImplParams> StencilOdd;
 | 
					  CartesianStencil<siteVector,siteVector,int> StencilOdd;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  std::vector<CoarseMatrix> A;
 | 
					  std::vector<CoarseMatrix> A;
 | 
				
			||||||
  std::vector<CoarseMatrix> Aeven;
 | 
					  std::vector<CoarseMatrix> Aeven;
 | 
				
			||||||
@@ -99,7 +336,7 @@ public:
 | 
				
			|||||||
  CoarseMatrix AselfInvEven;
 | 
					  CoarseMatrix AselfInvEven;
 | 
				
			||||||
  CoarseMatrix AselfInvOdd;
 | 
					  CoarseMatrix AselfInvOdd;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  deviceVector<RealD> dag_factor;
 | 
					  Vector<RealD> dag_factor;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  ///////////////////////
 | 
					  ///////////////////////
 | 
				
			||||||
  // Interface
 | 
					  // Interface
 | 
				
			||||||
@@ -121,16 +358,12 @@ public:
 | 
				
			|||||||
    autoView( in_v , in, AcceleratorRead);
 | 
					    autoView( in_v , in, AcceleratorRead);
 | 
				
			||||||
    autoView( out_v , out, AcceleratorWrite);
 | 
					    autoView( out_v , out, AcceleratorWrite);
 | 
				
			||||||
    autoView( Stencil_v  , Stencil, AcceleratorRead);
 | 
					    autoView( Stencil_v  , Stencil, AcceleratorRead);
 | 
				
			||||||
    int npoint = geom.npoint;
 | 
					    auto& geom_v = geom;
 | 
				
			||||||
    typedef LatticeView<Cobj> Aview;
 | 
					    typedef LatticeView<Cobj> Aview;
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
 | 
					    Vector<Aview> AcceleratorViewContainer;
 | 
				
			||||||
    hostVector<Aview>   hAcceleratorViewContainer(geom.npoint);
 | 
					 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++) {
 | 
					    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
 | 
				
			||||||
      hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
 | 
					 | 
				
			||||||
      acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
					    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    const int Nsimd = CComplex::Nsimd();
 | 
					    const int Nsimd = CComplex::Nsimd();
 | 
				
			||||||
@@ -147,7 +380,7 @@ public:
 | 
				
			|||||||
      int ptype;
 | 
					      int ptype;
 | 
				
			||||||
      StencilEntry *SE;
 | 
					      StencilEntry *SE;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      for(int point=0;point<npoint;point++){
 | 
					      for(int point=0;point<geom_v.npoint;point++){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	SE=Stencil_v.GetEntry(ptype,point,ss);
 | 
						SE=Stencil_v.GetEntry(ptype,point,ss);
 | 
				
			||||||
	  
 | 
						  
 | 
				
			||||||
@@ -165,7 +398,7 @@ public:
 | 
				
			|||||||
      coalescedWrite(out_v[ss](b),res);
 | 
					      coalescedWrite(out_v[ss](b),res);
 | 
				
			||||||
      });
 | 
					      });
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
 | 
					    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
 | 
				
			||||||
  };
 | 
					  };
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void Mdag (const CoarseVector &in, CoarseVector &out)
 | 
					  void Mdag (const CoarseVector &in, CoarseVector &out)
 | 
				
			||||||
@@ -191,17 +424,12 @@ public:
 | 
				
			|||||||
    autoView( in_v , in, AcceleratorRead);
 | 
					    autoView( in_v , in, AcceleratorRead);
 | 
				
			||||||
    autoView( out_v , out, AcceleratorWrite);
 | 
					    autoView( out_v , out, AcceleratorWrite);
 | 
				
			||||||
    autoView( Stencil_v  , Stencil, AcceleratorRead);
 | 
					    autoView( Stencil_v  , Stencil, AcceleratorRead);
 | 
				
			||||||
    int npoint = geom.npoint;
 | 
					    auto& geom_v = geom;
 | 
				
			||||||
    typedef LatticeView<Cobj> Aview;
 | 
					    typedef LatticeView<Cobj> Aview;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Vector<Aview> AcceleratorViewContainer;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
 | 
					    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
 | 
				
			||||||
    hostVector<Aview>   hAcceleratorViewContainer(geom.npoint);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++) {
 | 
					 | 
				
			||||||
      hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
 | 
					 | 
				
			||||||
      acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
					    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    const int Nsimd = CComplex::Nsimd();
 | 
					    const int Nsimd = CComplex::Nsimd();
 | 
				
			||||||
@@ -210,11 +438,9 @@ public:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    int osites=Grid()->oSites();
 | 
					    int osites=Grid()->oSites();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    deviceVector<int> points(geom.npoint);
 | 
					    Vector<int> points(geom.npoint, 0);
 | 
				
			||||||
    for(int p=0; p<geom.npoint; p++) { 
 | 
					    for(int p=0; p<geom.npoint; p++)
 | 
				
			||||||
      acceleratorPut(points[p],geom.points_dagger[p]);
 | 
					      points[p] = geom.points_dagger[p];
 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    auto points_p = &points[0];
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    RealD* dag_factor_p = &dag_factor[0];
 | 
					    RealD* dag_factor_p = &dag_factor[0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -226,8 +452,8 @@ public:
 | 
				
			|||||||
      int ptype;
 | 
					      int ptype;
 | 
				
			||||||
      StencilEntry *SE;
 | 
					      StencilEntry *SE;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      for(int p=0;p<npoint;p++){
 | 
					      for(int p=0;p<geom_v.npoint;p++){
 | 
				
			||||||
        int point = points_p[p];
 | 
					        int point = points[p];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	SE=Stencil_v.GetEntry(ptype,point,ss);
 | 
						SE=Stencil_v.GetEntry(ptype,point,ss);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -245,7 +471,7 @@ public:
 | 
				
			|||||||
      coalescedWrite(out_v[ss](b),res);
 | 
					      coalescedWrite(out_v[ss](b),res);
 | 
				
			||||||
      });
 | 
					      });
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
 | 
					    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void MdirComms(const CoarseVector &in)
 | 
					  void MdirComms(const CoarseVector &in)
 | 
				
			||||||
@@ -260,14 +486,8 @@ public:
 | 
				
			|||||||
    out.Checkerboard() = in.Checkerboard();
 | 
					    out.Checkerboard() = in.Checkerboard();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    typedef LatticeView<Cobj> Aview;
 | 
					    typedef LatticeView<Cobj> Aview;
 | 
				
			||||||
 | 
					    Vector<Aview> AcceleratorViewContainer;
 | 
				
			||||||
    deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
 | 
					    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
 | 
				
			||||||
    hostVector<Aview>   hAcceleratorViewContainer(geom.npoint);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++) {
 | 
					 | 
				
			||||||
      hAcceleratorViewContainer[p] = A[p].View(AcceleratorRead);
 | 
					 | 
				
			||||||
      acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
					    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    autoView( out_v , out, AcceleratorWrite);
 | 
					    autoView( out_v , out, AcceleratorWrite);
 | 
				
			||||||
@@ -300,7 +520,7 @@ public:
 | 
				
			|||||||
      }
 | 
					      }
 | 
				
			||||||
      coalescedWrite(out_v[ss](b),res);
 | 
					      coalescedWrite(out_v[ss](b),res);
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++) hAcceleratorViewContainer[p].ViewClose();
 | 
					    for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out)
 | 
					  void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
@@ -409,7 +629,7 @@ public:
 | 
				
			|||||||
    assert(Aself != nullptr);
 | 
					    assert(Aself != nullptr);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void DselfInternal(CartesianStencil<siteVector,siteVector,DefaultImplParams> &st, CoarseMatrix &a,
 | 
					  void DselfInternal(CartesianStencil<siteVector,siteVector,int> &st, CoarseMatrix &a,
 | 
				
			||||||
                       const CoarseVector &in, CoarseVector &out, int dag) {
 | 
					                       const CoarseVector &in, CoarseVector &out, int dag) {
 | 
				
			||||||
    int point = geom.npoint-1;
 | 
					    int point = geom.npoint-1;
 | 
				
			||||||
    autoView( out_v, out, AcceleratorWrite);
 | 
					    autoView( out_v, out, AcceleratorWrite);
 | 
				
			||||||
@@ -472,7 +692,7 @@ public:
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void DhopInternal(CartesianStencil<siteVector,siteVector,DefaultImplParams> &st, std::vector<CoarseMatrix> &a,
 | 
					  void DhopInternal(CartesianStencil<siteVector,siteVector,int> &st, std::vector<CoarseMatrix> &a,
 | 
				
			||||||
                    const CoarseVector &in, CoarseVector &out, int dag) {
 | 
					                    const CoarseVector &in, CoarseVector &out, int dag) {
 | 
				
			||||||
    SimpleCompressor<siteVector> compressor;
 | 
					    SimpleCompressor<siteVector> compressor;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -484,20 +704,12 @@ public:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    // determine in what order we need the points
 | 
					    // determine in what order we need the points
 | 
				
			||||||
    int npoint = geom.npoint-1;
 | 
					    int npoint = geom.npoint-1;
 | 
				
			||||||
    deviceVector<int> points(npoint);
 | 
					    Vector<int> points(npoint, 0);
 | 
				
			||||||
    for(int p=0; p<npoint; p++) {
 | 
					    for(int p=0; p<npoint; p++)
 | 
				
			||||||
      int val = (dag && !hermitian) ? geom.points_dagger[p] : p;
 | 
					      points[p] = (dag && !hermitian) ? geom.points_dagger[p] : p;
 | 
				
			||||||
      acceleratorPut(points[p], val);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    auto points_p = &points[0];
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    deviceVector<Aview> AcceleratorViewContainer(geom.npoint);
 | 
					    Vector<Aview> AcceleratorViewContainer;
 | 
				
			||||||
    hostVector<Aview>   hAcceleratorViewContainer(geom.npoint);
 | 
					    for(int p=0;p<npoint;p++) AcceleratorViewContainer.push_back(a[p].View(AcceleratorRead));
 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++) {
 | 
					 | 
				
			||||||
      hAcceleratorViewContainer[p] = a[p].View(AcceleratorRead);
 | 
					 | 
				
			||||||
      acceleratorPut(AcceleratorViewContainer[p],hAcceleratorViewContainer[p]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
					    Aview *Aview_p = & AcceleratorViewContainer[0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    const int Nsimd = CComplex::Nsimd();
 | 
					    const int Nsimd = CComplex::Nsimd();
 | 
				
			||||||
@@ -516,7 +728,7 @@ public:
 | 
				
			|||||||
        StencilEntry *SE;
 | 
					        StencilEntry *SE;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        for(int p=0;p<npoint;p++){
 | 
					        for(int p=0;p<npoint;p++){
 | 
				
			||||||
          int point = points_p[p];
 | 
					          int point = points[p];
 | 
				
			||||||
          SE=st_v.GetEntry(ptype,point,ss);
 | 
					          SE=st_v.GetEntry(ptype,point,ss);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
          if(SE->_is_local) {
 | 
					          if(SE->_is_local) {
 | 
				
			||||||
@@ -542,7 +754,7 @@ public:
 | 
				
			|||||||
        StencilEntry *SE;
 | 
					        StencilEntry *SE;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        for(int p=0;p<npoint;p++){
 | 
					        for(int p=0;p<npoint;p++){
 | 
				
			||||||
          int point = points_p[p];
 | 
					          int point = points[p];
 | 
				
			||||||
          SE=st_v.GetEntry(ptype,point,ss);
 | 
					          SE=st_v.GetEntry(ptype,point,ss);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
          if(SE->_is_local) {
 | 
					          if(SE->_is_local) {
 | 
				
			||||||
@@ -560,7 +772,7 @@ public:
 | 
				
			|||||||
      });
 | 
					      });
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    for(int p=0;p<npoint;p++) hAcceleratorViewContainer[p].ViewClose();
 | 
					    for(int p=0;p<npoint;p++) AcceleratorViewContainer[p].ViewClose();
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) 	:
 | 
					  CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) 	:
 | 
				
			||||||
@@ -568,9 +780,9 @@ public:
 | 
				
			|||||||
    _cbgrid(new GridRedBlackCartesian(&CoarseGrid)),
 | 
					    _cbgrid(new GridRedBlackCartesian(&CoarseGrid)),
 | 
				
			||||||
    geom(CoarseGrid._ndimension),
 | 
					    geom(CoarseGrid._ndimension),
 | 
				
			||||||
    hermitian(hermitian_),
 | 
					    hermitian(hermitian_),
 | 
				
			||||||
    Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements),
 | 
					    Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements,0),
 | 
				
			||||||
    StencilEven(_cbgrid,geom.npoint,Even,geom.directions,geom.displacements),
 | 
					    StencilEven(_cbgrid,geom.npoint,Even,geom.directions,geom.displacements,0),
 | 
				
			||||||
    StencilOdd(_cbgrid,geom.npoint,Odd,geom.directions,geom.displacements),
 | 
					    StencilOdd(_cbgrid,geom.npoint,Odd,geom.directions,geom.displacements,0),
 | 
				
			||||||
    A(geom.npoint,&CoarseGrid),
 | 
					    A(geom.npoint,&CoarseGrid),
 | 
				
			||||||
    Aeven(geom.npoint,_cbgrid),
 | 
					    Aeven(geom.npoint,_cbgrid),
 | 
				
			||||||
    Aodd(geom.npoint,_cbgrid),
 | 
					    Aodd(geom.npoint,_cbgrid),
 | 
				
			||||||
@@ -588,9 +800,9 @@ public:
 | 
				
			|||||||
    _cbgrid(&CoarseRBGrid),
 | 
					    _cbgrid(&CoarseRBGrid),
 | 
				
			||||||
    geom(CoarseGrid._ndimension),
 | 
					    geom(CoarseGrid._ndimension),
 | 
				
			||||||
    hermitian(hermitian_),
 | 
					    hermitian(hermitian_),
 | 
				
			||||||
    Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements),
 | 
					    Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements,0),
 | 
				
			||||||
    StencilEven(&CoarseRBGrid,geom.npoint,Even,geom.directions,geom.displacements),
 | 
					    StencilEven(&CoarseRBGrid,geom.npoint,Even,geom.directions,geom.displacements,0),
 | 
				
			||||||
    StencilOdd(&CoarseRBGrid,geom.npoint,Odd,geom.directions,geom.displacements),
 | 
					    StencilOdd(&CoarseRBGrid,geom.npoint,Odd,geom.directions,geom.displacements,0),
 | 
				
			||||||
    A(geom.npoint,&CoarseGrid),
 | 
					    A(geom.npoint,&CoarseGrid),
 | 
				
			||||||
    Aeven(geom.npoint,&CoarseRBGrid),
 | 
					    Aeven(geom.npoint,&CoarseRBGrid),
 | 
				
			||||||
    Aodd(geom.npoint,&CoarseRBGrid),
 | 
					    Aodd(geom.npoint,&CoarseRBGrid),
 | 
				
			||||||
@@ -611,13 +823,11 @@ public:
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // GPU readable prefactor
 | 
					    // GPU readable prefactor
 | 
				
			||||||
    std::vector<RealD> h_dag_factor(nbasis*nbasis);
 | 
					 | 
				
			||||||
    thread_for(i, nbasis*nbasis, {
 | 
					    thread_for(i, nbasis*nbasis, {
 | 
				
			||||||
      int j = i/nbasis;
 | 
					      int j = i/nbasis;
 | 
				
			||||||
      int k = i%nbasis;
 | 
					      int k = i%nbasis;
 | 
				
			||||||
      h_dag_factor[i] = dag_factor_eigen(j, k);
 | 
					      dag_factor[i] = dag_factor_eigen(j, k);
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
    acceleratorCopyToDevice(&h_dag_factor[0],&dag_factor[0],dag_factor.size()*sizeof(RealD));
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
					  void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
				
			||||||
@@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
#define _GRID_FFT_H_
 | 
					#define _GRID_FFT_H_
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#ifdef HAVE_FFTW
 | 
					#ifdef HAVE_FFTW
 | 
				
			||||||
#if defined(USE_MKL) || defined(GRID_SYCL)
 | 
					#ifdef USE_MKL
 | 
				
			||||||
#include <fftw/fftw3.h>
 | 
					#include <fftw/fftw3.h>
 | 
				
			||||||
#else
 | 
					#else
 | 
				
			||||||
#include <fftw3.h>
 | 
					#include <fftw3.h>
 | 
				
			||||||
@@ -136,7 +136,7 @@ public:
 | 
				
			|||||||
    flops=0;
 | 
					    flops=0;
 | 
				
			||||||
    usec =0;
 | 
					    usec =0;
 | 
				
			||||||
    Coordinate layout(Nd,1);
 | 
					    Coordinate layout(Nd,1);
 | 
				
			||||||
    sgrid = new GridCartesian(dimensions,layout,processors,*grid);
 | 
					    sgrid = new GridCartesian(dimensions,layout,processors);
 | 
				
			||||||
  };
 | 
					  };
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
  ~FFT ( void)  {
 | 
					  ~FFT ( void)  {
 | 
				
			||||||
@@ -168,7 +168,6 @@ public:
 | 
				
			|||||||
  template<class vobj>
 | 
					  template<class vobj>
 | 
				
			||||||
  void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int sign){
 | 
					  void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int sign){
 | 
				
			||||||
#ifndef HAVE_FFTW
 | 
					#ifndef HAVE_FFTW
 | 
				
			||||||
    std::cerr << "FFTW is not compiled but is called"<<std::endl;
 | 
					 | 
				
			||||||
    assert(0);
 | 
					    assert(0);
 | 
				
			||||||
#else
 | 
					#else
 | 
				
			||||||
    conformable(result.Grid(),vgrid);
 | 
					    conformable(result.Grid(),vgrid);
 | 
				
			||||||
@@ -183,7 +182,7 @@ public:
 | 
				
			|||||||
    pencil_gd[dim] = G*processors[dim];
 | 
					    pencil_gd[dim] = G*processors[dim];
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    // Pencil global vol LxLxGxLxL per node
 | 
					    // Pencil global vol LxLxGxLxL per node
 | 
				
			||||||
    GridCartesian pencil_g(pencil_gd,layout,processors,*vgrid);
 | 
					    GridCartesian pencil_g(pencil_gd,layout,processors);
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    // Construct pencils
 | 
					    // Construct pencils
 | 
				
			||||||
    typedef typename vobj::scalar_object sobj;
 | 
					    typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
@@ -191,7 +190,6 @@ public:
 | 
				
			|||||||
      
 | 
					      
 | 
				
			||||||
    Lattice<sobj> pgbuf(&pencil_g);
 | 
					    Lattice<sobj> pgbuf(&pencil_g);
 | 
				
			||||||
    autoView(pgbuf_v , pgbuf, CpuWrite);
 | 
					    autoView(pgbuf_v , pgbuf, CpuWrite);
 | 
				
			||||||
    //std::cout << "CPU view" << std::endl;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
 | 
					    typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
 | 
				
			||||||
    typedef typename FFTW<scalar>::FFTW_plan   FFTW_plan;
 | 
					    typedef typename FFTW<scalar>::FFTW_plan   FFTW_plan;
 | 
				
			||||||
@@ -215,7 +213,6 @@ public:
 | 
				
			|||||||
    else if ( sign == forward ) div = 1.0;
 | 
					    else if ( sign == forward ) div = 1.0;
 | 
				
			||||||
    else assert(0);
 | 
					    else assert(0);
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    //std::cout << GridLogPerformance<<"Making FFTW plan" << std::endl;
 | 
					 | 
				
			||||||
    FFTW_plan p;
 | 
					    FFTW_plan p;
 | 
				
			||||||
    {
 | 
					    {
 | 
				
			||||||
      FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0];
 | 
					      FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0];
 | 
				
			||||||
@@ -229,7 +226,6 @@ public:
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    // Barrel shift and collect global pencil
 | 
					    // Barrel shift and collect global pencil
 | 
				
			||||||
    //std::cout << GridLogPerformance<<"Making pencil" << std::endl;
 | 
					 | 
				
			||||||
    Coordinate lcoor(Nd), gcoor(Nd);
 | 
					    Coordinate lcoor(Nd), gcoor(Nd);
 | 
				
			||||||
    result = source;
 | 
					    result = source;
 | 
				
			||||||
    int pc = processor_coor[dim];
 | 
					    int pc = processor_coor[dim];
 | 
				
			||||||
@@ -251,7 +247,6 @@ public:
 | 
				
			|||||||
      }
 | 
					      }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    //std::cout <<GridLogPerformance<< "Looping orthog" << std::endl;
 | 
					 | 
				
			||||||
    // Loop over orthog coords
 | 
					    // Loop over orthog coords
 | 
				
			||||||
    int NN=pencil_g.lSites();
 | 
					    int NN=pencil_g.lSites();
 | 
				
			||||||
    GridStopWatch timer;
 | 
					    GridStopWatch timer;
 | 
				
			||||||
@@ -274,7 +269,6 @@ public:
 | 
				
			|||||||
    usec += timer.useconds();
 | 
					    usec += timer.useconds();
 | 
				
			||||||
    flops+= flops_call*NN;
 | 
					    flops+= flops_call*NN;
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    //std::cout <<GridLogPerformance<< "Writing back results " << std::endl;
 | 
					 | 
				
			||||||
    // writing out result
 | 
					    // writing out result
 | 
				
			||||||
    {
 | 
					    {
 | 
				
			||||||
      autoView(pgbuf_v,pgbuf,CpuRead);
 | 
					      autoView(pgbuf_v,pgbuf,CpuRead);
 | 
				
			||||||
@@ -291,7 +285,6 @@ public:
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
    result = result*div;
 | 
					    result = result*div;
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    //std::cout <<GridLogPerformance<< "Destroying plan " << std::endl;
 | 
					 | 
				
			||||||
    // destroying plan
 | 
					    // destroying plan
 | 
				
			||||||
    FFTW<scalar>::fftw_destroy_plan(p);
 | 
					    FFTW<scalar>::fftw_destroy_plan(p);
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -52,7 +52,6 @@ public:
 | 
				
			|||||||
  virtual void AdjOp  (const Field &in, Field &out) = 0; // Abstract base
 | 
					  virtual void AdjOp  (const Field &in, Field &out) = 0; // Abstract base
 | 
				
			||||||
  virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2)=0;
 | 
					  virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2)=0;
 | 
				
			||||||
  virtual void HermOp(const Field &in, Field &out)=0;
 | 
					  virtual void HermOp(const Field &in, Field &out)=0;
 | 
				
			||||||
  virtual ~LinearOperatorBase(){};
 | 
					 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -103,38 +102,6 @@ public:
 | 
				
			|||||||
    _Mat.MdagM(in,out);
 | 
					    _Mat.MdagM(in,out);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
template<class Matrix,class Field>
 | 
					 | 
				
			||||||
class MMdagLinearOperator : public LinearOperatorBase<Field> {
 | 
					 | 
				
			||||||
  Matrix &_Mat;
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  MMdagLinearOperator(Matrix &Mat): _Mat(Mat){};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  // Support for coarsening to a multigrid
 | 
					 | 
				
			||||||
  void OpDiag (const Field &in, Field &out) {
 | 
					 | 
				
			||||||
    _Mat.Mdiag(in,out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
					 | 
				
			||||||
    _Mat.Mdir(in,out,dir,disp);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
					 | 
				
			||||||
    _Mat.MdirAll(in,out);
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  void Op     (const Field &in, Field &out){
 | 
					 | 
				
			||||||
    _Mat.M(in,out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void AdjOp     (const Field &in, Field &out){
 | 
					 | 
				
			||||||
    _Mat.Mdag(in,out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
					 | 
				
			||||||
    _Mat.MMdag(in,out);
 | 
					 | 
				
			||||||
    ComplexD dot = innerProduct(in,out);
 | 
					 | 
				
			||||||
    n1=real(dot);
 | 
					 | 
				
			||||||
    n2=norm2(out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void HermOp(const Field &in, Field &out){
 | 
					 | 
				
			||||||
    _Mat.MMdag(in,out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////
 | 
				
			||||||
// Construct herm op and shift it for mgrid smoother
 | 
					// Construct herm op and shift it for mgrid smoother
 | 
				
			||||||
@@ -177,44 +144,6 @@ public:
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
// Create a shifted HermOp
 | 
					 | 
				
			||||||
////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
template<class Field>
 | 
					 | 
				
			||||||
class ShiftedHermOpLinearOperator : public LinearOperatorBase<Field> {
 | 
					 | 
				
			||||||
  LinearOperatorBase<Field> &_Mat;
 | 
					 | 
				
			||||||
  RealD _shift;
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  ShiftedHermOpLinearOperator(LinearOperatorBase<Field> &Mat,RealD shift): _Mat(Mat), _shift(shift){};
 | 
					 | 
				
			||||||
  // Support for coarsening to a multigrid
 | 
					 | 
				
			||||||
  void OpDiag (const Field &in, Field &out) {
 | 
					 | 
				
			||||||
    assert(0);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
					 | 
				
			||||||
    assert(0);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
					 | 
				
			||||||
    assert(0);
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  void Op     (const Field &in, Field &out){
 | 
					 | 
				
			||||||
    HermOp(in,out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void AdjOp     (const Field &in, Field &out){
 | 
					 | 
				
			||||||
    HermOp(in,out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
					 | 
				
			||||||
    HermOp(in,out);
 | 
					 | 
				
			||||||
    ComplexD dot = innerProduct(in,out);
 | 
					 | 
				
			||||||
    n1=real(dot);
 | 
					 | 
				
			||||||
    n2=norm2(out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void HermOp(const Field &in, Field &out){
 | 
					 | 
				
			||||||
    _Mat.HermOp(in,out);
 | 
					 | 
				
			||||||
    out = out + _shift*in;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////
 | 
				
			||||||
// Wrap an already herm matrix
 | 
					// Wrap an already herm matrix
 | 
				
			||||||
////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -277,38 +206,6 @@ public:
 | 
				
			|||||||
    assert(0);
 | 
					    assert(0);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
template<class Matrix,class Field>
 | 
					 | 
				
			||||||
class ShiftedNonHermitianLinearOperator : public LinearOperatorBase<Field> {
 | 
					 | 
				
			||||||
  Matrix &_Mat;
 | 
					 | 
				
			||||||
  RealD shift;
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  ShiftedNonHermitianLinearOperator(Matrix &Mat,RealD shft): _Mat(Mat),shift(shft){};
 | 
					 | 
				
			||||||
  // Support for coarsening to a multigrid
 | 
					 | 
				
			||||||
  void OpDiag (const Field &in, Field &out) {
 | 
					 | 
				
			||||||
    _Mat.Mdiag(in,out);
 | 
					 | 
				
			||||||
    out = out + shift*in;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
					 | 
				
			||||||
    _Mat.Mdir(in,out,dir,disp);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){
 | 
					 | 
				
			||||||
    _Mat.MdirAll(in,out);
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  void Op     (const Field &in, Field &out){
 | 
					 | 
				
			||||||
    _Mat.M(in,out);
 | 
					 | 
				
			||||||
    out = out + shift * in;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void AdjOp     (const Field &in, Field &out){
 | 
					 | 
				
			||||||
    _Mat.Mdag(in,out);
 | 
					 | 
				
			||||||
    out = out + shift * in;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
					 | 
				
			||||||
    assert(0);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void HermOp(const Field &in, Field &out){
 | 
					 | 
				
			||||||
    assert(0);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
//////////////////////////////////////////////////////////
 | 
					//////////////////////////////////////////////////////////
 | 
				
			||||||
// Even Odd Schur decomp operators; there are several
 | 
					// Even Odd Schur decomp operators; there are several
 | 
				
			||||||
@@ -610,7 +507,7 @@ class SchurStaggeredOperator :  public SchurOperatorBase<Field> {
 | 
				
			|||||||
  virtual  void MpcDag   (const Field &in, Field &out){
 | 
					  virtual  void MpcDag   (const Field &in, Field &out){
 | 
				
			||||||
    Mpc(in,out);
 | 
					    Mpc(in,out);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  virtual void MpcDagMpc(const Field &in, Field &out) {
 | 
					  virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
 | 
				
			||||||
    assert(0);// Never need with staggered
 | 
					    assert(0);// Never need with staggered
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
@@ -628,23 +525,11 @@ public:
 | 
				
			|||||||
      (*this)(Linop,in[k],out[k]);
 | 
					      (*this)(Linop,in[k],out[k]);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  };
 | 
					  };
 | 
				
			||||||
  virtual ~OperatorFunction(){};
 | 
					 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class Field> class LinearFunction {
 | 
					template<class Field> class LinearFunction {
 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
  virtual void operator() (const Field &in, Field &out) = 0;
 | 
					  virtual void operator() (const Field &in, Field &out) = 0;
 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void operator() (const std::vector<Field> &in, std::vector<Field> &out)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    assert(in.size() == out.size());
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for (unsigned int i = 0; i < in.size(); ++i)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      (*this)(in[i], out[i]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  virtual ~LinearFunction(){};
 | 
					 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class Field> class IdentityLinearFunction : public LinearFunction<Field> {
 | 
					template<class Field> class IdentityLinearFunction : public LinearFunction<Field> {
 | 
				
			||||||
@@ -690,7 +575,6 @@ class HermOpOperatorFunction : public OperatorFunction<Field> {
 | 
				
			|||||||
template<typename Field>
 | 
					template<typename Field>
 | 
				
			||||||
class PlainHermOp : public LinearFunction<Field> {
 | 
					class PlainHermOp : public LinearFunction<Field> {
 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
  using LinearFunction<Field>::operator();
 | 
					 | 
				
			||||||
  LinearOperatorBase<Field> &_Linop;
 | 
					  LinearOperatorBase<Field> &_Linop;
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
  PlainHermOp(LinearOperatorBase<Field>& linop) : _Linop(linop) 
 | 
					  PlainHermOp(LinearOperatorBase<Field>& linop) : _Linop(linop) 
 | 
				
			||||||
@@ -704,7 +588,6 @@ public:
 | 
				
			|||||||
template<typename Field>
 | 
					template<typename Field>
 | 
				
			||||||
class FunctionHermOp : public LinearFunction<Field> {
 | 
					class FunctionHermOp : public LinearFunction<Field> {
 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
  using LinearFunction<Field>::operator(); 
 | 
					 | 
				
			||||||
  OperatorFunction<Field>   & _poly;
 | 
					  OperatorFunction<Field>   & _poly;
 | 
				
			||||||
  LinearOperatorBase<Field> &_Linop;
 | 
					  LinearOperatorBase<Field> &_Linop;
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -30,19 +30,13 @@ Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					NAMESPACE_BEGIN(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class Field> using Preconditioner =  LinearFunction<Field> ;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/*
 | 
					 | 
				
			||||||
template<class Field> class Preconditioner :  public LinearFunction<Field> { 
 | 
					template<class Field> class Preconditioner :  public LinearFunction<Field> { 
 | 
				
			||||||
  using LinearFunction<Field>::operator();
 | 
					 | 
				
			||||||
  virtual void operator()(const Field &src, Field & psi)=0;
 | 
					  virtual void operator()(const Field &src, Field & psi)=0;
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
*/
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class Field> class TrivialPrecon :  public Preconditioner<Field> { 
 | 
					template<class Field> class TrivialPrecon :  public Preconditioner<Field> { 
 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
  using Preconditioner<Field>::operator();
 | 
					  void operator()(const Field &src, Field & psi){
 | 
				
			||||||
  virtual void operator()(const Field &src, Field & psi){
 | 
					 | 
				
			||||||
    psi = src;
 | 
					    psi = src;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  TrivialPrecon(void){};
 | 
					  TrivialPrecon(void){};
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -45,15 +45,9 @@ public:
 | 
				
			|||||||
    M(in,tmp);
 | 
					    M(in,tmp);
 | 
				
			||||||
    Mdag(tmp,out);
 | 
					    Mdag(tmp,out);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  virtual void  MMdag(const Field &in, Field &out) {
 | 
					 | 
				
			||||||
    Field tmp (in.Grid());
 | 
					 | 
				
			||||||
    Mdag(in,tmp);
 | 
					 | 
				
			||||||
    M(tmp,out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  virtual  void Mdiag    (const Field &in, Field &out)=0;
 | 
					  virtual  void Mdiag    (const Field &in, Field &out)=0;
 | 
				
			||||||
  virtual  void Mdir     (const Field &in, Field &out,int dir, int disp)=0;
 | 
					  virtual  void Mdir     (const Field &in, Field &out,int dir, int disp)=0;
 | 
				
			||||||
  virtual  void MdirAll  (const Field &in, std::vector<Field> &out)=0;
 | 
					  virtual  void MdirAll  (const Field &in, std::vector<Field> &out)=0;
 | 
				
			||||||
  virtual ~SparseMatrixBase() {};
 | 
					 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
/////////////////////////////////////////////////////////////////////////////////////////////
 | 
					/////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -78,7 +72,7 @@ public:
 | 
				
			|||||||
  virtual  void MeooeDag    (const Field &in, Field &out)=0;
 | 
					  virtual  void MeooeDag    (const Field &in, Field &out)=0;
 | 
				
			||||||
  virtual  void MooeeDag    (const Field &in, Field &out)=0;
 | 
					  virtual  void MooeeDag    (const Field &in, Field &out)=0;
 | 
				
			||||||
  virtual  void MooeeInvDag (const Field &in, Field &out)=0;
 | 
					  virtual  void MooeeInvDag (const Field &in, Field &out)=0;
 | 
				
			||||||
  virtual ~CheckerBoardedSparseMatrixBase() {};
 | 
					
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -59,7 +59,7 @@ public:
 | 
				
			|||||||
    RealD diff = hi-lo;
 | 
					    RealD diff = hi-lo;
 | 
				
			||||||
    RealD delta = diff*1.0e-9;
 | 
					    RealD delta = diff*1.0e-9;
 | 
				
			||||||
    for (RealD x=lo; x<hi; x+=delta) {
 | 
					    for (RealD x=lo; x<hi; x+=delta) {
 | 
				
			||||||
      delta*=1.02;
 | 
					      delta*=1.1;
 | 
				
			||||||
      RealD f = approx(x);
 | 
					      RealD f = approx(x);
 | 
				
			||||||
      out<< x<<" "<<f<<std::endl;
 | 
					      out<< x<<" "<<f<<std::endl;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
@@ -90,8 +90,9 @@ public:
 | 
				
			|||||||
    order=_order;
 | 
					    order=_order;
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    if(order < 2) exit(-1);
 | 
					    if(order < 2) exit(-1);
 | 
				
			||||||
    Coeffs.resize(order,0.0);
 | 
					    Coeffs.resize(order);
 | 
				
			||||||
    Coeffs[order-1] = 1.0;
 | 
					    Coeffs.assign(0.,order);
 | 
				
			||||||
 | 
					    Coeffs[order-1] = 1.;
 | 
				
			||||||
  };
 | 
					  };
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  // PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's.
 | 
					  // PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's.
 | 
				
			||||||
@@ -131,26 +132,6 @@ public:
 | 
				
			|||||||
      Coeffs[j] = s * 2.0/order;
 | 
					      Coeffs[j] = s * 2.0/order;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  };
 | 
					  };
 | 
				
			||||||
  template<class functor>
 | 
					 | 
				
			||||||
  void Init(RealD _lo,RealD _hi,int _order, functor & func)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    lo=_lo;
 | 
					 | 
				
			||||||
    hi=_hi;
 | 
					 | 
				
			||||||
    order=_order;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    if(order < 2) exit(-1);
 | 
					 | 
				
			||||||
    Coeffs.resize(order);
 | 
					 | 
				
			||||||
    for(int j=0;j<order;j++){
 | 
					 | 
				
			||||||
      RealD s=0;
 | 
					 | 
				
			||||||
      for(int k=0;k<order;k++){
 | 
					 | 
				
			||||||
	RealD y=std::cos(M_PI*(k+0.5)/order);
 | 
					 | 
				
			||||||
	RealD x=0.5*(y*(hi-lo)+(hi+lo));
 | 
					 | 
				
			||||||
	RealD f=func(x);
 | 
					 | 
				
			||||||
	s=s+f*std::cos( j*M_PI*(k+0.5)/order );
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      Coeffs[j] = s * 2.0/order;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
  void JacksonSmooth(void){
 | 
					  void JacksonSmooth(void){
 | 
				
			||||||
@@ -259,12 +240,14 @@ public:
 | 
				
			|||||||
    Field T0(grid); T0 = in;  
 | 
					    Field T0(grid); T0 = in;  
 | 
				
			||||||
    Field T1(grid); 
 | 
					    Field T1(grid); 
 | 
				
			||||||
    Field T2(grid);
 | 
					    Field T2(grid);
 | 
				
			||||||
 | 
					    Field Tout(grid);
 | 
				
			||||||
    Field y(grid);
 | 
					    Field y(grid);
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    Field *Tnm = &T0;
 | 
					    Field *Tnm = &T0;
 | 
				
			||||||
    Field *Tn  = &T1;
 | 
					    Field *Tn  = &T1;
 | 
				
			||||||
    Field *Tnp = &T2;
 | 
					    Field *Tnp = &T2;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    std::cout << GridLogMessage << "Chebyshev() starts"<<std::endl;
 | 
				
			||||||
    // Tn=T1 = (xscale M + mscale)in
 | 
					    // Tn=T1 = (xscale M + mscale)in
 | 
				
			||||||
    RealD xscale = 2.0/(hi-lo);
 | 
					    RealD xscale = 2.0/(hi-lo);
 | 
				
			||||||
    RealD mscale = -(hi+lo)/(hi-lo);
 | 
					    RealD mscale = -(hi+lo)/(hi-lo);
 | 
				
			||||||
@@ -273,16 +256,30 @@ public:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    // sum = .5 c[0] T0 + c[1] T1
 | 
					    // sum = .5 c[0] T0 + c[1] T1
 | 
				
			||||||
    //    out = ()*T0 + Coeffs[1]*T1;
 | 
					    //    out = ()*T0 + Coeffs[1]*T1;
 | 
				
			||||||
    axpby(out,0.5*Coeffs[0],Coeffs[1],T0,T1);
 | 
					    axpby(Tout,0.5*Coeffs[0],Coeffs[1],T0,T1);
 | 
				
			||||||
    for(int n=2;n<order;n++){
 | 
					    for(int n=2;n<order;n++){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      Linop.HermOp(*Tn,y);
 | 
					      Linop.HermOp(*Tn,y);
 | 
				
			||||||
      axpby(y,xscale,mscale,y,(*Tn));
 | 
					#if 0
 | 
				
			||||||
      axpby(*Tnp,2.0,-1.0,y,(*Tnm));
 | 
					      auto y_v = y.View();
 | 
				
			||||||
 | 
					      auto Tn_v = Tn->View();
 | 
				
			||||||
 | 
					      auto Tnp_v = Tnp->View();
 | 
				
			||||||
 | 
					      auto Tnm_v = Tnm->View();
 | 
				
			||||||
 | 
					      constexpr int Nsimd = vector_type::Nsimd();
 | 
				
			||||||
 | 
					      accelerator_forNB(ss, in.Grid()->oSites(), Nsimd, {
 | 
				
			||||||
 | 
						  coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
 | 
				
			||||||
 | 
						  coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
 | 
				
			||||||
 | 
					      });
 | 
				
			||||||
      if ( Coeffs[n] != 0.0) {
 | 
					      if ( Coeffs[n] != 0.0) {
 | 
				
			||||||
	axpy(out,Coeffs[n],*Tnp,out);
 | 
						axpy(out,Coeffs[n],*Tnp,out);
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
 | 
					      axpby(y,xscale,mscale,y,(*Tn));
 | 
				
			||||||
 | 
					      axpby(*Tnp,2.0,-1.0,y,(*Tnm));
 | 
				
			||||||
 | 
					      if ( Coeffs[n] != 0.0) {
 | 
				
			||||||
 | 
						axpy(Tout,Coeffs[n],*Tnp,Tout);
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
      // Cycle pointers to avoid copies
 | 
					      // Cycle pointers to avoid copies
 | 
				
			||||||
      Field *swizzle = Tnm;
 | 
					      Field *swizzle = Tnm;
 | 
				
			||||||
      Tnm    =Tn;
 | 
					      Tnm    =Tn;
 | 
				
			||||||
@@ -290,6 +287,8 @@ public:
 | 
				
			|||||||
      Tnp    =swizzle;
 | 
					      Tnp    =swizzle;
 | 
				
			||||||
	  
 | 
						  
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					    out = Tout;
 | 
				
			||||||
 | 
					    std::cout << GridLogMessage << "Chebyshev() ends"<<std::endl;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -382,24 +381,26 @@ public:
 | 
				
			|||||||
    Field T0(grid); T0 = in;  
 | 
					    Field T0(grid); T0 = in;  
 | 
				
			||||||
    Field T1(grid); 
 | 
					    Field T1(grid); 
 | 
				
			||||||
    Field T2(grid);
 | 
					    Field T2(grid);
 | 
				
			||||||
 | 
					    Field Tout(grid);
 | 
				
			||||||
    Field  y(grid);
 | 
					    Field  y(grid);
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    Field *Tnm = &T0;
 | 
					    Field *Tnm = &T0;
 | 
				
			||||||
    Field *Tn  = &T1;
 | 
					    Field *Tn  = &T1;
 | 
				
			||||||
    Field *Tnp = &T2;
 | 
					    Field *Tnp = &T2;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    std::cout << GridLogMessage << "ChebyshevLanczos() starts"<<std::endl;
 | 
				
			||||||
    // Tn=T1 = (xscale M )*in
 | 
					    // Tn=T1 = (xscale M )*in
 | 
				
			||||||
    AminusMuSq(Linop,T0,T1);
 | 
					    AminusMuSq(Linop,T0,T1);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // sum = .5 c[0] T0 + c[1] T1
 | 
					    // sum = .5 c[0] T0 + c[1] T1
 | 
				
			||||||
    out = (0.5*Coeffs[0])*T0 + Coeffs[1]*T1;
 | 
					    Tout = (0.5*Coeffs[0])*T0 + Coeffs[1]*T1;
 | 
				
			||||||
    for(int n=2;n<order;n++){
 | 
					    for(int n=2;n<order;n++){
 | 
				
			||||||
	
 | 
						
 | 
				
			||||||
      AminusMuSq(Linop,*Tn,y);
 | 
					      AminusMuSq(Linop,*Tn,y);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      *Tnp=2.0*y-(*Tnm);
 | 
					      *Tnp=2.0*y-(*Tnm);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      out=out+Coeffs[n]* (*Tnp);
 | 
					      Tout=Tout+Coeffs[n]* (*Tnp);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      // Cycle pointers to avoid copies
 | 
					      // Cycle pointers to avoid copies
 | 
				
			||||||
      Field *swizzle = Tnm;
 | 
					      Field *swizzle = Tnm;
 | 
				
			||||||
@@ -408,6 +409,8 @@ public:
 | 
				
			|||||||
      Tnp    =swizzle;
 | 
					      Tnp    =swizzle;
 | 
				
			||||||
	  
 | 
						  
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					    out=Tout;
 | 
				
			||||||
 | 
					    std::cout << GridLogMessage << "ChebyshevLanczos() ends"<<std::endl;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -40,7 +40,7 @@ public:
 | 
				
			|||||||
  RealD norm;
 | 
					  RealD norm;
 | 
				
			||||||
  RealD lo,hi;
 | 
					  RealD lo,hi;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), tolerances(n), lo(_lo), hi(_hi) {;};
 | 
					  MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), lo(_lo), hi(_hi) {;};
 | 
				
			||||||
  RealD approx(RealD x);
 | 
					  RealD approx(RealD x);
 | 
				
			||||||
  void csv(std::ostream &out);
 | 
					  void csv(std::ostream &out);
 | 
				
			||||||
  void gnuplot(std::ostream &out);
 | 
					  void gnuplot(std::ostream &out);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -293,7 +293,7 @@ static void sncndnFK(INTERNAL_PRECISION u, INTERNAL_PRECISION k,
 | 
				
			|||||||
 * Set type = 0 for the Zolotarev approximation, which is zero at x = 0, and
 | 
					 * Set type = 0 for the Zolotarev approximation, which is zero at x = 0, and
 | 
				
			||||||
 * type = 1 for the approximation which is infinite at x = 0. */
 | 
					 * type = 1 for the approximation which is infinite at x = 0. */
 | 
				
			||||||
 | 
					
 | 
				
			||||||
zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) {
 | 
					zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) {
 | 
				
			||||||
  INTERNAL_PRECISION A, c, cp, kp, ksq, sn, cn, dn, Kp, Kj, z, z0, t, M, F,
 | 
					  INTERNAL_PRECISION A, c, cp, kp, ksq, sn, cn, dn, Kp, Kj, z, z0, t, M, F,
 | 
				
			||||||
    l, invlambda, xi, xisq, *tv, s, opl;
 | 
					    l, invlambda, xi, xisq, *tv, s, opl;
 | 
				
			||||||
  int m, czero, ts;
 | 
					  int m, czero, ts;
 | 
				
			||||||
@@ -375,12 +375,12 @@ zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) {
 | 
				
			|||||||
  construct_partfrac(d);
 | 
					  construct_partfrac(d);
 | 
				
			||||||
  construct_contfrac(d);
 | 
					  construct_contfrac(d);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  /* Converting everything to ZOLO_PRECISION for external use only */
 | 
					  /* Converting everything to PRECISION for external use only */
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
 | 
					  zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
 | 
				
			||||||
  zd -> A = (ZOLO_PRECISION) d -> A;
 | 
					  zd -> A = (PRECISION) d -> A;
 | 
				
			||||||
  zd -> Delta = (ZOLO_PRECISION) d -> Delta;
 | 
					  zd -> Delta = (PRECISION) d -> Delta;
 | 
				
			||||||
  zd -> epsilon = (ZOLO_PRECISION) d -> epsilon;
 | 
					  zd -> epsilon = (PRECISION) d -> epsilon;
 | 
				
			||||||
  zd -> n = d -> n;
 | 
					  zd -> n = d -> n;
 | 
				
			||||||
  zd -> type = d -> type;
 | 
					  zd -> type = d -> type;
 | 
				
			||||||
  zd -> dn = d -> dn;
 | 
					  zd -> dn = d -> dn;
 | 
				
			||||||
@@ -390,24 +390,24 @@ zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) {
 | 
				
			|||||||
  zd -> deg_num = d -> deg_num;
 | 
					  zd -> deg_num = d -> deg_num;
 | 
				
			||||||
  zd -> deg_denom = d -> deg_denom;
 | 
					  zd -> deg_denom = d -> deg_denom;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION));
 | 
					  zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION));
 | 
				
			||||||
  for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m];
 | 
					  for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m];
 | 
				
			||||||
  free(d -> a);
 | 
					  free(d -> a);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION));
 | 
					  zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION));
 | 
				
			||||||
  for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m];
 | 
					  for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m];
 | 
				
			||||||
  free(d -> ap);
 | 
					  free(d -> ap);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION));
 | 
					  zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION));
 | 
				
			||||||
  for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m];
 | 
					  for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m];
 | 
				
			||||||
  free(d -> alpha);
 | 
					  free(d -> alpha);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION));
 | 
					  zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION));
 | 
				
			||||||
  for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m];
 | 
					  for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m];
 | 
				
			||||||
  free(d -> beta);
 | 
					  free(d -> beta);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION));
 | 
					  zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION));
 | 
				
			||||||
  for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m];
 | 
					  for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m];
 | 
				
			||||||
  free(d -> gamma);
 | 
					  free(d -> gamma);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  free(d);
 | 
					  free(d);
 | 
				
			||||||
@@ -426,7 +426,7 @@ void zolotarev_free(zolotarev_data *zdata)
 | 
				
			|||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) {
 | 
					zolotarev_data* higham(PRECISION epsilon, int n) {
 | 
				
			||||||
  INTERNAL_PRECISION A, M, c, cp, z, z0, t, epssq;
 | 
					  INTERNAL_PRECISION A, M, c, cp, z, z0, t, epssq;
 | 
				
			||||||
  int m, czero;
 | 
					  int m, czero;
 | 
				
			||||||
  zolotarev_data *zd;
 | 
					  zolotarev_data *zd;
 | 
				
			||||||
@@ -481,9 +481,9 @@ zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) {
 | 
				
			|||||||
  /* Converting everything to PRECISION for external use only */
 | 
					  /* Converting everything to PRECISION for external use only */
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
 | 
					  zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
 | 
				
			||||||
  zd -> A = (ZOLO_PRECISION) d -> A;
 | 
					  zd -> A = (PRECISION) d -> A;
 | 
				
			||||||
  zd -> Delta = (ZOLO_PRECISION) d -> Delta;
 | 
					  zd -> Delta = (PRECISION) d -> Delta;
 | 
				
			||||||
  zd -> epsilon = (ZOLO_PRECISION) d -> epsilon;
 | 
					  zd -> epsilon = (PRECISION) d -> epsilon;
 | 
				
			||||||
  zd -> n = d -> n;
 | 
					  zd -> n = d -> n;
 | 
				
			||||||
  zd -> type = d -> type;
 | 
					  zd -> type = d -> type;
 | 
				
			||||||
  zd -> dn = d -> dn;
 | 
					  zd -> dn = d -> dn;
 | 
				
			||||||
@@ -493,24 +493,24 @@ zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) {
 | 
				
			|||||||
  zd -> deg_num = d -> deg_num;
 | 
					  zd -> deg_num = d -> deg_num;
 | 
				
			||||||
  zd -> deg_denom = d -> deg_denom;
 | 
					  zd -> deg_denom = d -> deg_denom;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION));
 | 
					  zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION));
 | 
				
			||||||
  for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m];
 | 
					  for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m];
 | 
				
			||||||
  free(d -> a);
 | 
					  free(d -> a);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION));
 | 
					  zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION));
 | 
				
			||||||
  for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m];
 | 
					  for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m];
 | 
				
			||||||
  free(d -> ap);
 | 
					  free(d -> ap);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION));
 | 
					  zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION));
 | 
				
			||||||
  for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m];
 | 
					  for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m];
 | 
				
			||||||
  free(d -> alpha);
 | 
					  free(d -> alpha);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION));
 | 
					  zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION));
 | 
				
			||||||
  for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m];
 | 
					  for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m];
 | 
				
			||||||
  free(d -> beta);
 | 
					  free(d -> beta);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION));
 | 
					  zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION));
 | 
				
			||||||
  for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m];
 | 
					  for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m];
 | 
				
			||||||
  free(d -> gamma);
 | 
					  free(d -> gamma);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  free(d);
 | 
					  free(d);
 | 
				
			||||||
@@ -523,17 +523,17 @@ NAMESPACE_END(Grid);
 | 
				
			|||||||
#ifdef TEST
 | 
					#ifdef TEST
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#undef ZERO
 | 
					#undef ZERO
 | 
				
			||||||
#define ZERO ((ZOLO_PRECISION) 0)
 | 
					#define ZERO ((PRECISION) 0)
 | 
				
			||||||
#undef ONE
 | 
					#undef ONE
 | 
				
			||||||
#define ONE ((ZOLO_PRECISION) 1)
 | 
					#define ONE ((PRECISION) 1)
 | 
				
			||||||
#undef TWO
 | 
					#undef TWO
 | 
				
			||||||
#define TWO ((ZOLO_PRECISION) 2)
 | 
					#define TWO ((PRECISION) 2)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
/* Evaluate the rational approximation R(x) using the factored form */
 | 
					/* Evaluate the rational approximation R(x) using the factored form */
 | 
				
			||||||
 | 
					
 | 
				
			||||||
static ZOLO_PRECISION zolotarev_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
 | 
					static PRECISION zolotarev_eval(PRECISION x, zolotarev_data* rdata) {
 | 
				
			||||||
  int m;
 | 
					  int m;
 | 
				
			||||||
  ZOLO_PRECISION R;
 | 
					  PRECISION R;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  if (rdata -> type == 0) {
 | 
					  if (rdata -> type == 0) {
 | 
				
			||||||
    R = rdata -> A * x;
 | 
					    R = rdata -> A * x;
 | 
				
			||||||
@@ -551,9 +551,9 @@ static ZOLO_PRECISION zolotarev_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
/* Evaluate the rational approximation R(x) using the partial fraction form */
 | 
					/* Evaluate the rational approximation R(x) using the partial fraction form */
 | 
				
			||||||
 | 
					
 | 
				
			||||||
static ZOLO_PRECISION zolotarev_partfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
 | 
					static PRECISION zolotarev_partfrac_eval(PRECISION x, zolotarev_data* rdata) {
 | 
				
			||||||
  int m;
 | 
					  int m;
 | 
				
			||||||
  ZOLO_PRECISION R = rdata -> alpha[rdata -> da - 1];
 | 
					  PRECISION R = rdata -> alpha[rdata -> da - 1];
 | 
				
			||||||
  for (m = 0; m < rdata -> dd; m++)
 | 
					  for (m = 0; m < rdata -> dd; m++)
 | 
				
			||||||
    R += rdata -> alpha[m] / (x * x - rdata -> ap[m]);
 | 
					    R += rdata -> alpha[m] / (x * x - rdata -> ap[m]);
 | 
				
			||||||
  if (rdata -> type == 1) R += rdata -> alpha[rdata -> dd] / (x * x);
 | 
					  if (rdata -> type == 1) R += rdata -> alpha[rdata -> dd] / (x * x);
 | 
				
			||||||
@@ -568,18 +568,18 @@ static ZOLO_PRECISION zolotarev_partfrac_eval(ZOLO_PRECISION x, zolotarev_data*
 | 
				
			|||||||
 * non-signalling overflow this will work correctly since 1/(1/0) = 1/INF = 0,
 | 
					 * non-signalling overflow this will work correctly since 1/(1/0) = 1/INF = 0,
 | 
				
			||||||
 * but with signalling overflow you will get an error message. */
 | 
					 * but with signalling overflow you will get an error message. */
 | 
				
			||||||
 | 
					
 | 
				
			||||||
static ZOLO_PRECISION zolotarev_contfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
 | 
					static PRECISION zolotarev_contfrac_eval(PRECISION x, zolotarev_data* rdata) {
 | 
				
			||||||
  int m;
 | 
					  int m;
 | 
				
			||||||
  ZOLO_PRECISION R = rdata -> beta[0] * x;
 | 
					  PRECISION R = rdata -> beta[0] * x;
 | 
				
			||||||
  for (m = 1; m < rdata -> db; m++) R = rdata -> beta[m] * x + ONE / R;
 | 
					  for (m = 1; m < rdata -> db; m++) R = rdata -> beta[m] * x + ONE / R;
 | 
				
			||||||
  return R;
 | 
					  return R;
 | 
				
			||||||
}    
 | 
					}    
 | 
				
			||||||
 | 
					
 | 
				
			||||||
/* Evaluate the rational approximation R(x) using Cayley form */
 | 
					/* Evaluate the rational approximation R(x) using Cayley form */
 | 
				
			||||||
 | 
					
 | 
				
			||||||
static ZOLO_PRECISION zolotarev_cayley_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
 | 
					static PRECISION zolotarev_cayley_eval(PRECISION x, zolotarev_data* rdata) {
 | 
				
			||||||
  int m;
 | 
					  int m;
 | 
				
			||||||
  ZOLO_PRECISION T;
 | 
					  PRECISION T;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  T = rdata -> type == 0 ? ONE : -ONE;
 | 
					  T = rdata -> type == 0 ? ONE : -ONE;
 | 
				
			||||||
  for (m = 0; m < rdata -> n; m++)
 | 
					  for (m = 0; m < rdata -> n; m++)
 | 
				
			||||||
@@ -607,7 +607,7 @@ int main(int argc, char** argv) {
 | 
				
			|||||||
  int m, n, plotpts = 5000, type = 0;
 | 
					  int m, n, plotpts = 5000, type = 0;
 | 
				
			||||||
  float eps, x, ypferr, ycferr, ycaylerr, maxypferr, maxycferr, maxycaylerr;
 | 
					  float eps, x, ypferr, ycferr, ycaylerr, maxypferr, maxycferr, maxycaylerr;
 | 
				
			||||||
  zolotarev_data *rdata;
 | 
					  zolotarev_data *rdata;
 | 
				
			||||||
  ZOLO_PRECISION y;
 | 
					  PRECISION y;
 | 
				
			||||||
  FILE *plot_function, *plot_error, 
 | 
					  FILE *plot_function, *plot_error, 
 | 
				
			||||||
    *plot_partfrac, *plot_contfrac, *plot_cayley;
 | 
					    *plot_partfrac, *plot_contfrac, *plot_cayley;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -626,13 +626,13 @@ int main(int argc, char** argv) {
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  rdata = type == 2 
 | 
					  rdata = type == 2 
 | 
				
			||||||
    ? higham((ZOLO_PRECISION) eps, n) 
 | 
					    ? higham((PRECISION) eps, n) 
 | 
				
			||||||
    : zolotarev((ZOLO_PRECISION) eps, n, type);
 | 
					    : zolotarev((PRECISION) eps, n, type);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  printf("Zolotarev Test: R(epsilon = %g, n = %d, type = %d)\n\t" 
 | 
					  printf("Zolotarev Test: R(epsilon = %g, n = %d, type = %d)\n\t" 
 | 
				
			||||||
	 STRINGIFY(VERSION) "\n\t" STRINGIFY(HVERSION)
 | 
						 STRINGIFY(VERSION) "\n\t" STRINGIFY(HVERSION)
 | 
				
			||||||
	 "\n\tINTERNAL_PRECISION = " STRINGIFY(INTERNAL_PRECISION)
 | 
						 "\n\tINTERNAL_PRECISION = " STRINGIFY(INTERNAL_PRECISION)
 | 
				
			||||||
	 "\tZOLO_PRECISION = " STRINGIFY(ZOLO_PRECISION)
 | 
						 "\tPRECISION = " STRINGIFY(PRECISION)
 | 
				
			||||||
	 "\n\n\tRational approximation of degree (%d,%d), %s at x = 0\n"
 | 
						 "\n\n\tRational approximation of degree (%d,%d), %s at x = 0\n"
 | 
				
			||||||
	 "\tDelta = %g (maximum error)\n\n"
 | 
						 "\tDelta = %g (maximum error)\n\n"
 | 
				
			||||||
	 "\tA = %g (overall factor)\n",
 | 
						 "\tA = %g (overall factor)\n",
 | 
				
			||||||
@@ -681,15 +681,15 @@ int main(int argc, char** argv) {
 | 
				
			|||||||
    x = 2.4 * (float) m / plotpts - 1.2;
 | 
					    x = 2.4 * (float) m / plotpts - 1.2;
 | 
				
			||||||
    if (rdata -> type == 0 || fabs(x) * (float) plotpts > 1.0) {
 | 
					    if (rdata -> type == 0 || fabs(x) * (float) plotpts > 1.0) {
 | 
				
			||||||
      /* skip x = 0 for type 1, as R(0) is singular */
 | 
					      /* skip x = 0 for type 1, as R(0) is singular */
 | 
				
			||||||
      y = zolotarev_eval((ZOLO_PRECISION) x, rdata);
 | 
					      y = zolotarev_eval((PRECISION) x, rdata);
 | 
				
			||||||
      fprintf(plot_function, "%g %g\n", x, (float) y);
 | 
					      fprintf(plot_function, "%g %g\n", x, (float) y);
 | 
				
			||||||
      fprintf(plot_error, "%g %g\n",
 | 
					      fprintf(plot_error, "%g %g\n",
 | 
				
			||||||
	      x, (float)((y - ((x > 0.0 ? ONE : -ONE))) / rdata -> Delta));
 | 
						      x, (float)((y - ((x > 0.0 ? ONE : -ONE))) / rdata -> Delta));
 | 
				
			||||||
      ypferr = (float)((zolotarev_partfrac_eval((ZOLO_PRECISION) x, rdata) - y)
 | 
					      ypferr = (float)((zolotarev_partfrac_eval((PRECISION) x, rdata) - y)
 | 
				
			||||||
		       / rdata -> Delta);
 | 
							       / rdata -> Delta);
 | 
				
			||||||
      ycferr = (float)((zolotarev_contfrac_eval((ZOLO_PRECISION) x, rdata) - y)
 | 
					      ycferr = (float)((zolotarev_contfrac_eval((PRECISION) x, rdata) - y)
 | 
				
			||||||
		       / rdata -> Delta);
 | 
							       / rdata -> Delta);
 | 
				
			||||||
      ycaylerr = (float)((zolotarev_cayley_eval((ZOLO_PRECISION) x, rdata) - y)
 | 
					      ycaylerr = (float)((zolotarev_cayley_eval((PRECISION) x, rdata) - y)
 | 
				
			||||||
		       / rdata -> Delta);
 | 
							       / rdata -> Delta);
 | 
				
			||||||
      if (fabs(x) < 1.0 && fabs(x) > rdata -> epsilon) {
 | 
					      if (fabs(x) < 1.0 && fabs(x) > rdata -> epsilon) {
 | 
				
			||||||
	maxypferr = MAX(maxypferr, fabs(ypferr));
 | 
						maxypferr = MAX(maxypferr, fabs(ypferr));
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -9,10 +9,10 @@ NAMESPACE_BEGIN(Approx);
 | 
				
			|||||||
#define HVERSION Header Time-stamp: <14-OCT-2004 09:26:51.00 adk@MISSCONTRARY>
 | 
					#define HVERSION Header Time-stamp: <14-OCT-2004 09:26:51.00 adk@MISSCONTRARY>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#ifndef ZOLOTAREV_INTERNAL
 | 
					#ifndef ZOLOTAREV_INTERNAL
 | 
				
			||||||
#ifndef ZOLO_PRECISION
 | 
					#ifndef PRECISION
 | 
				
			||||||
#define ZOLO_PRECISION double
 | 
					#define PRECISION double
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
#define ZPRECISION ZOLO_PRECISION
 | 
					#define ZPRECISION PRECISION
 | 
				
			||||||
#define ZOLOTAREV_DATA zolotarev_data
 | 
					#define ZOLOTAREV_DATA zolotarev_data
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -77,8 +77,8 @@ typedef struct {
 | 
				
			|||||||
 * zolotarev_data structure. The arguments must satisfy the constraints that
 | 
					 * zolotarev_data structure. The arguments must satisfy the constraints that
 | 
				
			||||||
 * epsilon > 0, n > 0, and type = 0 or 1. */
 | 
					 * epsilon > 0, n > 0, and type = 0 or 1. */
 | 
				
			||||||
 | 
					
 | 
				
			||||||
ZOLOTAREV_DATA* higham(ZOLO_PRECISION epsilon, int n) ;
 | 
					ZOLOTAREV_DATA* higham(PRECISION epsilon, int n) ;
 | 
				
			||||||
ZOLOTAREV_DATA* zolotarev(ZOLO_PRECISION epsilon, int n, int type);
 | 
					ZOLOTAREV_DATA* zolotarev(PRECISION epsilon, int n, int type);
 | 
				
			||||||
void zolotarev_free(zolotarev_data *zdata);
 | 
					void zolotarev_free(zolotarev_data *zdata);
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -86,4 +86,3 @@ void zolotarev_free(zolotarev_data *zdata);
 | 
				
			|||||||
NAMESPACE_END(Approx);
 | 
					NAMESPACE_END(Approx);
 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 | 
					 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1,34 +0,0 @@
 | 
				
			|||||||
/*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: BatchedBlas.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2023
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
*************************************************************************************/
 | 
					 | 
				
			||||||
/*  END LEGAL */
 | 
					 | 
				
			||||||
#include <Grid/GridCore.h>
 | 
					 | 
				
			||||||
#include <Grid/algorithms/blas/BatchedBlas.h>
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
gridblasHandle_t GridBLAS::gridblasHandle;
 | 
					 | 
				
			||||||
int              GridBLAS::gridblasInit;
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							@@ -1,376 +0,0 @@
 | 
				
			|||||||
/*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: MultiRHSBlockCGLinalg.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2024
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
*************************************************************************************/
 | 
					 | 
				
			||||||
/*  END LEGAL */
 | 
					 | 
				
			||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/* Need helper object for BLAS accelerated mrhs blockCG */
 | 
					 | 
				
			||||||
template<class Field>
 | 
					 | 
				
			||||||
class MultiRHSBlockCGLinalg
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  typedef typename Field::scalar_type   scalar;
 | 
					 | 
				
			||||||
  typedef typename Field::scalar_object scalar_object;
 | 
					 | 
				
			||||||
  typedef typename Field::vector_object vector_object;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_X;      // nrhs x vol -- the sources
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_Y;      // nrhs x vol -- the result
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_C;      // nrhs x nrhs -- the coefficients 
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_Cred;   // nrhs x nrhs x oSites -- reduction buffer
 | 
					 | 
				
			||||||
  deviceVector<scalar *> Xdip;
 | 
					 | 
				
			||||||
  deviceVector<scalar *> Ydip;
 | 
					 | 
				
			||||||
  deviceVector<scalar *> Cdip;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  MultiRHSBlockCGLinalg() {};
 | 
					 | 
				
			||||||
  ~MultiRHSBlockCGLinalg(){ Deallocate(); };
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  void Deallocate(void)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    Xdip.resize(0);
 | 
					 | 
				
			||||||
    Ydip.resize(0);
 | 
					 | 
				
			||||||
    Cdip.resize(0);
 | 
					 | 
				
			||||||
    BLAS_Cred.resize(0);
 | 
					 | 
				
			||||||
    BLAS_C.resize(0);
 | 
					 | 
				
			||||||
    BLAS_X.resize(0);
 | 
					 | 
				
			||||||
    BLAS_Y.resize(0);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::vector<Field> Y_copy(AP.size(),AP[0].Grid());
 | 
					 | 
				
			||||||
    for(int r=0;r<AP.size();r++){
 | 
					 | 
				
			||||||
      Y_copy[r] = Y[r];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    MulMatrix(AP,m,X);
 | 
					 | 
				
			||||||
    for(int r=0;r<AP.size();r++){
 | 
					 | 
				
			||||||
      AP[r] = scale*AP[r]+Y_copy[r];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void MulMatrix(std::vector<Field> &Y, Eigen::MatrixXcd &m , const std::vector<Field> &X)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    typedef typename Field::scalar_type scomplex;
 | 
					 | 
				
			||||||
    GridBase *grid;
 | 
					 | 
				
			||||||
    uint64_t vol;
 | 
					 | 
				
			||||||
    uint64_t words;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int nrhs = Y.size();
 | 
					 | 
				
			||||||
    grid  = X[0].Grid();
 | 
					 | 
				
			||||||
    vol   = grid->lSites();
 | 
					 | 
				
			||||||
    words = sizeof(scalar_object)/sizeof(scalar);
 | 
					 | 
				
			||||||
    int64_t vw = vol * words;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t0 = usecond();
 | 
					 | 
				
			||||||
    BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
 | 
					 | 
				
			||||||
    BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
 | 
					 | 
				
			||||||
    BLAS_C.resize(nrhs * nrhs);// cost free if size doesn't change
 | 
					 | 
				
			||||||
    RealD t1 = usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Copy in the multi-rhs sources
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////
 | 
					 | 
				
			||||||
    for(int r=0;r<nrhs;r++){
 | 
					 | 
				
			||||||
      int64_t offset = r*vw;
 | 
					 | 
				
			||||||
      autoView(x_v,X[r],AcceleratorRead);
 | 
					 | 
				
			||||||
      acceleratorCopyDeviceToDevice(&x_v[0],&BLAS_X[offset],sizeof(scalar_object)*vol);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Assumes Eigen storage contiguous
 | 
					 | 
				
			||||||
    acceleratorCopyToDevice(&m(0,0),&BLAS_C[0],BLAS_C.size()*sizeof(scalar));
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
   * in Fortran column major notation (cuBlas order)
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Xxr = [X1(x)][..][Xn(x)]
 | 
					 | 
				
			||||||
   * Yxr = [Y1(x)][..][Ym(x)]
 | 
					 | 
				
			||||||
   * Y = X . C
 | 
					 | 
				
			||||||
   */
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Xd(1);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Yd(1);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Cd(1);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    scalar * Xh = & BLAS_X[0];
 | 
					 | 
				
			||||||
    scalar * Yh = & BLAS_Y[0];
 | 
					 | 
				
			||||||
    scalar * Ch = & BLAS_C[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    acceleratorPut(Xd[0],Xh);
 | 
					 | 
				
			||||||
    acceleratorPut(Yd[0],Yh);
 | 
					 | 
				
			||||||
    acceleratorPut(Cd[0],Ch);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t2 = usecond();
 | 
					 | 
				
			||||||
    GridBLAS BLAS;
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Y = X*C (transpose?)
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, 
 | 
					 | 
				
			||||||
    		     vw,nrhs,nrhs,
 | 
					 | 
				
			||||||
		     scalar(1.0),
 | 
					 | 
				
			||||||
		     Xd,
 | 
					 | 
				
			||||||
		     Cd,
 | 
					 | 
				
			||||||
		     scalar(0.0),  // wipe out Y
 | 
					 | 
				
			||||||
		     Yd);
 | 
					 | 
				
			||||||
    BLAS.synchronise();
 | 
					 | 
				
			||||||
    RealD t3 = usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Copy back Y = m X 
 | 
					 | 
				
			||||||
    for(int r=0;r<nrhs;r++){
 | 
					 | 
				
			||||||
      int64_t offset = r*vw;
 | 
					 | 
				
			||||||
      autoView(y_v,Y[r],AcceleratorWrite);
 | 
					 | 
				
			||||||
      acceleratorCopyDeviceToDevice(&BLAS_Y[offset],&y_v[0],sizeof(scalar_object)*vol);
 | 
					 | 
				
			||||||
    }    
 | 
					 | 
				
			||||||
    RealD t4 = usecond();
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance << "MulMatrix alloc    took "<< t1-t0<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "MulMatrix preamble took "<< t2-t1<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "MulMatrix blas     took "<< t3-t2<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "MulMatrix copy     took "<< t4-t3<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "MulMatrix total "<< t4-t0<<" us"<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
#if 0    
 | 
					 | 
				
			||||||
    int nrhs;
 | 
					 | 
				
			||||||
    GridBase *grid;
 | 
					 | 
				
			||||||
    uint64_t vol;
 | 
					 | 
				
			||||||
    uint64_t words;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    nrhs = X.size();
 | 
					 | 
				
			||||||
    assert(X.size()==Y.size());
 | 
					 | 
				
			||||||
    conformable(X[0],Y[0]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    grid  = X[0].Grid();
 | 
					 | 
				
			||||||
    vol   = grid->lSites();
 | 
					 | 
				
			||||||
    words = sizeof(scalar_object)/sizeof(scalar);
 | 
					 | 
				
			||||||
    int64_t vw = vol * words;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t0 = usecond();
 | 
					 | 
				
			||||||
    BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
 | 
					 | 
				
			||||||
    BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
 | 
					 | 
				
			||||||
    BLAS_C.resize(nrhs * nrhs);// cost free if size doesn't change
 | 
					 | 
				
			||||||
    RealD t1 = usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Copy in the multi-rhs sources
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////
 | 
					 | 
				
			||||||
    for(int r=0;r<nrhs;r++){
 | 
					 | 
				
			||||||
      int64_t offset = r*vw;
 | 
					 | 
				
			||||||
      autoView(x_v,X[r],AcceleratorRead);
 | 
					 | 
				
			||||||
      acceleratorCopyDeviceToDevice(&x_v[0],&BLAS_X[offset],sizeof(scalar_object)*vol);
 | 
					 | 
				
			||||||
      autoView(y_v,Y[r],AcceleratorRead);
 | 
					 | 
				
			||||||
      acceleratorCopyDeviceToDevice(&y_v[0],&BLAS_Y[offset],sizeof(scalar_object)*vol);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    RealD t2 = usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
   * in Fortran column major notation (cuBlas order)
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Xxr = [X1(x)][..][Xn(x)]
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Yxr = [Y1(x)][..][Ym(x)]
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * C_rs = X^dag Y
 | 
					 | 
				
			||||||
   */
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Xd(1);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Yd(1);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Cd(1);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    scalar * Xh = & BLAS_X[0];
 | 
					 | 
				
			||||||
    scalar * Yh = & BLAS_Y[0];
 | 
					 | 
				
			||||||
    scalar * Ch = & BLAS_C[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    acceleratorPut(Xd[0],Xh);
 | 
					 | 
				
			||||||
    acceleratorPut(Yd[0],Yh);
 | 
					 | 
				
			||||||
    acceleratorPut(Cd[0],Ch);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridBLAS BLAS;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t3 = usecond();
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    // C_rs = X^dag Y
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N, 
 | 
					 | 
				
			||||||
    		     nrhs,nrhs,vw,
 | 
					 | 
				
			||||||
		     ComplexD(1.0),
 | 
					 | 
				
			||||||
		     Xd,
 | 
					 | 
				
			||||||
		     Yd,
 | 
					 | 
				
			||||||
		     ComplexD(0.0),  // wipe out C
 | 
					 | 
				
			||||||
		     Cd);
 | 
					 | 
				
			||||||
    BLAS.synchronise();
 | 
					 | 
				
			||||||
    RealD t4 = usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<scalar> HOST_C(BLAS_C.size());      // nrhs . nrhs -- the coefficients 
 | 
					 | 
				
			||||||
    acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar));
 | 
					 | 
				
			||||||
    grid->GlobalSumVector(&HOST_C[0],nrhs*nrhs);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t5 = usecond();
 | 
					 | 
				
			||||||
    for(int rr=0;rr<nrhs;rr++){
 | 
					 | 
				
			||||||
      for(int r=0;r<nrhs;r++){
 | 
					 | 
				
			||||||
	int off = r+nrhs*rr;
 | 
					 | 
				
			||||||
	m(r,rr)=HOST_C[off];
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    RealD t6 = usecond();
 | 
					 | 
				
			||||||
    uint64_t M=nrhs;
 | 
					 | 
				
			||||||
    uint64_t N=nrhs;
 | 
					 | 
				
			||||||
    uint64_t K=vw;
 | 
					 | 
				
			||||||
    RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K);
 | 
					 | 
				
			||||||
    RealD flops = 8.0*M*N*K;
 | 
					 | 
				
			||||||
    flops = flops/(t4-t3)/1.e3;
 | 
					 | 
				
			||||||
    bytes = bytes/(t4-t3)/1.e3;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix cp    t2 "<< t2-t1<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas    "<< flops<<" GF/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas    "<< bytes<<" GB/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix gsum t5 "<< t5-t4<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix cp   t6 "<< t6-t5<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
    int nrhs;
 | 
					 | 
				
			||||||
    GridBase *grid;
 | 
					 | 
				
			||||||
    uint64_t vol;
 | 
					 | 
				
			||||||
    uint64_t words;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    nrhs = X.size();
 | 
					 | 
				
			||||||
    assert(X.size()==Y.size());
 | 
					 | 
				
			||||||
    conformable(X[0],Y[0]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    grid  = X[0].Grid();
 | 
					 | 
				
			||||||
    int rd0 =  grid->_rdimensions[0] * grid->_rdimensions[1];
 | 
					 | 
				
			||||||
    vol   = grid->oSites()/rd0;
 | 
					 | 
				
			||||||
    words = rd0*sizeof(vector_object)/sizeof(scalar);
 | 
					 | 
				
			||||||
    int64_t vw = vol * words;
 | 
					 | 
				
			||||||
    assert(vw == grid->lSites()*sizeof(scalar_object)/sizeof(scalar));
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t0 = usecond();
 | 
					 | 
				
			||||||
    BLAS_X.resize(nrhs * vw); // cost free if size doesn't change
 | 
					 | 
				
			||||||
    BLAS_Y.resize(nrhs * vw); // cost free if size doesn't change
 | 
					 | 
				
			||||||
    BLAS_Cred.resize(nrhs * nrhs * vol);// cost free if size doesn't change
 | 
					 | 
				
			||||||
    RealD t1 = usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Copy in the multi-rhs sources -- layout batched BLAS ready
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////
 | 
					 | 
				
			||||||
    for(int r=0;r<nrhs;r++){
 | 
					 | 
				
			||||||
      autoView(x_v,X[r],AcceleratorRead);
 | 
					 | 
				
			||||||
      autoView(y_v,Y[r],AcceleratorRead);
 | 
					 | 
				
			||||||
      scalar *from_x=(scalar *)&x_v[0];
 | 
					 | 
				
			||||||
      scalar *from_y=(scalar *)&y_v[0];
 | 
					 | 
				
			||||||
      scalar *BX = &BLAS_X[0];
 | 
					 | 
				
			||||||
      scalar *BY = &BLAS_Y[0];
 | 
					 | 
				
			||||||
      accelerator_for(ssw,vw,1,{
 | 
					 | 
				
			||||||
	  uint64_t ss=ssw/words;
 | 
					 | 
				
			||||||
	  uint64_t  w=ssw%words;
 | 
					 | 
				
			||||||
	  uint64_t offset = w+r*words+ss*nrhs*words; // [ss][rhs][words]
 | 
					 | 
				
			||||||
	  BX[offset] = from_x[ssw];
 | 
					 | 
				
			||||||
	  BY[offset] = from_y[ssw];
 | 
					 | 
				
			||||||
	});
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    RealD t2 = usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
   * in Fortran column major notation (cuBlas order)
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Xxr = [X1(x)][..][Xn(x)]
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Yxr = [Y1(x)][..][Ym(x)]
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * C_rs = X^dag Y
 | 
					 | 
				
			||||||
   */
 | 
					 | 
				
			||||||
    Xdip.resize(vol);
 | 
					 | 
				
			||||||
    Ydip.resize(vol);
 | 
					 | 
				
			||||||
    Cdip.resize(vol);
 | 
					 | 
				
			||||||
    std::vector<scalar *> Xh(vol);
 | 
					 | 
				
			||||||
    std::vector<scalar *> Yh(vol);
 | 
					 | 
				
			||||||
    std::vector<scalar *> Ch(vol);
 | 
					 | 
				
			||||||
    for(uint64_t ss=0;ss<vol;ss++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      Xh[ss] = & BLAS_X[ss*nrhs*words];
 | 
					 | 
				
			||||||
      Yh[ss] = & BLAS_Y[ss*nrhs*words];
 | 
					 | 
				
			||||||
      Ch[ss] = & BLAS_Cred[ss*nrhs*nrhs];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    acceleratorCopyToDevice(&Xh[0],&Xdip[0],vol*sizeof(scalar *));
 | 
					 | 
				
			||||||
    acceleratorCopyToDevice(&Yh[0],&Ydip[0],vol*sizeof(scalar *));
 | 
					 | 
				
			||||||
    acceleratorCopyToDevice(&Ch[0],&Cdip[0],vol*sizeof(scalar *));
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    GridBLAS BLAS;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t3 = usecond();
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    // C_rs = X^dag Y
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N, 
 | 
					 | 
				
			||||||
    		     nrhs,nrhs,words,
 | 
					 | 
				
			||||||
		     ComplexD(1.0),
 | 
					 | 
				
			||||||
		     Xdip,
 | 
					 | 
				
			||||||
		     Ydip,
 | 
					 | 
				
			||||||
		     ComplexD(0.0),  // wipe out C
 | 
					 | 
				
			||||||
		     Cdip);
 | 
					 | 
				
			||||||
    BLAS.synchronise();
 | 
					 | 
				
			||||||
    RealD t4 = usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<scalar> HOST_C(BLAS_Cred.size());      // nrhs . nrhs -- the coefficients 
 | 
					 | 
				
			||||||
    acceleratorCopyFromDevice(&BLAS_Cred[0],&HOST_C[0],BLAS_Cred.size()*sizeof(scalar));
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t5 = usecond();
 | 
					 | 
				
			||||||
    m = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
					 | 
				
			||||||
    for(int ss=0;ss<vol;ss++){
 | 
					 | 
				
			||||||
      Eigen::Map<Eigen::MatrixXcd> eC((std::complex<double> *)&HOST_C[ss*nrhs*nrhs],nrhs,nrhs);
 | 
					 | 
				
			||||||
      m = m + eC;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    RealD t6l = usecond();
 | 
					 | 
				
			||||||
    grid->GlobalSumVector((scalar *) &m(0,0),nrhs*nrhs);
 | 
					 | 
				
			||||||
    RealD t6 = usecond();
 | 
					 | 
				
			||||||
    uint64_t M=nrhs;
 | 
					 | 
				
			||||||
    uint64_t N=nrhs;
 | 
					 | 
				
			||||||
    uint64_t K=vw;
 | 
					 | 
				
			||||||
    RealD xybytes = grid->lSites()*sizeof(scalar_object);
 | 
					 | 
				
			||||||
    RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K);
 | 
					 | 
				
			||||||
    RealD flops = 8.0*M*N*K;
 | 
					 | 
				
			||||||
    flops = flops/(t4-t3)/1.e3;
 | 
					 | 
				
			||||||
    bytes = bytes/(t4-t3)/1.e3;
 | 
					 | 
				
			||||||
    xybytes = 4*xybytes/(t2-t1)/1.e3;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix m,n,k "<< M<<","<<N<<","<<K<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix alloc t1 "<< t1-t0<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix cp    t2 "<< t2-t1<<" us "<<xybytes<<" GB/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix setup t3 "<< t3-t2<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas t4 "<< t4-t3<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas    "<< flops<<" GF/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix blas    "<< bytes<<" GB/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix cp     t5 "<< t5-t4<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix lsum   t6l "<< t6l-t5<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix gsum   t6 "<< t6-t6l<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout <<GridLogPerformance<< "InnerProductMatrix took "<< t6-t0<<" us"<<std::endl;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
@@ -1,513 +0,0 @@
 | 
				
			|||||||
/*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: MultiRHSDeflation.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2023
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
*************************************************************************************/
 | 
					 | 
				
			||||||
/*  END LEGAL */
 | 
					 | 
				
			||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/* 
 | 
					 | 
				
			||||||
   MultiRHS block projection
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   Import basis -> nblock x nbasis x  (block x internal) 
 | 
					 | 
				
			||||||
   Import vector of fine lattice objects -> nblock x nrhs x (block x internal) 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   => coarse_(nrhs x nbasis )^block = via batched GEMM
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
//template<class vobj,class CComplex,int nbasis,class VLattice>
 | 
					 | 
				
			||||||
//inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
					 | 
				
			||||||
//			   const VLattice &fineData,
 | 
					 | 
				
			||||||
//			   const VLattice &Basis)
 | 
					 | 
				
			||||||
*/
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class Field>
 | 
					 | 
				
			||||||
class MultiRHSBlockProject
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  typedef typename Field::scalar_type   scalar;
 | 
					 | 
				
			||||||
  typedef typename Field::scalar_object scalar_object;
 | 
					 | 
				
			||||||
  typedef Field Fermion;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int nbasis;
 | 
					 | 
				
			||||||
  GridBase *coarse_grid;
 | 
					 | 
				
			||||||
  GridBase *fine_grid;
 | 
					 | 
				
			||||||
  uint64_t block_vol;
 | 
					 | 
				
			||||||
  uint64_t fine_vol;
 | 
					 | 
				
			||||||
  uint64_t coarse_vol;
 | 
					 | 
				
			||||||
  uint64_t words;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  // Row major layout "C" order:
 | 
					 | 
				
			||||||
  // BLAS_V[coarse_vol][nbasis][block_vol][words]
 | 
					 | 
				
			||||||
  // BLAS_F[coarse_vol][nrhs][block_vol][words]
 | 
					 | 
				
			||||||
  // BLAS_C[coarse_vol][nrhs][nbasis]
 | 
					 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
   * in Fortran column major notation (cuBlas order)
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Vxb = [v1(x)][..][vn(x)] ... x coarse vol
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Fxr = [r1(x)][..][rm(x)] ... x coarse vol
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Block project:
 | 
					 | 
				
			||||||
   * C_br = V^dag F x coarse vol
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Block promote:
 | 
					 | 
				
			||||||
   * F_xr = Vxb Cbr x coarse_vol
 | 
					 | 
				
			||||||
   */  
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_V;      // words * block_vol * nbasis x coarse_vol 
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_F;      // nrhs x fine_vol * words   -- the sources
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_C;      // nrhs x coarse_vol * nbasis -- the coarse coeffs
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  RealD blasNorm2(deviceVector<scalar> &blas)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    scalar ss(0.0);
 | 
					 | 
				
			||||||
    std::vector<scalar> tmp(blas.size());
 | 
					 | 
				
			||||||
    acceleratorCopyFromDevice(&blas[0],&tmp[0],blas.size()*sizeof(scalar));
 | 
					 | 
				
			||||||
    for(int64_t s=0;s<blas.size();s++){
 | 
					 | 
				
			||||||
      ss=ss+tmp[s]*adj(tmp[s]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    coarse_grid->GlobalSum(ss);
 | 
					 | 
				
			||||||
    return real(ss);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  MultiRHSBlockProject(){};
 | 
					 | 
				
			||||||
 ~MultiRHSBlockProject(){ Deallocate(); };
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  void Deallocate(void)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    nbasis=0;
 | 
					 | 
				
			||||||
    coarse_grid=nullptr;
 | 
					 | 
				
			||||||
    fine_grid=nullptr;
 | 
					 | 
				
			||||||
    fine_vol=0;
 | 
					 | 
				
			||||||
    block_vol=0;
 | 
					 | 
				
			||||||
    coarse_vol=0;
 | 
					 | 
				
			||||||
    words=0;
 | 
					 | 
				
			||||||
    BLAS_V.resize(0);
 | 
					 | 
				
			||||||
    BLAS_F.resize(0);
 | 
					 | 
				
			||||||
    BLAS_C.resize(0);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void Allocate(int _nbasis,GridBase *_fgrid,GridBase *_cgrid)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    nbasis=_nbasis;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    fine_grid=_fgrid;
 | 
					 | 
				
			||||||
    coarse_grid=_cgrid;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    fine_vol   = fine_grid->lSites();
 | 
					 | 
				
			||||||
    coarse_vol = coarse_grid->lSites();
 | 
					 | 
				
			||||||
    block_vol = fine_vol/coarse_vol;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    words = sizeof(scalar_object)/sizeof(scalar);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    BLAS_V.resize (fine_vol * words * nbasis );
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void ImportFineGridVectors(std::vector <Field > &vecs, deviceVector<scalar> &blas)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int nvec = vecs.size();
 | 
					 | 
				
			||||||
    typedef typename Field::vector_object vobj;
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage <<" BlockProjector importing "<<nvec<< " fine grid vectors" <<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    assert(vecs[0].Grid()==fine_grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    subdivides(coarse_grid,fine_grid); // require they map
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int _ndimension = coarse_grid->_ndimension;
 | 
					 | 
				
			||||||
    assert(block_vol == fine_grid->oSites() / coarse_grid->oSites());
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    Coordinate  block_r      (_ndimension);
 | 
					 | 
				
			||||||
    for(int d=0 ; d<_ndimension;d++){
 | 
					 | 
				
			||||||
      block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    uint64_t sz = blas.size();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    acceleratorMemSet(&blas[0],0,blas.size()*sizeof(scalar));
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Coordinate fine_rdimensions = fine_grid->_rdimensions;
 | 
					 | 
				
			||||||
    Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
 | 
					 | 
				
			||||||
    int64_t bv= block_vol;
 | 
					 | 
				
			||||||
    for(int v=0;v<vecs.size();v++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      //      std::cout << " BlockProjector importing vector"<<v<<" "<<norm2(vecs[v])<<std::endl;
 | 
					 | 
				
			||||||
      autoView( fineData   , vecs[v], AcceleratorRead);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      auto blasData_p  = &blas[0];
 | 
					 | 
				
			||||||
      auto fineData_p  = &fineData[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      int64_t osites = fine_grid->oSites();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // loop over fine sites
 | 
					 | 
				
			||||||
      const int Nsimd = vobj::Nsimd();
 | 
					 | 
				
			||||||
      //      std::cout << "sz "<<sz<<std::endl;
 | 
					 | 
				
			||||||
      //      std::cout << "prod "<<Nsimd * coarse_grid->oSites() * block_vol * nvec * words<<std::endl;
 | 
					 | 
				
			||||||
      assert(sz == Nsimd * coarse_grid->oSites() * block_vol * nvec * words);
 | 
					 | 
				
			||||||
      uint64_t lwords= words; // local variable for copy in to GPU
 | 
					 | 
				
			||||||
      accelerator_for(sf,osites,Nsimd,{
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
        {
 | 
					 | 
				
			||||||
	  int lane=acceleratorSIMTlane(Nsimd); // buffer lane
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	  for(int lane=0;lane<Nsimd;lane++) {
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
	  // One thread per fine site
 | 
					 | 
				
			||||||
	  Coordinate coor_f(_ndimension);
 | 
					 | 
				
			||||||
	  Coordinate coor_b(_ndimension);
 | 
					 | 
				
			||||||
	  Coordinate coor_c(_ndimension);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  // Fine site to fine coor
 | 
					 | 
				
			||||||
	  Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d];
 | 
					 | 
				
			||||||
	  for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d];
 | 
					 | 
				
			||||||
	  
 | 
					 | 
				
			||||||
	  int sc;// coarse site
 | 
					 | 
				
			||||||
	  int sb;// block site
 | 
					 | 
				
			||||||
	  Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions);
 | 
					 | 
				
			||||||
	  Lexicographic::IndexFromCoor(coor_b,sb,block_r);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
          scalar_object data = extractLane(lane,fineData[sf]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  // BLAS layout address calculation
 | 
					 | 
				
			||||||
	  // words * block_vol * nbasis x coarse_vol
 | 
					 | 
				
			||||||
	  // coarse oSite x block vole x lanes
 | 
					 | 
				
			||||||
	  int64_t site = (lane*osites + sc*bv)*nvec
 | 
					 | 
				
			||||||
   	               + v*bv
 | 
					 | 
				
			||||||
	               + sb;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  //	  assert(site*lwords<sz);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  *ptr = data;
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
      });
 | 
					 | 
				
			||||||
      //      std::cout << " import fine Blas norm "<<blasNorm2(blas)<<std::endl;
 | 
					 | 
				
			||||||
      //      std::cout << " BlockProjector imported vector"<<v<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void ExportFineGridVectors(std::vector <Field> &vecs, deviceVector<scalar> &blas)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    typedef typename Field::vector_object vobj;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int nvec = vecs.size();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    assert(vecs[0].Grid()==fine_grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    subdivides(coarse_grid,fine_grid); // require they map
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int _ndimension = coarse_grid->_ndimension;
 | 
					 | 
				
			||||||
    assert(block_vol == fine_grid->oSites() / coarse_grid->oSites());
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    Coordinate  block_r      (_ndimension);
 | 
					 | 
				
			||||||
    for(int d=0 ; d<_ndimension;d++){
 | 
					 | 
				
			||||||
      block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    Coordinate fine_rdimensions = fine_grid->_rdimensions;
 | 
					 | 
				
			||||||
    Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //    std::cout << " export fine Blas norm "<<blasNorm2(blas)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int64_t bv= block_vol;
 | 
					 | 
				
			||||||
    for(int v=0;v<vecs.size();v++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      autoView( fineData   , vecs[v], AcceleratorWrite);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      auto blasData_p  = &blas[0];
 | 
					 | 
				
			||||||
      auto fineData_p    = &fineData[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      int64_t osites = fine_grid->oSites();
 | 
					 | 
				
			||||||
      uint64_t lwords = words;
 | 
					 | 
				
			||||||
      //      std::cout << " Nsimd is "<<vobj::Nsimd() << std::endl;
 | 
					 | 
				
			||||||
      //      std::cout << " lwords is "<<lwords << std::endl;
 | 
					 | 
				
			||||||
      //      std::cout << " sizeof(scalar_object) is "<<sizeof(scalar_object) << std::endl;
 | 
					 | 
				
			||||||
      // loop over fine sites
 | 
					 | 
				
			||||||
      accelerator_for(sf,osites,vobj::Nsimd(),{
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
        {
 | 
					 | 
				
			||||||
	  int lane=acceleratorSIMTlane(vobj::Nsimd()); // buffer lane
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	  for(int lane=0;lane<vobj::Nsimd();lane++) {
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
	  // One thread per fine site
 | 
					 | 
				
			||||||
	  Coordinate coor_f(_ndimension);
 | 
					 | 
				
			||||||
	  Coordinate coor_b(_ndimension);
 | 
					 | 
				
			||||||
	  Coordinate coor_c(_ndimension);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d];
 | 
					 | 
				
			||||||
	  for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d];
 | 
					 | 
				
			||||||
	  
 | 
					 | 
				
			||||||
	  int sc;
 | 
					 | 
				
			||||||
	  int sb;
 | 
					 | 
				
			||||||
	  Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions);
 | 
					 | 
				
			||||||
	  Lexicographic::IndexFromCoor(coor_b,sb,block_r);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  // BLAS layout address calculation
 | 
					 | 
				
			||||||
	  // words * block_vol * nbasis x coarse_vol 	  
 | 
					 | 
				
			||||||
	  int64_t site = (lane*osites + sc*bv)*nvec
 | 
					 | 
				
			||||||
   	               + v*bv
 | 
					 | 
				
			||||||
	               + sb;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  scalar_object data = *ptr;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  insertLane(lane,fineData[sf],data);
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
      });
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  template<class vobj>
 | 
					 | 
				
			||||||
  void ImportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int nvec = vecs.size();
 | 
					 | 
				
			||||||
    typedef typename vobj::scalar_object coarse_scalar_object;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //    std::cout << " BlockProjector importing "<<nvec<< " coarse grid vectors" <<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    assert(vecs[0].Grid()==coarse_grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int _ndimension = coarse_grid->_ndimension;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    uint64_t sz = blas.size();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    for(int v=0;v<vecs.size();v++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      //      std::cout << " BlockProjector importing coarse vector"<<v<<" "<<norm2(vecs[v])<<std::endl;
 | 
					 | 
				
			||||||
      autoView( coarseData   , vecs[v], AcceleratorRead);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      auto blasData_p  = &blas[0];
 | 
					 | 
				
			||||||
      auto coarseData_p  = &coarseData[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      int64_t osites = coarse_grid->oSites();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // loop over fine sites
 | 
					 | 
				
			||||||
      const int Nsimd = vobj::Nsimd();
 | 
					 | 
				
			||||||
      uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar);
 | 
					 | 
				
			||||||
      assert(cwords==nbasis);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      accelerator_for(sc,osites,Nsimd,{
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
        {
 | 
					 | 
				
			||||||
	  int lane=acceleratorSIMTlane(Nsimd); // buffer lane
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	  for(int lane=0;lane<Nsimd;lane++) {
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
           // C_br per site
 | 
					 | 
				
			||||||
	    int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords;
 | 
					 | 
				
			||||||
	    
 | 
					 | 
				
			||||||
	    coarse_scalar_object data = extractLane(lane,coarseData[sc]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	    coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	    *ptr = data;
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
      });
 | 
					 | 
				
			||||||
      //      std::cout << " import coarsee Blas norm "<<blasNorm2(blas)<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  template<class vobj>
 | 
					 | 
				
			||||||
  void ExportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int nvec = vecs.size();
 | 
					 | 
				
			||||||
    typedef typename vobj::scalar_object coarse_scalar_object;
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage<<" BlockProjector exporting "<<nvec<< " coarse grid vectors" <<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    assert(vecs[0].Grid()==coarse_grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int _ndimension = coarse_grid->_ndimension;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    uint64_t sz = blas.size();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    //    std::cout << " export coarsee Blas norm "<<blasNorm2(blas)<<std::endl;
 | 
					 | 
				
			||||||
    for(int v=0;v<vecs.size();v++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      //  std::cout << " BlockProjector exporting coarse vector"<<v<<std::endl;
 | 
					 | 
				
			||||||
      autoView( coarseData   , vecs[v], AcceleratorWrite);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      auto blasData_p  = &blas[0];
 | 
					 | 
				
			||||||
      auto coarseData_p  = &coarseData[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      int64_t osites = coarse_grid->oSites();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // loop over fine sites
 | 
					 | 
				
			||||||
      const int Nsimd = vobj::Nsimd();
 | 
					 | 
				
			||||||
      uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar);
 | 
					 | 
				
			||||||
      assert(cwords==nbasis);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      accelerator_for(sc,osites,Nsimd,{
 | 
					 | 
				
			||||||
	  // Wrap in a macro "FOR_ALL_LANES(lane,{ ... });
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
        {
 | 
					 | 
				
			||||||
	  int lane=acceleratorSIMTlane(Nsimd); // buffer lane
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	  for(int lane=0;lane<Nsimd;lane++) {
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
	    int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords;
 | 
					 | 
				
			||||||
	    coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site];
 | 
					 | 
				
			||||||
	    coarse_scalar_object data = *ptr;
 | 
					 | 
				
			||||||
	    insertLane(lane,coarseData[sc],data);
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
      });
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void ImportBasis(std::vector < Field > &vecs)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    //    std::cout << " BlockProjector Import basis size "<<vecs.size()<<std::endl;
 | 
					 | 
				
			||||||
    ImportFineGridVectors(vecs,BLAS_V);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  template<class cobj>
 | 
					 | 
				
			||||||
  void blockProject(std::vector<Field> &fine,std::vector< Lattice<cobj> > & coarse)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int nrhs=fine.size();
 | 
					 | 
				
			||||||
    int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar);
 | 
					 | 
				
			||||||
    //    std::cout << "blockProject nbasis " <<nbasis<<" " << _nbasis<<std::endl;
 | 
					 | 
				
			||||||
    assert(nbasis==_nbasis);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    BLAS_F.resize (fine_vol * words * nrhs );
 | 
					 | 
				
			||||||
    BLAS_C.resize (coarse_vol * nbasis * nrhs );
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Copy in the multi-rhs sources to same data layout
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////
 | 
					 | 
				
			||||||
    //    std::cout << "BlockProject import fine"<<std::endl;
 | 
					 | 
				
			||||||
    ImportFineGridVectors(fine,BLAS_F);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Vd(coarse_vol);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Fd(coarse_vol);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Cd(coarse_vol);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //    std::cout << "BlockProject pointers"<<std::endl;
 | 
					 | 
				
			||||||
    for(int c=0;c<coarse_vol;c++){
 | 
					 | 
				
			||||||
      // BLAS_V[coarse_vol][nbasis][block_vol][words]
 | 
					 | 
				
			||||||
      // BLAS_F[coarse_vol][nrhs][block_vol][words]
 | 
					 | 
				
			||||||
      // BLAS_C[coarse_vol][nrhs][nbasis]
 | 
					 | 
				
			||||||
      scalar * Vh = & BLAS_V[c*nbasis*block_vol*words];
 | 
					 | 
				
			||||||
      scalar * Fh = & BLAS_F[c*nrhs*block_vol*words];
 | 
					 | 
				
			||||||
      scalar * Ch = & BLAS_C[c*nrhs*nbasis];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      acceleratorPut(Vd[c],Vh);
 | 
					 | 
				
			||||||
      acceleratorPut(Fd[c],Fh);
 | 
					 | 
				
			||||||
      acceleratorPut(Cd[c],Ch);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridBLAS BLAS;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //    std::cout << "BlockProject BLAS"<<std::endl;
 | 
					 | 
				
			||||||
    int64_t vw = block_vol * words;
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    // C_br = V^dag R
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N, 
 | 
					 | 
				
			||||||
    		     nbasis,nrhs,vw,
 | 
					 | 
				
			||||||
		     scalar(1.0),
 | 
					 | 
				
			||||||
		     Vd,
 | 
					 | 
				
			||||||
		     Fd,
 | 
					 | 
				
			||||||
		     scalar(0.0),  // wipe out C
 | 
					 | 
				
			||||||
		     Cd);
 | 
					 | 
				
			||||||
    BLAS.synchronise();
 | 
					 | 
				
			||||||
    //    std::cout << "BlockProject done"<<std::endl;
 | 
					 | 
				
			||||||
    ExportCoarseGridVectors(coarse, BLAS_C);
 | 
					 | 
				
			||||||
    //    std::cout << "BlockProject done"<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  template<class cobj>
 | 
					 | 
				
			||||||
  void blockPromote(std::vector<Field> &fine,std::vector<Lattice<cobj> > & coarse)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int nrhs=fine.size();
 | 
					 | 
				
			||||||
    int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar);
 | 
					 | 
				
			||||||
    assert(nbasis==_nbasis);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    BLAS_F.resize (fine_vol * words * nrhs );
 | 
					 | 
				
			||||||
    BLAS_C.resize (coarse_vol * nbasis * nrhs );
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ImportCoarseGridVectors(coarse, BLAS_C);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridBLAS BLAS;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Vd(coarse_vol);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Fd(coarse_vol);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Cd(coarse_vol);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int c=0;c<coarse_vol;c++){
 | 
					 | 
				
			||||||
      // BLAS_V[coarse_vol][nbasis][block_vol][words]
 | 
					 | 
				
			||||||
      // BLAS_F[coarse_vol][nrhs][block_vol][words]
 | 
					 | 
				
			||||||
      // BLAS_C[coarse_vol][nrhs][nbasis]
 | 
					 | 
				
			||||||
      scalar * Vh = & BLAS_V[c*nbasis*block_vol*words];
 | 
					 | 
				
			||||||
      scalar * Fh = & BLAS_F[c*nrhs*block_vol*words];
 | 
					 | 
				
			||||||
      scalar * Ch = & BLAS_C[c*nrhs*nbasis];
 | 
					 | 
				
			||||||
      acceleratorPut(Vd[c],Vh);
 | 
					 | 
				
			||||||
      acceleratorPut(Fd[c],Fh);
 | 
					 | 
				
			||||||
      acceleratorPut(Cd[c],Ch);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Block promote:
 | 
					 | 
				
			||||||
    // F_xr = Vxb Cbr (x coarse_vol)
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int64_t vw = block_vol * words;
 | 
					 | 
				
			||||||
    BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, 
 | 
					 | 
				
			||||||
    		     vw,nrhs,nbasis,
 | 
					 | 
				
			||||||
		     scalar(1.0),
 | 
					 | 
				
			||||||
		     Vd,
 | 
					 | 
				
			||||||
		     Cd,
 | 
					 | 
				
			||||||
		     scalar(0.0),  // wipe out C
 | 
					 | 
				
			||||||
		     Fd);
 | 
					 | 
				
			||||||
    BLAS.synchronise();
 | 
					 | 
				
			||||||
    //    std::cout << " blas call done"<<std::endl;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    ExportFineGridVectors(fine, BLAS_F);
 | 
					 | 
				
			||||||
    //    std::cout << " exported "<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
@@ -1,233 +0,0 @@
 | 
				
			|||||||
/*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: MultiRHSDeflation.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2023
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
*************************************************************************************/
 | 
					 | 
				
			||||||
/*  END LEGAL */
 | 
					 | 
				
			||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/* Need helper object for BLAS accelerated mrhs projection
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   i) MultiRHS Deflation
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   Import Evecs -> nev x vol x internal 
 | 
					 | 
				
			||||||
   Import vector of Lattice objects -> nrhs x vol x internal
 | 
					 | 
				
			||||||
   => Cij (nrhs x Nev) via GEMM.
 | 
					 | 
				
			||||||
   => Guess  (nrhs x vol x internal)  = C x evecs (via GEMM)
 | 
					 | 
				
			||||||
   Export
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   
 | 
					 | 
				
			||||||
   ii) MultiRHS block projection
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   Import basis -> nblock x nbasis x  (block x internal) 
 | 
					 | 
				
			||||||
   Import vector of fine lattice objects -> nblock x nrhs x (block x internal) 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   => coarse_(nrhs x nbasis )^block = via batched GEMM
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   iii)   Alternate interface: 
 | 
					 | 
				
			||||||
   Import higher dim Lattice object-> vol x nrhs layout
 | 
					 | 
				
			||||||
   
 | 
					 | 
				
			||||||
*/
 | 
					 | 
				
			||||||
template<class Field>
 | 
					 | 
				
			||||||
class MultiRHSDeflation
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  typedef typename Field::scalar_type   scalar;
 | 
					 | 
				
			||||||
  typedef typename Field::scalar_object scalar_object;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int nev;
 | 
					 | 
				
			||||||
  std::vector<RealD> eval;
 | 
					 | 
				
			||||||
  GridBase *grid;
 | 
					 | 
				
			||||||
  uint64_t vol;
 | 
					 | 
				
			||||||
  uint64_t words;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_E;      //  nev x vol -- the eigenbasis   (up to a 1/sqrt(lambda))
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_R;      // nrhs x vol -- the sources
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_G;      // nrhs x vol -- the guess
 | 
					 | 
				
			||||||
  deviceVector<scalar> BLAS_C;      // nrhs x nev -- the coefficients 
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  MultiRHSDeflation(){};
 | 
					 | 
				
			||||||
  ~MultiRHSDeflation(){ Deallocate(); };
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  void Deallocate(void)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    nev=0;
 | 
					 | 
				
			||||||
    grid=nullptr;
 | 
					 | 
				
			||||||
    vol=0;
 | 
					 | 
				
			||||||
    words=0;
 | 
					 | 
				
			||||||
    BLAS_E.resize(0);
 | 
					 | 
				
			||||||
    BLAS_R.resize(0);
 | 
					 | 
				
			||||||
    BLAS_C.resize(0);
 | 
					 | 
				
			||||||
    BLAS_G.resize(0);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void Allocate(int _nev,GridBase *_grid)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    nev=_nev;
 | 
					 | 
				
			||||||
    grid=_grid;
 | 
					 | 
				
			||||||
    vol   = grid->lSites();
 | 
					 | 
				
			||||||
    words = sizeof(scalar_object)/sizeof(scalar);
 | 
					 | 
				
			||||||
    eval.resize(nev);
 | 
					 | 
				
			||||||
    BLAS_E.resize (vol * words * nev );
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << " Allocate for "<<nev<<" eigenvectors and volume "<<vol<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void ImportEigenVector(Field &evec,RealD &_eval, int ev)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    //    std::cout << " ev " <<ev<<" eval "<<_eval<< std::endl;
 | 
					 | 
				
			||||||
    assert(ev<eval.size());
 | 
					 | 
				
			||||||
    eval[ev] = _eval;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int64_t offset = ev*vol*words;
 | 
					 | 
				
			||||||
    autoView(v,evec,AcceleratorRead);
 | 
					 | 
				
			||||||
    acceleratorCopyDeviceToDevice(&v[0],&BLAS_E[offset],sizeof(scalar_object)*vol);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    ImportEigenBasis(evec,_eval,0,evec.size());
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  // Could use to import a batch of eigenvectors
 | 
					 | 
				
			||||||
  void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval, int _ev0, int _nev)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    assert(_ev0+_nev<=evec.size());
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Allocate(_nev,evec[0].Grid());
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    // Imports a sub-batch of eigenvectors, _ev0, ..., _ev0+_nev-1
 | 
					 | 
				
			||||||
    for(int e=0;e<nev;e++){
 | 
					 | 
				
			||||||
      std::cout << "Importing eigenvector "<<e<<" evalue "<<_eval[_ev0+e]<<std::endl;
 | 
					 | 
				
			||||||
      ImportEigenVector(evec[_ev0+e],_eval[_ev0+e],e);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void DeflateSources(std::vector<Field> &source,std::vector<Field> & guess)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int nrhs = source.size();
 | 
					 | 
				
			||||||
    assert(source.size()==guess.size());
 | 
					 | 
				
			||||||
    assert(grid == guess[0].Grid());
 | 
					 | 
				
			||||||
    conformable(guess[0],source[0]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int64_t vw = vol * words;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t0 = usecond();
 | 
					 | 
				
			||||||
    BLAS_R.resize(nrhs * vw); // cost free if size doesn't change
 | 
					 | 
				
			||||||
    BLAS_G.resize(nrhs * vw); // cost free if size doesn't change
 | 
					 | 
				
			||||||
    BLAS_C.resize(nev * nrhs);// cost free if size doesn't change
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Copy in the multi-rhs sources
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////
 | 
					 | 
				
			||||||
    //    for(int r=0;r<nrhs;r++){
 | 
					 | 
				
			||||||
    //      std::cout << " source["<<r<<"] = "<<norm2(source[r])<<std::endl;
 | 
					 | 
				
			||||||
    //    }
 | 
					 | 
				
			||||||
    for(int r=0;r<nrhs;r++){
 | 
					 | 
				
			||||||
      int64_t offset = r*vw;
 | 
					 | 
				
			||||||
      autoView(v,source[r],AcceleratorRead);
 | 
					 | 
				
			||||||
      acceleratorCopyDeviceToDevice(&v[0],&BLAS_R[offset],sizeof(scalar_object)*vol);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
   * in Fortran column major notation (cuBlas order)
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Exe = [e1(x)][..][en(x)]
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Rxr = [r1(x)][..][rm(x)]
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * C_er = E^dag R
 | 
					 | 
				
			||||||
   * C_er = C_er / lambda_e 
 | 
					 | 
				
			||||||
   * G_xr = Exe Cer
 | 
					 | 
				
			||||||
   */
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Ed(1);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Rd(1);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Cd(1);
 | 
					 | 
				
			||||||
    deviceVector<scalar *> Gd(1);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    scalar * Eh = & BLAS_E[0];
 | 
					 | 
				
			||||||
    scalar * Rh = & BLAS_R[0];
 | 
					 | 
				
			||||||
    scalar * Ch = & BLAS_C[0];
 | 
					 | 
				
			||||||
    scalar * Gh = & BLAS_G[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    acceleratorPut(Ed[0],Eh);
 | 
					 | 
				
			||||||
    acceleratorPut(Rd[0],Rh);
 | 
					 | 
				
			||||||
    acceleratorPut(Cd[0],Ch);
 | 
					 | 
				
			||||||
    acceleratorPut(Gd[0],Gh);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridBLAS BLAS;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    // C_er = E^dag R
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N, 
 | 
					 | 
				
			||||||
    		     nev,nrhs,vw,
 | 
					 | 
				
			||||||
		     scalar(1.0),
 | 
					 | 
				
			||||||
		     Ed,
 | 
					 | 
				
			||||||
		     Rd,
 | 
					 | 
				
			||||||
		     scalar(0.0),  // wipe out C
 | 
					 | 
				
			||||||
		     Cd);
 | 
					 | 
				
			||||||
    BLAS.synchronise();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    assert(BLAS_C.size()==nev*nrhs);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<scalar> HOST_C(BLAS_C.size());      // nrhs . nev -- the coefficients 
 | 
					 | 
				
			||||||
    acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar));
 | 
					 | 
				
			||||||
    grid->GlobalSumVector(&HOST_C[0],nev*nrhs);
 | 
					 | 
				
			||||||
    for(int e=0;e<nev;e++){
 | 
					 | 
				
			||||||
      RealD lam(1.0/eval[e]);
 | 
					 | 
				
			||||||
      for(int r=0;r<nrhs;r++){
 | 
					 | 
				
			||||||
	int off = e+nev*r;
 | 
					 | 
				
			||||||
	HOST_C[off]=HOST_C[off] * lam;
 | 
					 | 
				
			||||||
	//	std::cout << "C["<<e<<"]["<<r<<"] ="<<HOST_C[off]<< " eval[e] "<<eval[e] <<std::endl;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    acceleratorCopyToDevice(&HOST_C[0],&BLAS_C[0],BLAS_C.size()*sizeof(scalar));
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Guess G_xr = Exe Cer
 | 
					 | 
				
			||||||
    /////////////////////////////////////////
 | 
					 | 
				
			||||||
    BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N, 
 | 
					 | 
				
			||||||
		     vw,nrhs,nev,
 | 
					 | 
				
			||||||
		     scalar(1.0),
 | 
					 | 
				
			||||||
		     Ed, // x . nev
 | 
					 | 
				
			||||||
		     Cd, // nev . nrhs
 | 
					 | 
				
			||||||
		     scalar(0.0),
 | 
					 | 
				
			||||||
		     Gd);
 | 
					 | 
				
			||||||
    BLAS.synchronise();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ///////////////////////////////////////
 | 
					 | 
				
			||||||
    // Copy out the multirhs
 | 
					 | 
				
			||||||
    ///////////////////////////////////////
 | 
					 | 
				
			||||||
    for(int r=0;r<nrhs;r++){
 | 
					 | 
				
			||||||
      int64_t offset = r*vw;
 | 
					 | 
				
			||||||
      autoView(v,guess[r],AcceleratorWrite);
 | 
					 | 
				
			||||||
      acceleratorCopyDeviceToDevice(&BLAS_G[offset],&v[0],sizeof(scalar_object)*vol);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    RealD t1 = usecond();
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "MultiRHSDeflation for "<<nrhs<<" sources with "<<nev<<" eigenvectors took " << (t1-t0)/1e3 <<" ms"<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
@@ -33,111 +33,109 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
   * Script A = SolverMatrix 
 | 
					   * Script A = SolverMatrix 
 | 
				
			||||||
   * Script P = Preconditioner
 | 
					   * Script P = Preconditioner
 | 
				
			||||||
   *
 | 
					   *
 | 
				
			||||||
 | 
					   * Deflation methods considered
 | 
				
			||||||
 | 
					   *      -- Solve P A x = P b        [ like Luscher ]
 | 
				
			||||||
 | 
					   * DEF-1        M P A x = M P b     [i.e. left precon]
 | 
				
			||||||
 | 
					   * DEF-2        P^T M A x = P^T M b
 | 
				
			||||||
 | 
					   * ADEF-1       Preconditioner = M P + Q      [ Q + M + M A Q]
 | 
				
			||||||
 | 
					   * ADEF-2       Preconditioner = P^T M + Q
 | 
				
			||||||
 | 
					   * BNN          Preconditioner = P^T M P + Q
 | 
				
			||||||
 | 
					   * BNN2         Preconditioner = M P + P^TM +Q - M P A M 
 | 
				
			||||||
 | 
					   * 
 | 
				
			||||||
   * Implement ADEF-2
 | 
					   * Implement ADEF-2
 | 
				
			||||||
   *
 | 
					   *
 | 
				
			||||||
   * Vstart = P^Tx + Qb
 | 
					   * Vstart = P^Tx + Qb
 | 
				
			||||||
   * M1 = P^TM + Q
 | 
					   * M1 = P^TM + Q
 | 
				
			||||||
   * M2=M3=1
 | 
					   * M2=M3=1
 | 
				
			||||||
 | 
					   * Vout = x
 | 
				
			||||||
   */
 | 
					   */
 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					// abstract base
 | 
				
			||||||
template<class Field>
 | 
					template<class Field, class CoarseField>
 | 
				
			||||||
class TwoLevelCG : public LinearFunction<Field>
 | 
					class TwoLevelFlexiblePcg : public LinearFunction<Field>
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
 public:
 | 
					 public:
 | 
				
			||||||
 | 
					  int verbose;
 | 
				
			||||||
  RealD   Tolerance;
 | 
					  RealD   Tolerance;
 | 
				
			||||||
  Integer MaxIterations;
 | 
					  Integer MaxIterations;
 | 
				
			||||||
 | 
					  const int mmax = 5;
 | 
				
			||||||
  GridBase *grid;
 | 
					  GridBase *grid;
 | 
				
			||||||
 | 
					  GridBase *coarsegrid;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Fine operator, Smoother, CoarseSolver
 | 
					  LinearOperatorBase<Field>   *_Linop
 | 
				
			||||||
  LinearOperatorBase<Field>   &_FineLinop;
 | 
					  OperatorFunction<Field>     *_Smoother,
 | 
				
			||||||
  LinearFunction<Field>   &_Smoother;
 | 
					  LinearFunction<CoarseField> *_CoarseSolver;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  // Need somthing that knows how to get from Coarse to fine and back again
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  // more most opertor functions
 | 
					  // more most opertor functions
 | 
				
			||||||
  TwoLevelCG(RealD tol,
 | 
					  TwoLevelFlexiblePcg(RealD tol,
 | 
				
			||||||
		     Integer maxit,
 | 
							     Integer maxit,
 | 
				
			||||||
	     LinearOperatorBase<Field>   &FineLinop,
 | 
							     LinearOperatorBase<Field> *Linop,
 | 
				
			||||||
	     LinearFunction<Field>       &Smoother,
 | 
							     LinearOperatorBase<Field> *SmootherLinop,
 | 
				
			||||||
	     GridBase *fine) : 
 | 
							     OperatorFunction<Field>   *Smoother,
 | 
				
			||||||
 | 
							     OperatorFunction<CoarseField>  CoarseLinop
 | 
				
			||||||
 | 
							     ) : 
 | 
				
			||||||
      Tolerance(tol), 
 | 
					      Tolerance(tol), 
 | 
				
			||||||
      MaxIterations(maxit),
 | 
					      MaxIterations(maxit),
 | 
				
			||||||
      _FineLinop(FineLinop),
 | 
					      _Linop(Linop),
 | 
				
			||||||
      _Smoother(Smoother)
 | 
					      _PreconditionerLinop(PrecLinop),
 | 
				
			||||||
 | 
					      _Preconditioner(Preconditioner)
 | 
				
			||||||
  { 
 | 
					  { 
 | 
				
			||||||
    grid       = fine;
 | 
					    verbose=0;
 | 
				
			||||||
  };
 | 
					  };
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  virtual void operator() (const Field &src, Field &x)
 | 
					  // The Pcg routine is common to all, but the various matrices differ from derived 
 | 
				
			||||||
  {
 | 
					  // implementation to derived implmentation
 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg starting single RHS"<<std::endl;
 | 
					  void operator() (const Field &src, Field &psi){
 | 
				
			||||||
 | 
					  void operator() (const Field &src, Field &psi){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    psi.Checkerboard() = src.Checkerboard();
 | 
				
			||||||
 | 
					    grid             = src.Grid();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    RealD f;
 | 
					    RealD f;
 | 
				
			||||||
    RealD rtzp,rtz,a,d,b;
 | 
					    RealD rtzp,rtz,a,d,b;
 | 
				
			||||||
    RealD rptzp;
 | 
					    RealD rptzp;
 | 
				
			||||||
 | 
					    RealD tn;
 | 
				
			||||||
 | 
					    RealD guess = norm2(psi);
 | 
				
			||||||
 | 
					    RealD ssq   = norm2(src);
 | 
				
			||||||
 | 
					    RealD rsq   = ssq*Tolerance*Tolerance;
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    /////////////////////////////
 | 
					    /////////////////////////////
 | 
				
			||||||
    // Set up history vectors
 | 
					    // Set up history vectors
 | 
				
			||||||
    /////////////////////////////
 | 
					    /////////////////////////////
 | 
				
			||||||
    int mmax = 5;
 | 
					    std::vector<Field> p  (mmax,grid);
 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
 | 
					 | 
				
			||||||
    std::vector<Field> p(mmax,grid);
 | 
					 | 
				
			||||||
    std::vector<Field> mmp(mmax,grid);
 | 
					    std::vector<Field> mmp(mmax,grid);
 | 
				
			||||||
    std::vector<RealD> pAp(mmax);
 | 
					    std::vector<RealD> pAp(mmax);
 | 
				
			||||||
    Field z(grid);
 | 
					
 | 
				
			||||||
 | 
					    Field x  (grid); x = psi;
 | 
				
			||||||
 | 
					    Field z  (grid);
 | 
				
			||||||
    Field tmp(grid);
 | 
					    Field tmp(grid);
 | 
				
			||||||
    Field  mp (grid);
 | 
					 | 
				
			||||||
    Field r  (grid);
 | 
					    Field r  (grid);
 | 
				
			||||||
    Field mu (grid);
 | 
					    Field mu (grid);
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocated"<<std::endl;
 | 
					 | 
				
			||||||
    //Initial residual computation & set up
 | 
					 | 
				
			||||||
    RealD guess   = norm2(x);
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg guess nrm "<<guess<<std::endl;
 | 
					 | 
				
			||||||
    RealD src_nrm = norm2(src);
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg src nrm "<<src_nrm<<std::endl;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    if ( src_nrm == 0.0 ) {
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage<<"HDCG: fPcg given trivial source norm "<<src_nrm<<std::endl;
 | 
					 | 
				
			||||||
      x=Zero();
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    RealD tn;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    GridStopWatch HDCGTimer;
 | 
					 | 
				
			||||||
    HDCGTimer.Start();
 | 
					 | 
				
			||||||
    //////////////////////////
 | 
					    //////////////////////////
 | 
				
			||||||
    // x0 = Vstart -- possibly modify guess
 | 
					    // x0 = Vstart -- possibly modify guess
 | 
				
			||||||
    //////////////////////////
 | 
					    //////////////////////////
 | 
				
			||||||
 | 
					    x=src;
 | 
				
			||||||
    Vstart(x,src);
 | 
					    Vstart(x,src);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // r0 = b -A x0
 | 
					    // r0 = b -A x0
 | 
				
			||||||
    _FineLinop.HermOp(x,mmp[0]);
 | 
					    HermOp(x,mmp); // Shouldn't this be something else?
 | 
				
			||||||
    axpy (r, -1.0,mmp[0], src);    // Recomputes r=src-Ax0
 | 
					    axpy (r, -1.0,mmp[0], src);    // Recomputes r=src-Ax0
 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      double n1 = norm2(x);
 | 
					 | 
				
			||||||
      double n2 = norm2(mmp[0]);
 | 
					 | 
				
			||||||
      double n3 = norm2(r);
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage<<"x,vstart,r = "<<n1<<" "<<n2<<" "<<n3<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    //////////////////////////////////
 | 
					    //////////////////////////////////
 | 
				
			||||||
    // Compute z = M1 x
 | 
					    // Compute z = M1 x
 | 
				
			||||||
    //////////////////////////////////
 | 
					    //////////////////////////////////
 | 
				
			||||||
    PcgM1(r,z);
 | 
					    M1(r,z,tmp,mp,SmootherMirs);
 | 
				
			||||||
    rtzp =real(innerProduct(r,z));
 | 
					    rtzp =real(innerProduct(r,z));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    ///////////////////////////////////////
 | 
					    ///////////////////////////////////////
 | 
				
			||||||
    // Solve for Mss mu = P A z and set p = z-mu
 | 
					    // Solve for Mss mu = P A z and set p = z-mu
 | 
				
			||||||
    // Def2 p = 1 - Q Az = Pright z
 | 
					    // Def2: p = 1 - Q Az = Pright z 
 | 
				
			||||||
    // Other algos M2 is trivial
 | 
					    // Other algos M2 is trivial
 | 
				
			||||||
    ///////////////////////////////////////
 | 
					    ///////////////////////////////////////
 | 
				
			||||||
    PcgM2(z,p[0]);
 | 
					    M2(z,p[0]);
 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD ssq =  norm2(src);
 | 
					 | 
				
			||||||
    RealD rsq =  ssq*Tolerance*Tolerance;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: k=0 residual "<<rtzp<<" rsq "<<rsq<<"\n";
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Field pp(grid);
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    for (int k=0;k<=MaxIterations;k++){
 | 
					    for (int k=0;k<=MaxIterations;k++){
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
@@ -145,7 +143,7 @@ class TwoLevelCG : public LinearFunction<Field>
 | 
				
			|||||||
      int peri_kp = (k+1) % mmax;
 | 
					      int peri_kp = (k+1) % mmax;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      rtz=rtzp;
 | 
					      rtz=rtzp;
 | 
				
			||||||
      d= PcgM3(p[peri_k],mmp[peri_k]);
 | 
					      d= M3(p[peri_k],mp,mmp[peri_k],tmp);
 | 
				
			||||||
      a = rtz/d;
 | 
					      a = rtz/d;
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
      // Memorise this
 | 
					      // Memorise this
 | 
				
			||||||
@@ -155,36 +153,21 @@ class TwoLevelCG : public LinearFunction<Field>
 | 
				
			|||||||
      RealD rn = axpy_norm(r,-a,mmp[peri_k],r);
 | 
					      RealD rn = axpy_norm(r,-a,mmp[peri_k],r);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      // Compute z = M x
 | 
					      // Compute z = M x
 | 
				
			||||||
      PcgM1(r,z);
 | 
					      M1(r,z,tmp,mp);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      {
 | 
					 | 
				
			||||||
	RealD n1,n2;
 | 
					 | 
				
			||||||
	n1=norm2(r);
 | 
					 | 
				
			||||||
	n2=norm2(z);
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : vector r,z "<<n1<<" "<<n2<<"\n";
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      rtzp =real(innerProduct(r,z));
 | 
					      rtzp =real(innerProduct(r,z));
 | 
				
			||||||
      std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : inner rtzp "<<rtzp<<"\n";
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
      //    PcgM2(z,p[0]);
 | 
					      M2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
 | 
				
			||||||
      PcgM2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
      p[peri_kp]=mu;
 | 
					      p[peri_kp]=p[peri_k];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      // Standard search direction  p -> z + b p    
 | 
					      // Standard search direction  p -> z + b p    ; b = 
 | 
				
			||||||
      b = (rtzp)/rtz;
 | 
					      b = (rtzp)/rtz;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      int northog;
 | 
					      int northog;
 | 
				
			||||||
      // k=zero  <=> peri_kp=1;        northog = 1
 | 
					 | 
				
			||||||
      // k=1     <=> peri_kp=2;        northog = 2
 | 
					 | 
				
			||||||
      // ...               ...                  ...
 | 
					 | 
				
			||||||
      // k=mmax-2<=> peri_kp=mmax-1;   northog = mmax-1
 | 
					 | 
				
			||||||
      // k=mmax-1<=> peri_kp=0;        northog = 1
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      //    northog     = (peri_kp==0)?1:peri_kp; // This is the fCG(mmax) algorithm
 | 
					      //    northog     = (peri_kp==0)?1:peri_kp; // This is the fCG(mmax) algorithm
 | 
				
			||||||
      northog     = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm
 | 
					      northog     = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
      std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
 | 
					 | 
				
			||||||
      for(int back=0; back < northog; back++){
 | 
					      for(int back=0; back < northog; back++){
 | 
				
			||||||
	int peri_back = (k-back)%mmax;
 | 
						int peri_back = (k-back)%mmax;
 | 
				
			||||||
	RealD pbApk= real(innerProduct(mmp[peri_back],p[peri_kp]));
 | 
						RealD pbApk= real(innerProduct(mmp[peri_back],p[peri_kp]));
 | 
				
			||||||
@@ -193,324 +176,75 @@ class TwoLevelCG : public LinearFunction<Field>
 | 
				
			|||||||
      }
 | 
					      }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      RealD rrn=sqrt(rn/ssq);
 | 
					      RealD rrn=sqrt(rn/ssq);
 | 
				
			||||||
      RealD rtn=sqrt(rtz/ssq);
 | 
					      std::cout<<GridLogMessage<<"TwoLevelfPcg: k= "<<k<<" residual = "<<rrn<<std::endl;
 | 
				
			||||||
      RealD rtnp=sqrt(rtzp/ssq);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage<<"HDCG: fPcg k= "<<k<<" residual = "<<rrn<<"\n";
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
      // Stopping condition
 | 
					      // Stopping condition
 | 
				
			||||||
      if ( rn <= rsq ) { 
 | 
					      if ( rn <= rsq ) { 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	HDCGTimer.Stop();
 | 
						HermOp(x,mmp); // Shouldn't this be something else?
 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	_FineLinop.HermOp(x,mmp[0]);			  
 | 
					 | 
				
			||||||
	axpy(tmp,-1.0,src,mmp[0]);
 | 
						axpy(tmp,-1.0,src,mmp[0]);
 | 
				
			||||||
	
 | 
						
 | 
				
			||||||
	RealD  mmpnorm = sqrt(norm2(mmp[0]));
 | 
						RealD psinorm = sqrt(norm2(x));
 | 
				
			||||||
	RealD  xnorm   = sqrt(norm2(x));
 | 
					 | 
				
			||||||
	RealD srcnorm = sqrt(norm2(src));
 | 
						RealD srcnorm = sqrt(norm2(src));
 | 
				
			||||||
	RealD tmpnorm = sqrt(norm2(tmp));
 | 
						RealD tmpnorm = sqrt(norm2(tmp));
 | 
				
			||||||
	RealD true_residual = tmpnorm/srcnorm;
 | 
						RealD true_residual = tmpnorm/srcnorm;
 | 
				
			||||||
	std::cout<<GridLogMessage
 | 
						std::cout<<GridLogMessage<<"TwoLevelfPcg:   true residual is "<<true_residual<<std::endl;
 | 
				
			||||||
	       <<"HDCG: true residual is "<<true_residual
 | 
						std::cout<<GridLogMessage<<"TwoLevelfPcg: target residual was"<<Tolerance<<std::endl;
 | 
				
			||||||
	       <<" solution "<<xnorm
 | 
						return k;
 | 
				
			||||||
	       <<" source "<<srcnorm
 | 
					 | 
				
			||||||
	       <<" mmp "<<mmpnorm	  
 | 
					 | 
				
			||||||
	       <<std::endl;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
	return;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    HDCGTimer.Stop();
 | 
					 | 
				
			||||||
    std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
 | 
					 | 
				
			||||||
    RealD  xnorm   = sqrt(norm2(x));
 | 
					 | 
				
			||||||
    RealD  srcnorm = sqrt(norm2(src));
 | 
					 | 
				
			||||||
    std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl;
 | 
					 | 
				
			||||||
    src[0].Grid()->Barrier();
 | 
					 | 
				
			||||||
    int nrhs = src.size();
 | 
					 | 
				
			||||||
    std::vector<RealD> f(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> rtzp(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> rtz(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> a(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> d(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> b(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> rptzp(nrhs);
 | 
					 | 
				
			||||||
    /////////////////////////////
 | 
					 | 
				
			||||||
    // Set up history vectors
 | 
					 | 
				
			||||||
    /////////////////////////////
 | 
					 | 
				
			||||||
    int mmax = 3;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
 | 
					 | 
				
			||||||
    src[0].Grid()->Barrier();
 | 
					 | 
				
			||||||
    std::vector<std::vector<Field> > p(nrhs);   for(int r=0;r<nrhs;r++)  p[r].resize(mmax,grid);
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocated p"<<std::endl;
 | 
					 | 
				
			||||||
    src[0].Grid()->Barrier();
 | 
					 | 
				
			||||||
    std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid);
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocated mmp"<<std::endl;
 | 
					 | 
				
			||||||
    src[0].Grid()->Barrier();
 | 
					 | 
				
			||||||
    std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax);
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocated pAp"<<std::endl;
 | 
					 | 
				
			||||||
    src[0].Grid()->Barrier();
 | 
					 | 
				
			||||||
    std::vector<Field> z(nrhs,grid);
 | 
					 | 
				
			||||||
    std::vector<Field>  mp (nrhs,grid);
 | 
					 | 
				
			||||||
    std::vector<Field>  r  (nrhs,grid);
 | 
					 | 
				
			||||||
    std::vector<Field>  mu (nrhs,grid);
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg allocated z,mp,r,mu"<<std::endl;
 | 
					 | 
				
			||||||
    src[0].Grid()->Barrier();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //Initial residual computation & set up
 | 
					 | 
				
			||||||
    std::vector<RealD> src_nrm(nrhs);
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
					 | 
				
			||||||
      src_nrm[rhs]=norm2(src[rhs]);
 | 
					 | 
				
			||||||
      assert(src_nrm[rhs]!=0.0);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    std::vector<RealD> tn(nrhs);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridStopWatch HDCGTimer;
 | 
					 | 
				
			||||||
    HDCGTimer.Start();
 | 
					 | 
				
			||||||
    //////////////////////////
 | 
					 | 
				
			||||||
    // x0 = Vstart -- possibly modify guess
 | 
					 | 
				
			||||||
    //////////////////////////
 | 
					 | 
				
			||||||
    Vstart(x,src);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
      // r0 = b -A x0
 | 
					 | 
				
			||||||
      _FineLinop.HermOp(x[rhs],mmp[rhs][0]);
 | 
					 | 
				
			||||||
      axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]);    // Recomputes r=src-Ax0
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //////////////////////////////////
 | 
					 | 
				
			||||||
    // Compute z = M1 x
 | 
					 | 
				
			||||||
    //////////////////////////////////
 | 
					 | 
				
			||||||
    // This needs a multiRHS version for acceleration
 | 
					 | 
				
			||||||
    PcgM1(r,z);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<RealD> ssq(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> rsq(nrhs);
 | 
					 | 
				
			||||||
    std::vector<Field> pp(nrhs,grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
      rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
 | 
					 | 
				
			||||||
      p[rhs][0]=z[rhs];
 | 
					 | 
				
			||||||
      ssq[rhs]=norm2(src[rhs]);
 | 
					 | 
				
			||||||
      rsq[rhs]=  ssq[rhs]*Tolerance*Tolerance;
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n";
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<RealD> rn(nrhs);
 | 
					 | 
				
			||||||
    for (int k=0;k<=MaxIterations;k++){
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
      int peri_k  = k % mmax;
 | 
					 | 
				
			||||||
      int peri_kp = (k+1) % mmax;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
	rtz[rhs]=rtzp[rhs];
 | 
					 | 
				
			||||||
	d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]);
 | 
					 | 
				
			||||||
	a[rhs] = rtz[rhs]/d[rhs];
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
	// Memorise this
 | 
					 | 
				
			||||||
	pAp[rhs][peri_k] = d[rhs];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]);
 | 
					 | 
				
			||||||
	rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]);
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Compute z = M x (for *all* RHS)
 | 
					 | 
				
			||||||
      PcgM1(r,z);
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage<<"HDCG::fPcg M1 complete"<<std::endl;
 | 
					 | 
				
			||||||
      grid->Barrier();
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      RealD max_rn=0.0;
 | 
					 | 
				
			||||||
      for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n";
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	mu[rhs]=z[rhs];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	p[rhs][peri_kp]=mu[rhs];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	// Standard search direction p == z + b p 
 | 
					 | 
				
			||||||
	b[rhs] = (rtzp[rhs])/rtz[rhs];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	int northog = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
 | 
					 | 
				
			||||||
	for(int back=0; back < northog; back++){
 | 
					 | 
				
			||||||
	  int peri_back = (k-back)%mmax;
 | 
					 | 
				
			||||||
	  RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp]));
 | 
					 | 
				
			||||||
	  RealD beta = -pbApk/pAp[rhs][peri_back];
 | 
					 | 
				
			||||||
	  axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]);
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	RealD rrn=sqrt(rn[rhs]/ssq[rhs]);
 | 
					 | 
				
			||||||
	RealD rtn=sqrt(rtz[rhs]/ssq[rhs]);
 | 
					 | 
				
			||||||
	RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]);
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: rhs "<<rhs<<"fPcg k= "<<k<<" residual = "<<rrn<<"\n";
 | 
					 | 
				
			||||||
	if ( rrn > max_rn ) max_rn = rrn;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Stopping condition based on worst case
 | 
					 | 
				
			||||||
      if ( max_rn <= Tolerance ) { 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	HDCGTimer.Stop();
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
	  _FineLinop.HermOp(x[rhs],mmp[rhs][0]);			  
 | 
					 | 
				
			||||||
	  Field tmp(grid);
 | 
					 | 
				
			||||||
	  axpy(tmp,-1.0,src[rhs],mmp[rhs][0]);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
	  RealD  mmpnorm = sqrt(norm2(mmp[rhs][0]));
 | 
					 | 
				
			||||||
	  RealD  xnorm   = sqrt(norm2(x[rhs]));
 | 
					 | 
				
			||||||
	  RealD  srcnorm = sqrt(norm2(src[rhs]));
 | 
					 | 
				
			||||||
	  RealD  tmpnorm = sqrt(norm2(tmp));
 | 
					 | 
				
			||||||
	  RealD  true_residual = tmpnorm/srcnorm;
 | 
					 | 
				
			||||||
	  std::cout<<GridLogMessage
 | 
					 | 
				
			||||||
		   <<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
 | 
					 | 
				
			||||||
		   <<" solution "<<xnorm
 | 
					 | 
				
			||||||
		   <<" source "<<srcnorm
 | 
					 | 
				
			||||||
		   <<" mmp "<<mmpnorm	  
 | 
					 | 
				
			||||||
		   <<std::endl;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	return;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    HDCGTimer.Stop();
 | 
					 | 
				
			||||||
    std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
      RealD  xnorm   = sqrt(norm2(x[rhs]));
 | 
					 | 
				
			||||||
      RealD  srcnorm = sqrt(norm2(src[rhs]));
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
 | 
					 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  
 | 
					    // Non-convergence
 | 
				
			||||||
 | 
					    assert(0);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 public:
 | 
					 public:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out)
 | 
					  virtual void M(Field & in,Field & out,Field & tmp) {
 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::cout << "PcgM1 default (cheat) mrhs version"<<std::endl;
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<in.size();rhs++){
 | 
					 | 
				
			||||||
      this->PcgM1(in[rhs],out[rhs]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  virtual void PcgM1(Field & in, Field & out)     =0;
 | 
					 | 
				
			||||||
  virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::cout << "Vstart default (cheat) mrhs version"<<std::endl;
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<x.size();rhs++){
 | 
					 | 
				
			||||||
      this->Vstart(x[rhs],src[rhs]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  virtual void Vstart(Field & x,const Field & src)=0;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  virtual void PcgM2(const Field & in, Field & out) {
 | 
					 | 
				
			||||||
    out=in;
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  virtual RealD PcgM3(const Field & p, Field & mmp){
 | 
					  virtual void M1(Field & in, Field & out) {// the smoother
 | 
				
			||||||
    RealD dd;
 | 
					 | 
				
			||||||
    _FineLinop.HermOp(p,mmp);
 | 
					 | 
				
			||||||
    ComplexD dot = innerProduct(p,mmp);
 | 
					 | 
				
			||||||
    dd=real(dot);
 | 
					 | 
				
			||||||
    return dd;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  /////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // Only Def1 has non-trivial Vout.
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
template<class Field, class CoarseField, class Aggregation>
 | 
					 | 
				
			||||||
class TwoLevelADEF2 : public TwoLevelCG<Field>
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
 public:
 | 
					 | 
				
			||||||
  ///////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // Need something that knows how to get from Coarse to fine and back again
 | 
					 | 
				
			||||||
  //  void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
 | 
					 | 
				
			||||||
  //  void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
 | 
					 | 
				
			||||||
  ///////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  GridBase *coarsegrid;
 | 
					 | 
				
			||||||
  Aggregation &_Aggregates;                    
 | 
					 | 
				
			||||||
  LinearFunction<CoarseField> &_CoarseSolver;
 | 
					 | 
				
			||||||
  LinearFunction<CoarseField> &_CoarseSolverPrecise;
 | 
					 | 
				
			||||||
  ///////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  // more most opertor functions
 | 
					 | 
				
			||||||
  TwoLevelADEF2(RealD tol,
 | 
					 | 
				
			||||||
		Integer maxit,
 | 
					 | 
				
			||||||
		LinearOperatorBase<Field>    &FineLinop,
 | 
					 | 
				
			||||||
		LinearFunction<Field>        &Smoother,
 | 
					 | 
				
			||||||
		LinearFunction<CoarseField>  &CoarseSolver,
 | 
					 | 
				
			||||||
		LinearFunction<CoarseField>  &CoarseSolverPrecise,
 | 
					 | 
				
			||||||
		Aggregation &Aggregates
 | 
					 | 
				
			||||||
		) :
 | 
					 | 
				
			||||||
      TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,Aggregates.FineGrid),
 | 
					 | 
				
			||||||
      _CoarseSolver(CoarseSolver),
 | 
					 | 
				
			||||||
      _CoarseSolverPrecise(CoarseSolverPrecise),
 | 
					 | 
				
			||||||
      _Aggregates(Aggregates)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    coarsegrid = Aggregates.CoarseGrid;
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void PcgM1(Field & in, Field & out)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    GRID_TRACE("MultiGridPreconditioner ");
 | 
					 | 
				
			||||||
    // [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
 | 
					    // [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
 | 
				
			||||||
 | 
					    Field tmp(grid);
 | 
				
			||||||
 | 
					    Field Min(grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    Field tmp(this->grid);
 | 
					    PcgM(in,Min); // Smoother call
 | 
				
			||||||
    Field Min(this->grid);
 | 
					 | 
				
			||||||
    CoarseField PleftProj(this->coarsegrid);
 | 
					 | 
				
			||||||
    CoarseField PleftMss_proj(this->coarsegrid);
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    GridStopWatch SmootherTimer;
 | 
					    HermOp(Min,out);
 | 
				
			||||||
    GridStopWatch MatrixTimer;
 | 
					 | 
				
			||||||
    SmootherTimer.Start();
 | 
					 | 
				
			||||||
    this->_Smoother(in,Min);
 | 
					 | 
				
			||||||
    SmootherTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    MatrixTimer.Start();
 | 
					 | 
				
			||||||
    this->_FineLinop.HermOp(Min,out);
 | 
					 | 
				
			||||||
    MatrixTimer.Stop();
 | 
					 | 
				
			||||||
    axpy(tmp,-1.0,out,in);          // tmp  = in - A Min
 | 
					    axpy(tmp,-1.0,out,in);          // tmp  = in - A Min
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    GridStopWatch ProjTimer;
 | 
					    ProjectToSubspace(tmp,PleftProj);     
 | 
				
			||||||
    GridStopWatch CoarseTimer;
 | 
					    ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
 | 
				
			||||||
    GridStopWatch PromTimer;
 | 
					    PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]  
 | 
				
			||||||
    ProjTimer.Start();
 | 
					 | 
				
			||||||
    this->_Aggregates.ProjectToSubspace(PleftProj,tmp);     
 | 
					 | 
				
			||||||
    ProjTimer.Stop();
 | 
					 | 
				
			||||||
    CoarseTimer.Start();
 | 
					 | 
				
			||||||
    this->_CoarseSolver(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
 | 
					 | 
				
			||||||
    CoarseTimer.Stop();
 | 
					 | 
				
			||||||
    PromTimer.Start();
 | 
					 | 
				
			||||||
    this->_Aggregates.PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]  
 | 
					 | 
				
			||||||
    PromTimer.Stop();
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PcgM1 breakdown "<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "\tSmoother   " << SmootherTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "\tProj       " << ProjTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "\tCoarse     " << CoarseTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "\tProm       " << PromTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    axpy(out,1.0,Min,tmp); // Min+tmp
 | 
					    axpy(out,1.0,Min,tmp); // Min+tmp
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  virtual void Vstart(Field & x,const Field & src)
 | 
					  virtual void M2(const Field & in, Field & out) {
 | 
				
			||||||
  {
 | 
					    out=in;
 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg Vstart "<<std::endl;
 | 
					    // Must override for Def2 only
 | 
				
			||||||
 | 
					    //  case PcgDef2:
 | 
				
			||||||
 | 
					    //    Pright(in,out);
 | 
				
			||||||
 | 
					    //    break;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  virtual RealD M3(const Field & p, Field & mmp){
 | 
				
			||||||
 | 
					    double d,dd;
 | 
				
			||||||
 | 
					    HermOpAndNorm(p,mmp,d,dd);
 | 
				
			||||||
 | 
					    return dd;
 | 
				
			||||||
 | 
					    // Must override for Def1 only
 | 
				
			||||||
 | 
					    //  case PcgDef1:
 | 
				
			||||||
 | 
					    //    d=linop_d->Mprec(p,mmp,tmp,0,1);// Dag no
 | 
				
			||||||
 | 
					    //      linop_d->Mprec(mmp,mp,tmp,1);// Dag yes
 | 
				
			||||||
 | 
					    //    Pleft(mp,mmp);
 | 
				
			||||||
 | 
					    //    d=real(linop_d->inner(p,mmp));
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  virtual void VstartDef2(Field & xconst Field & src){
 | 
				
			||||||
 | 
					    //case PcgDef2:
 | 
				
			||||||
 | 
					    //case PcgAdef2: 
 | 
				
			||||||
 | 
					    //case PcgAdef2f:
 | 
				
			||||||
 | 
					    //case PcgV11f:
 | 
				
			||||||
    ///////////////////////////////////
 | 
					    ///////////////////////////////////
 | 
				
			||||||
    // Choose x_0 such that 
 | 
					    // Choose x_0 such that 
 | 
				
			||||||
    // x_0 = guess +  (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
 | 
					    // x_0 = guess +  (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
 | 
				
			||||||
@@ -522,78 +256,142 @@ class TwoLevelADEF2 : public TwoLevelCG<Field>
 | 
				
			|||||||
    //                   = src_s - (A guess)_s - src_s  + (A guess)_s 
 | 
					    //                   = src_s - (A guess)_s - src_s  + (A guess)_s 
 | 
				
			||||||
    //                   = 0 
 | 
					    //                   = 0 
 | 
				
			||||||
    ///////////////////////////////////
 | 
					    ///////////////////////////////////
 | 
				
			||||||
    Field r(this->grid);
 | 
					    Field r(grid);
 | 
				
			||||||
    Field mmp(this->grid);
 | 
					    Field mmp(grid);
 | 
				
			||||||
    CoarseField PleftProj(this->coarsegrid);
 | 
					 | 
				
			||||||
    CoarseField PleftMss_proj(this->coarsegrid);
 | 
					 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg Vstart projecting "<<std::endl;
 | 
					    HermOp(x,mmp);
 | 
				
			||||||
    this->_Aggregates.ProjectToSubspace(PleftProj,src);     
 | 
					    axpy (r, -1.0, mmp, src);        // r_{-1} = src - A x
 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg Vstart coarse solve "<<std::endl;
 | 
					    ProjectToSubspace(r,PleftProj);     
 | 
				
			||||||
    this->_CoarseSolverPrecise(PleftProj,PleftMss_proj); // Ass^{-1} r_s
 | 
					    ApplyInverseCG(PleftProj,PleftMss_proj); // Ass^{-1} r_s
 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: fPcg Vstart promote "<<std::endl;
 | 
					    PromoteFromSubspace(PleftMss_proj,mmp);  
 | 
				
			||||||
    this->_Aggregates.PromoteFromSubspace(PleftMss_proj,x);  
 | 
					    x=x+mmp;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
};
 | 
					  virtual void Vstart(Field & x,const Field & src){
 | 
				
			||||||
 | 
					    return;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  /////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					  // Only Def1 has non-trivial Vout. Override in Def1
 | 
				
			||||||
 | 
					  /////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					  virtual void   Vout  (Field & in, Field & out,Field & src){
 | 
				
			||||||
 | 
					    out = in;
 | 
				
			||||||
 | 
					    //case PcgDef1:
 | 
				
			||||||
 | 
					    //    //Qb + PT x
 | 
				
			||||||
 | 
					    //    ProjectToSubspace(src,PleftProj);     
 | 
				
			||||||
 | 
					    //    ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} r_s
 | 
				
			||||||
 | 
					    //    PromoteFromSubspace(PleftMss_proj,tmp);  
 | 
				
			||||||
 | 
					    //    
 | 
				
			||||||
 | 
					    //    Pright(in,out);
 | 
				
			||||||
 | 
					    //    
 | 
				
			||||||
 | 
					    //    linop_d->axpy(out,tmp,out,1.0);
 | 
				
			||||||
 | 
					    //    break;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					  // Pright and Pleft are common to all implementations
 | 
				
			||||||
 | 
					  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					  virtual void Pright(Field & in,Field & out){
 | 
				
			||||||
 | 
					    // P_R  = [ 1              0 ] 
 | 
				
			||||||
 | 
					    //        [ -Mss^-1 Msb    0 ] 
 | 
				
			||||||
 | 
					    Field in_sbar(grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    ProjectToSubspace(in,PleftProj);     
 | 
				
			||||||
 | 
					    PromoteFromSubspace(PleftProj,out);  
 | 
				
			||||||
 | 
					    axpy(in_sbar,-1.0,out,in);       // in_sbar = in - in_s 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    HermOp(in_sbar,out);
 | 
				
			||||||
 | 
					    ProjectToSubspace(out,PleftProj);           // Mssbar in_sbar  (project)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    ApplyInverse     (PleftProj,PleftMss_proj); // Mss^{-1} Mssbar 
 | 
				
			||||||
 | 
					    PromoteFromSubspace(PleftMss_proj,out);     // 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    axpy(out,-1.0,out,in_sbar);     // in_sbar - Mss^{-1} Mssbar in_sbar
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  virtual void Pleft (Field & in,Field & out){
 | 
				
			||||||
 | 
					    // P_L  = [ 1  -Mbs Mss^-1] 
 | 
				
			||||||
 | 
					    //        [ 0   0         ] 
 | 
				
			||||||
 | 
					    Field in_sbar(grid);
 | 
				
			||||||
 | 
					    Field    tmp2(grid);
 | 
				
			||||||
 | 
					    Field    Mtmp(grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    ProjectToSubspace(in,PleftProj);     
 | 
				
			||||||
 | 
					    PromoteFromSubspace(PleftProj,out);  
 | 
				
			||||||
 | 
					    axpy(in_sbar,-1.0,out,in);      // in_sbar = in - in_s
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    ApplyInverse(PleftProj,PleftMss_proj); // Mss^{-1} in_s
 | 
				
			||||||
 | 
					    PromoteFromSubspace(PleftMss_proj,out);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    HermOp(out,Mtmp);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    ProjectToSubspace(Mtmp,PleftProj);      // Msbar s Mss^{-1}
 | 
				
			||||||
 | 
					    PromoteFromSubspace(PleftProj,tmp2);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    axpy(out,-1.0,tmp2,Mtmp);
 | 
				
			||||||
 | 
					    axpy(out,-1.0,out,in_sbar);     // in_sbar - Msbars Mss^{-1} in_s
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class Field>
 | 
					template<class Field>
 | 
				
			||||||
class TwoLevelADEF1defl : public TwoLevelCG<Field>
 | 
					class TwoLevelFlexiblePcgADef2 : public TwoLevelFlexiblePcg<Field> {
 | 
				
			||||||
{
 | 
					 public:
 | 
				
			||||||
public:
 | 
					  virtual void M(Field & in,Field & out,Field & tmp){
 | 
				
			||||||
  const std::vector<Field> &evec;
 | 
					 | 
				
			||||||
  const std::vector<RealD> &eval;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  TwoLevelADEF1defl(RealD tol,
 | 
					 | 
				
			||||||
		   Integer maxit,
 | 
					 | 
				
			||||||
		   LinearOperatorBase<Field>   &FineLinop,
 | 
					 | 
				
			||||||
		   LinearFunction<Field>   &Smoother,
 | 
					 | 
				
			||||||
		   std::vector<Field> &_evec,
 | 
					 | 
				
			||||||
		   std::vector<RealD> &_eval) : 
 | 
					 | 
				
			||||||
    TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,_evec[0].Grid()),
 | 
					 | 
				
			||||||
    evec(_evec),
 | 
					 | 
				
			||||||
    eval(_eval)
 | 
					 | 
				
			||||||
  {};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  // Can just inherit existing M2
 | 
					 | 
				
			||||||
  // Can just inherit existing M3
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  // Simple vstart - do nothing
 | 
					 | 
				
			||||||
  virtual void Vstart(Field & x,const Field & src){
 | 
					 | 
				
			||||||
    x=src; // Could apply Q
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  // Override PcgM1
 | 
					 | 
				
			||||||
  virtual void PcgM1(Field & in, Field & out)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    GRID_TRACE("EvecPreconditioner ");
 | 
					 | 
				
			||||||
    int N=evec.size();
 | 
					 | 
				
			||||||
    Field Pin(this->grid);
 | 
					 | 
				
			||||||
    Field Qin(this->grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //MP  + Q = M(1-AQ) + Q = M
 | 
					 | 
				
			||||||
    // // If we are eigenvector deflating in coarse space
 | 
					 | 
				
			||||||
    // // Q   = Sum_i |phi_i> 1/lambda_i <phi_i|
 | 
					 | 
				
			||||||
    // // A Q = Sum_i |phi_i> <phi_i|
 | 
					 | 
				
			||||||
    // // M(1-AQ) = M(1-proj) + Q
 | 
					 | 
				
			||||||
    Qin.Checkerboard()=in.Checkerboard();
 | 
					 | 
				
			||||||
    Qin = Zero();
 | 
					 | 
				
			||||||
    Pin = in;
 | 
					 | 
				
			||||||
    for (int i=0;i<N;i++) {
 | 
					 | 
				
			||||||
      const Field& tmp = evec[i];
 | 
					 | 
				
			||||||
      auto ip = TensorRemove(innerProduct(tmp,in));
 | 
					 | 
				
			||||||
      axpy(Qin, ip / eval[i],tmp,Qin);
 | 
					 | 
				
			||||||
      axpy(Pin, -ip ,tmp,Pin);
 | 
					 | 
				
			||||||
  } 
 | 
					  } 
 | 
				
			||||||
 | 
					  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    this->_Smoother(Pin,out);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    out = out + Qin;
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					  virtual void M2(Field & in, Field & out){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					  }
 | 
				
			||||||
 | 
					  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					template<class Field>
 | 
				
			||||||
 | 
					class TwoLevelFlexiblePcgAD : public TwoLevelFlexiblePcg<Field> {
 | 
				
			||||||
 | 
					 public:
 | 
				
			||||||
 | 
					  virtual void M(Field & in,Field & out,Field & tmp); 
 | 
				
			||||||
 | 
					  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
 | 
				
			||||||
 | 
					  virtual void M2(Field & in, Field & out);
 | 
				
			||||||
 | 
					  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
 | 
				
			||||||
 | 
					  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					template<class Field>
 | 
				
			||||||
 | 
					class TwoLevelFlexiblePcgDef1 : public TwoLevelFlexiblePcg<Field> {
 | 
				
			||||||
 | 
					 public:
 | 
				
			||||||
 | 
					  virtual void M(Field & in,Field & out,Field & tmp); 
 | 
				
			||||||
 | 
					  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
 | 
				
			||||||
 | 
					  virtual void M2(Field & in, Field & out);
 | 
				
			||||||
 | 
					  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
 | 
				
			||||||
 | 
					  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
 | 
				
			||||||
 | 
					  virtual void   Vout  (Field & in, Field & out,Field & src,Field & tmp);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					template<class Field>
 | 
				
			||||||
 | 
					class TwoLevelFlexiblePcgDef2 : public TwoLevelFlexiblePcg<Field> {
 | 
				
			||||||
 | 
					 public:
 | 
				
			||||||
 | 
					  virtual void M(Field & in,Field & out,Field & tmp); 
 | 
				
			||||||
 | 
					  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
 | 
				
			||||||
 | 
					  virtual void M2(Field & in, Field & out);
 | 
				
			||||||
 | 
					  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
 | 
				
			||||||
 | 
					  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					template<class Field>
 | 
				
			||||||
 | 
					class TwoLevelFlexiblePcgV11: public TwoLevelFlexiblePcg<Field> {
 | 
				
			||||||
 | 
					 public:
 | 
				
			||||||
 | 
					  virtual void M(Field & in,Field & out,Field & tmp); 
 | 
				
			||||||
 | 
					  virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
 | 
				
			||||||
 | 
					  virtual void M2(Field & in, Field & out);
 | 
				
			||||||
 | 
					  virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
 | 
				
			||||||
 | 
					  virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1,734 +0,0 @@
 | 
				
			|||||||
    /*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: ./lib/algorithms/iterative/AdefGeneric.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2015
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
    *************************************************************************************/
 | 
					 | 
				
			||||||
    /*  END LEGAL */
 | 
					 | 
				
			||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
   * Compared to Tang-2009:  P=Pleft. P^T = PRight Q=MssInv. 
 | 
					 | 
				
			||||||
   * Script A = SolverMatrix 
 | 
					 | 
				
			||||||
   * Script P = Preconditioner
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Implement ADEF-2
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   * Vstart = P^Tx + Qb
 | 
					 | 
				
			||||||
   * M1 = P^TM + Q
 | 
					 | 
				
			||||||
   * M2=M3=1
 | 
					 | 
				
			||||||
   */
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class Field>
 | 
					 | 
				
			||||||
class TwoLevelCGmrhs
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
 public:
 | 
					 | 
				
			||||||
  RealD   Tolerance;
 | 
					 | 
				
			||||||
  Integer MaxIterations;
 | 
					 | 
				
			||||||
  GridBase *grid;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  // Fine operator, Smoother, CoarseSolver
 | 
					 | 
				
			||||||
  LinearOperatorBase<Field>   &_FineLinop;
 | 
					 | 
				
			||||||
  LinearFunction<Field>   &_Smoother;
 | 
					 | 
				
			||||||
  MultiRHSBlockCGLinalg<Field> _BlockCGLinalg;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  GridStopWatch ProjectTimer;
 | 
					 | 
				
			||||||
  GridStopWatch PromoteTimer;
 | 
					 | 
				
			||||||
  GridStopWatch DeflateTimer;
 | 
					 | 
				
			||||||
  GridStopWatch CoarseTimer;
 | 
					 | 
				
			||||||
  GridStopWatch FineTimer;
 | 
					 | 
				
			||||||
  GridStopWatch SmoothTimer;
 | 
					 | 
				
			||||||
  GridStopWatch InsertTimer;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
    Field rrr;
 | 
					 | 
				
			||||||
  Field sss;
 | 
					 | 
				
			||||||
  Field qqq;
 | 
					 | 
				
			||||||
  Field zzz;
 | 
					 | 
				
			||||||
  */  
 | 
					 | 
				
			||||||
  // more most opertor functions
 | 
					 | 
				
			||||||
  TwoLevelCGmrhs(RealD tol,
 | 
					 | 
				
			||||||
		 Integer maxit,
 | 
					 | 
				
			||||||
		 LinearOperatorBase<Field>   &FineLinop,
 | 
					 | 
				
			||||||
		 LinearFunction<Field>       &Smoother,
 | 
					 | 
				
			||||||
		 GridBase *fine) : 
 | 
					 | 
				
			||||||
    Tolerance(tol), 
 | 
					 | 
				
			||||||
    MaxIterations(maxit),
 | 
					 | 
				
			||||||
    _FineLinop(FineLinop),
 | 
					 | 
				
			||||||
    _Smoother(Smoother)
 | 
					 | 
				
			||||||
    /*
 | 
					 | 
				
			||||||
    rrr(fine),
 | 
					 | 
				
			||||||
    sss(fine),
 | 
					 | 
				
			||||||
    qqq(fine),
 | 
					 | 
				
			||||||
    zzz(fine)
 | 
					 | 
				
			||||||
*/
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    grid       = fine;
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  // Vector case
 | 
					 | 
				
			||||||
  virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    //    SolveSingleSystem(src,x);
 | 
					 | 
				
			||||||
    SolvePrecBlockCG(src,x);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
// Thin QR factorisation (google it)
 | 
					 | 
				
			||||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  //Dimensions
 | 
					 | 
				
			||||||
  // R_{ferm x Nblock} =  Q_{ferm x Nblock} x  C_{Nblock x Nblock} -> ferm x Nblock
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Rdag R = m_rr = Herm = L L^dag        <-- Cholesky decomposition (LLT routine in Eigen)
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  //   Q  C = R => Q = R C^{-1}
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Want  Ident = Q^dag Q = C^{-dag} R^dag R C^{-1} = C^{-dag} L L^dag C^{-1} = 1_{Nblock x Nblock} 
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Set C = L^{dag}, and then Q^dag Q = ident 
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Checks:
 | 
					 | 
				
			||||||
  // Cdag C = Rdag R ; passes.
 | 
					 | 
				
			||||||
  // QdagQ  = 1      ; passes
 | 
					 | 
				
			||||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  void ThinQRfact (Eigen::MatrixXcd &m_zz,
 | 
					 | 
				
			||||||
		   Eigen::MatrixXcd &C,
 | 
					 | 
				
			||||||
		   Eigen::MatrixXcd &Cinv,
 | 
					 | 
				
			||||||
		   std::vector<Field> &  Q,
 | 
					 | 
				
			||||||
		   std::vector<Field> & MQ,
 | 
					 | 
				
			||||||
		   const std::vector<Field> & Z,
 | 
					 | 
				
			||||||
		   const std::vector<Field> & MZ)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    RealD t0=usecond();
 | 
					 | 
				
			||||||
    _BlockCGLinalg.InnerProductMatrix(m_zz,MZ,Z);
 | 
					 | 
				
			||||||
    RealD t1=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    m_zz = 0.5*(m_zz+m_zz.adjoint());
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd L    = m_zz.llt().matrixL(); 
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    C    = L.adjoint();
 | 
					 | 
				
			||||||
    Cinv = C.inverse();
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    RealD t3=usecond();
 | 
					 | 
				
			||||||
    _BlockCGLinalg.MulMatrix( Q,Cinv,Z);
 | 
					 | 
				
			||||||
    _BlockCGLinalg.MulMatrix(MQ,Cinv,MZ);
 | 
					 | 
				
			||||||
    RealD t4=usecond();
 | 
					 | 
				
			||||||
    std::cout << " ThinQRfact IP    :"<< t1-t0<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << " ThinQRfact Eigen :"<< t3-t1<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << " ThinQRfact MulMat:"<< t4-t3<<" us"<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void SolvePrecBlockCG (std::vector<Field> &src, std::vector<Field> &X)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: mrhs fPrecBlockcg starting"<<std::endl;
 | 
					 | 
				
			||||||
    src[0].Grid()->Barrier();
 | 
					 | 
				
			||||||
    int nrhs = src.size();
 | 
					 | 
				
			||||||
    //    std::vector<RealD> f(nrhs);
 | 
					 | 
				
			||||||
    //    std::vector<RealD> rtzp(nrhs);
 | 
					 | 
				
			||||||
    //    std::vector<RealD> rtz(nrhs);
 | 
					 | 
				
			||||||
    //    std::vector<RealD> a(nrhs);
 | 
					 | 
				
			||||||
    //    std::vector<RealD> d(nrhs);
 | 
					 | 
				
			||||||
    //    std::vector<RealD> b(nrhs);
 | 
					 | 
				
			||||||
    //    std::vector<RealD> rptzp(nrhs);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////
 | 
					 | 
				
			||||||
    //Initial residual computation & set up
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////
 | 
					 | 
				
			||||||
    std::vector<RealD> ssq(nrhs);
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
      ssq[rhs]=norm2(src[rhs]); assert(ssq[rhs]!=0.0);
 | 
					 | 
				
			||||||
    }      
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ///////////////////////////
 | 
					 | 
				
			||||||
    // Fields -- eliminate duplicates between fPcg and block cg
 | 
					 | 
				
			||||||
    ///////////////////////////
 | 
					 | 
				
			||||||
    std::vector<Field> Mtmp(nrhs,grid);
 | 
					 | 
				
			||||||
    std::vector<Field> tmp(nrhs,grid);
 | 
					 | 
				
			||||||
    std::vector<Field>   Z(nrhs,grid); // Rename Z to R
 | 
					 | 
				
			||||||
    std::vector<Field>  MZ(nrhs,grid); // Rename MZ to Z
 | 
					 | 
				
			||||||
    std::vector<Field>   Q(nrhs,grid); // 
 | 
					 | 
				
			||||||
    std::vector<Field>  MQ(nrhs,grid); // Rename to P
 | 
					 | 
				
			||||||
    std::vector<Field>   D(nrhs,grid);
 | 
					 | 
				
			||||||
    std::vector<Field>  AD(nrhs,grid);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    /************************************************************************
 | 
					 | 
				
			||||||
     * Preconditioned Block conjugate gradient rQ
 | 
					 | 
				
			||||||
     * Generalise Sebastien Birk Thesis, after Dubrulle 2001.
 | 
					 | 
				
			||||||
     * Introduce preconditioning following Saad Ch9
 | 
					 | 
				
			||||||
     ************************************************************************
 | 
					 | 
				
			||||||
     * Dimensions:
 | 
					 | 
				
			||||||
     *
 | 
					 | 
				
			||||||
     *   X,B etc... ==(Nferm x nrhs)
 | 
					 | 
				
			||||||
     *  Matrix A==(Nferm x Nferm)
 | 
					 | 
				
			||||||
     *  
 | 
					 | 
				
			||||||
     * Nferm = Nspin x Ncolour x Ncomplex x Nlattice_site
 | 
					 | 
				
			||||||
     * QC => Thin QR factorisation (google it)
 | 
					 | 
				
			||||||
     *
 | 
					 | 
				
			||||||
     * R = B-AX
 | 
					 | 
				
			||||||
     * Z = Mi R
 | 
					 | 
				
			||||||
     * QC = Z
 | 
					 | 
				
			||||||
     * D = Q 
 | 
					 | 
				
			||||||
     * for k: 
 | 
					 | 
				
			||||||
     *   R  = AD
 | 
					 | 
				
			||||||
     *   Z  = Mi R
 | 
					 | 
				
			||||||
     *   M  = [D^dag R]^{-1}
 | 
					 | 
				
			||||||
     *   X  = X + D M C
 | 
					 | 
				
			||||||
     *   QS = Q - Z.M
 | 
					 | 
				
			||||||
     *   D  = Q + D S^dag
 | 
					 | 
				
			||||||
     *   C  = S C
 | 
					 | 
				
			||||||
     */
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd m_DZ     = Eigen::MatrixXcd::Identity(nrhs,nrhs);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd m_M      = Eigen::MatrixXcd::Identity(nrhs,nrhs);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd m_zz     = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd m_rr     = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd m_C      = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd m_Cinv   = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd m_S      = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd m_Sinv   = Eigen::MatrixXcd::Zero(nrhs,nrhs);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd m_tmp    = Eigen::MatrixXcd::Identity(nrhs,nrhs);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd m_tmp1   = Eigen::MatrixXcd::Identity(nrhs,nrhs);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridStopWatch HDCGTimer;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //////////////////////////
 | 
					 | 
				
			||||||
    // x0 = Vstart -- possibly modify guess
 | 
					 | 
				
			||||||
    //////////////////////////
 | 
					 | 
				
			||||||
    Vstart(X,src);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //////////////////////////
 | 
					 | 
				
			||||||
    // R = B-AX
 | 
					 | 
				
			||||||
    //////////////////////////
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
      // r0 = b -A x0
 | 
					 | 
				
			||||||
      _FineLinop.HermOp(X[rhs],tmp[rhs]);
 | 
					 | 
				
			||||||
      axpy (Z[rhs], -1.0,tmp[rhs], src[rhs]);    // Computes R=Z=src - A X0
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //////////////////////////////////
 | 
					 | 
				
			||||||
    // Compute MZ = M1 Z = M1 B - M1 A x0
 | 
					 | 
				
			||||||
    //////////////////////////////////
 | 
					 | 
				
			||||||
    PcgM1(Z,MZ);  
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //////////////////////////////////
 | 
					 | 
				
			||||||
    // QC = Z
 | 
					 | 
				
			||||||
    //////////////////////////////////
 | 
					 | 
				
			||||||
    ThinQRfact (m_zz, m_C, m_Cinv, Q, MQ, Z, MZ);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //////////////////////////////////
 | 
					 | 
				
			||||||
    // D=MQ
 | 
					 | 
				
			||||||
    //////////////////////////////////
 | 
					 | 
				
			||||||
    for(int b=0;b<nrhs;b++) D[b]=MQ[b]; // LLT rotation of the MZ basis of search dirs
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"PrecBlockCGrQ vec computed initial residual and QR fact " <<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ProjectTimer.Reset();
 | 
					 | 
				
			||||||
    PromoteTimer.Reset();
 | 
					 | 
				
			||||||
    DeflateTimer.Reset();
 | 
					 | 
				
			||||||
    CoarseTimer.Reset();
 | 
					 | 
				
			||||||
    SmoothTimer.Reset();
 | 
					 | 
				
			||||||
    FineTimer.Reset();
 | 
					 | 
				
			||||||
    InsertTimer.Reset();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridStopWatch M1Timer;
 | 
					 | 
				
			||||||
    GridStopWatch M2Timer;
 | 
					 | 
				
			||||||
    GridStopWatch M3Timer;
 | 
					 | 
				
			||||||
    GridStopWatch LinalgTimer;
 | 
					 | 
				
			||||||
    GridStopWatch InnerProdTimer;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    HDCGTimer.Start();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<RealD> rn(nrhs);
 | 
					 | 
				
			||||||
    for (int k=0;k<=MaxIterations;k++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      ////////////////////
 | 
					 | 
				
			||||||
      // Z  = AD
 | 
					 | 
				
			||||||
      ////////////////////
 | 
					 | 
				
			||||||
      M3Timer.Start();
 | 
					 | 
				
			||||||
      for(int b=0;b<nrhs;b++) _FineLinop.HermOp(D[b], Z[b]);      
 | 
					 | 
				
			||||||
      M3Timer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      ////////////////////
 | 
					 | 
				
			||||||
      // MZ  = M1 Z <==== the Multigrid preconditioner
 | 
					 | 
				
			||||||
      ////////////////////
 | 
					 | 
				
			||||||
      M1Timer.Start();
 | 
					 | 
				
			||||||
      PcgM1(Z,MZ);
 | 
					 | 
				
			||||||
      M1Timer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      FineTimer.Start();
 | 
					 | 
				
			||||||
      ////////////////////
 | 
					 | 
				
			||||||
      // M  = [D^dag Z]^{-1} = (<Ddag MZ>_M)^{-1} inner prod, generalising Saad derivation of Precon CG
 | 
					 | 
				
			||||||
      ////////////////////
 | 
					 | 
				
			||||||
      InnerProdTimer.Start();
 | 
					 | 
				
			||||||
      _BlockCGLinalg.InnerProductMatrix(m_DZ,D,Z);
 | 
					 | 
				
			||||||
      InnerProdTimer.Stop();
 | 
					 | 
				
			||||||
      m_M       = m_DZ.inverse();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      ///////////////////////////
 | 
					 | 
				
			||||||
      // X  = X + D MC
 | 
					 | 
				
			||||||
      ///////////////////////////
 | 
					 | 
				
			||||||
      m_tmp     = m_M * m_C;
 | 
					 | 
				
			||||||
      LinalgTimer.Start();
 | 
					 | 
				
			||||||
      _BlockCGLinalg.MaddMatrix(X,m_tmp, D,X);     // D are the search directions and X takes the updates 
 | 
					 | 
				
			||||||
      LinalgTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      ///////////////////////////
 | 
					 | 
				
			||||||
      // QS = Q - M Z
 | 
					 | 
				
			||||||
      // (MQ) S = MQ - M (M1Z)
 | 
					 | 
				
			||||||
      ///////////////////////////
 | 
					 | 
				
			||||||
      LinalgTimer.Start();
 | 
					 | 
				
			||||||
      _BlockCGLinalg.MaddMatrix(tmp ,m_M, Z, Q,-1.0);
 | 
					 | 
				
			||||||
      _BlockCGLinalg.MaddMatrix(Mtmp,m_M,MZ,MQ,-1.0);
 | 
					 | 
				
			||||||
      ThinQRfact (m_zz, m_S, m_Sinv, Q, MQ, tmp, Mtmp);
 | 
					 | 
				
			||||||
      LinalgTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      ////////////////////////////
 | 
					 | 
				
			||||||
      // D  = MQ + D S^dag
 | 
					 | 
				
			||||||
      ////////////////////////////
 | 
					 | 
				
			||||||
      m_tmp = m_S.adjoint();
 | 
					 | 
				
			||||||
      LinalgTimer.Start();
 | 
					 | 
				
			||||||
      _BlockCGLinalg.MaddMatrix(D,m_tmp,D,MQ);
 | 
					 | 
				
			||||||
      LinalgTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      ////////////////////////////
 | 
					 | 
				
			||||||
      // C  = S C
 | 
					 | 
				
			||||||
      ////////////////////////////
 | 
					 | 
				
			||||||
      m_C = m_S*m_C;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      ////////////////////////////
 | 
					 | 
				
			||||||
      // convergence monitor
 | 
					 | 
				
			||||||
      ////////////////////////////
 | 
					 | 
				
			||||||
      m_rr = m_C.adjoint() * m_C;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      FineTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      RealD max_resid=0;
 | 
					 | 
				
			||||||
      RealD rrsum=0;
 | 
					 | 
				
			||||||
      RealD sssum=0;
 | 
					 | 
				
			||||||
      RealD rr;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int b=0;b<nrhs;b++) {
 | 
					 | 
				
			||||||
	rrsum+=real(m_rr(b,b));
 | 
					 | 
				
			||||||
	sssum+=ssq[b];
 | 
					 | 
				
			||||||
	rr = real(m_rr(b,b))/ssq[b];
 | 
					 | 
				
			||||||
	if ( rr > max_resid ) max_resid = rr;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage <<
 | 
					 | 
				
			||||||
	  "\t Prec BlockCGrQ Iteration "<<k<<" ave resid "<< std::sqrt(rrsum/sssum) << " max "<< std::sqrt(max_resid) <<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      if ( max_resid < Tolerance*Tolerance ) { 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	HDCGTimer.Stop();
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Linalg  "<<LinalgTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : fine H  "<<M3Timer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : prec M1 "<<M1Timer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"**** M1 breakdown:"<<std::endl;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Project "<<ProjectTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Promote "<<PromoteTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Deflate "<<DeflateTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Coarse  "<<CoarseTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Fine    "<<FineTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Smooth  "<<SmoothTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs PrecBlockCGrQ : Insert  "<<InsertTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  _FineLinop.HermOp(X[rhs],tmp[rhs]);			  
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  Field mytmp(grid);
 | 
					 | 
				
			||||||
	  axpy(mytmp,-1.0,src[rhs],tmp[rhs]);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
	  RealD  xnorm   = sqrt(norm2(X[rhs]));
 | 
					 | 
				
			||||||
	  RealD  srcnorm = sqrt(norm2(src[rhs]));
 | 
					 | 
				
			||||||
	  RealD  tmpnorm = sqrt(norm2(mytmp));
 | 
					 | 
				
			||||||
	  RealD  true_residual = tmpnorm/srcnorm;
 | 
					 | 
				
			||||||
	  std::cout<<GridLogMessage
 | 
					 | 
				
			||||||
		   <<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
 | 
					 | 
				
			||||||
		   <<" solution "<<xnorm
 | 
					 | 
				
			||||||
		   <<" source "<<srcnorm
 | 
					 | 
				
			||||||
		   <<std::endl;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	return;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    HDCGTimer.Stop();
 | 
					 | 
				
			||||||
    std::cout<<GridLogMessage<<"HDCG: PrecBlockCGrQ not converged "<<HDCGTimer.Elapsed()<<std::endl;
 | 
					 | 
				
			||||||
    assert(0);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void SolveSingleSystem (std::vector<Field> &src, std::vector<Field> &x)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl;
 | 
					 | 
				
			||||||
    src[0].Grid()->Barrier();
 | 
					 | 
				
			||||||
    int nrhs = src.size();
 | 
					 | 
				
			||||||
    std::vector<RealD> f(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> rtzp(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> rtz(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> a(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> d(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> b(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> rptzp(nrhs);
 | 
					 | 
				
			||||||
    /////////////////////////////
 | 
					 | 
				
			||||||
    // Set up history vectors
 | 
					 | 
				
			||||||
    /////////////////////////////
 | 
					 | 
				
			||||||
    int mmax = 3;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<std::vector<Field> > p(nrhs);   for(int r=0;r<nrhs;r++)  p[r].resize(mmax,grid);
 | 
					 | 
				
			||||||
    std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid);
 | 
					 | 
				
			||||||
    std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<Field> z(nrhs,grid);
 | 
					 | 
				
			||||||
    std::vector<Field>  mp (nrhs,grid);
 | 
					 | 
				
			||||||
    std::vector<Field>  r  (nrhs,grid);
 | 
					 | 
				
			||||||
    std::vector<Field>  mu (nrhs,grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //Initial residual computation & set up
 | 
					 | 
				
			||||||
    std::vector<RealD> src_nrm(nrhs);
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
					 | 
				
			||||||
      src_nrm[rhs]=norm2(src[rhs]);
 | 
					 | 
				
			||||||
      assert(src_nrm[rhs]!=0.0);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    std::vector<RealD> tn(nrhs);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridStopWatch HDCGTimer;
 | 
					 | 
				
			||||||
    //////////////////////////
 | 
					 | 
				
			||||||
    // x0 = Vstart -- possibly modify guess
 | 
					 | 
				
			||||||
    //////////////////////////
 | 
					 | 
				
			||||||
    Vstart(x,src);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
      // r0 = b -A x0
 | 
					 | 
				
			||||||
      _FineLinop.HermOp(x[rhs],mmp[rhs][0]);
 | 
					 | 
				
			||||||
      axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]);    // Recomputes r=src-Ax0
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //////////////////////////////////
 | 
					 | 
				
			||||||
    // Compute z = M1 x
 | 
					 | 
				
			||||||
    //////////////////////////////////
 | 
					 | 
				
			||||||
    // This needs a multiRHS version for acceleration
 | 
					 | 
				
			||||||
    PcgM1(r,z);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<RealD> ssq(nrhs);
 | 
					 | 
				
			||||||
    std::vector<RealD> rsq(nrhs);
 | 
					 | 
				
			||||||
    std::vector<Field> pp(nrhs,grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
      rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
 | 
					 | 
				
			||||||
      p[rhs][0]=z[rhs];
 | 
					 | 
				
			||||||
      ssq[rhs]=norm2(src[rhs]);
 | 
					 | 
				
			||||||
      rsq[rhs]=  ssq[rhs]*Tolerance*Tolerance;
 | 
					 | 
				
			||||||
      //      std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n";
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ProjectTimer.Reset();
 | 
					 | 
				
			||||||
    PromoteTimer.Reset();
 | 
					 | 
				
			||||||
    DeflateTimer.Reset();
 | 
					 | 
				
			||||||
    CoarseTimer.Reset();
 | 
					 | 
				
			||||||
    SmoothTimer.Reset();
 | 
					 | 
				
			||||||
    FineTimer.Reset();
 | 
					 | 
				
			||||||
    InsertTimer.Reset();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridStopWatch M1Timer;
 | 
					 | 
				
			||||||
    GridStopWatch M2Timer;
 | 
					 | 
				
			||||||
    GridStopWatch M3Timer;
 | 
					 | 
				
			||||||
    GridStopWatch LinalgTimer;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    HDCGTimer.Start();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<RealD> rn(nrhs);
 | 
					 | 
				
			||||||
    for (int k=0;k<=MaxIterations;k++){
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
      int peri_k  = k % mmax;
 | 
					 | 
				
			||||||
      int peri_kp = (k+1) % mmax;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
	rtz[rhs]=rtzp[rhs];
 | 
					 | 
				
			||||||
	M3Timer.Start();
 | 
					 | 
				
			||||||
	d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]);
 | 
					 | 
				
			||||||
	M3Timer.Stop();
 | 
					 | 
				
			||||||
	a[rhs] = rtz[rhs]/d[rhs];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	LinalgTimer.Start();
 | 
					 | 
				
			||||||
	// Memorise this
 | 
					 | 
				
			||||||
	pAp[rhs][peri_k] = d[rhs];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]);
 | 
					 | 
				
			||||||
	rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]);
 | 
					 | 
				
			||||||
	LinalgTimer.Stop();
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Compute z = M x (for *all* RHS)
 | 
					 | 
				
			||||||
      M1Timer.Start();
 | 
					 | 
				
			||||||
      PcgM1(r,z);
 | 
					 | 
				
			||||||
      M1Timer.Stop();
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      RealD max_rn=0.0;
 | 
					 | 
				
			||||||
      LinalgTimer.Start();
 | 
					 | 
				
			||||||
      for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	//	std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n";
 | 
					 | 
				
			||||||
	mu[rhs]=z[rhs];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	p[rhs][peri_kp]=mu[rhs];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	// Standard search direction p == z + b p 
 | 
					 | 
				
			||||||
	b[rhs] = (rtzp[rhs])/rtz[rhs];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	int northog = (k>mmax-1)?(mmax-1):k;        // This is the fCG-Tr(mmax-1) algorithm
 | 
					 | 
				
			||||||
	for(int back=0; back < northog; back++){
 | 
					 | 
				
			||||||
	  int peri_back = (k-back)%mmax;
 | 
					 | 
				
			||||||
	  RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp]));
 | 
					 | 
				
			||||||
	  RealD beta = -pbApk/pAp[rhs][peri_back];
 | 
					 | 
				
			||||||
	  axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]);
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	RealD rrn=sqrt(rn[rhs]/ssq[rhs]);
 | 
					 | 
				
			||||||
	RealD rtn=sqrt(rtz[rhs]/ssq[rhs]);
 | 
					 | 
				
			||||||
	RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]);
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG:fPcg rhs "<<rhs<<" k= "<<k<<" residual = "<<rrn<<"\n";
 | 
					 | 
				
			||||||
	if ( rrn > max_rn ) max_rn = rrn;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      LinalgTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Stopping condition based on worst case
 | 
					 | 
				
			||||||
      if ( max_rn <= Tolerance ) { 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	HDCGTimer.Stop();
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Linalg  "<<LinalgTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : fine M3 "<<M3Timer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : prec M1 "<<M1Timer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"**** M1 breakdown:"<<std::endl;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Project "<<ProjectTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Promote "<<PromoteTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Deflate "<<DeflateTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Coarse  "<<CoarseTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Fine    "<<FineTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Smooth  "<<SmoothTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Insert  "<<InsertTimer.Elapsed()<<std::endl;;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
	  _FineLinop.HermOp(x[rhs],mmp[rhs][0]);			  
 | 
					 | 
				
			||||||
	  Field tmp(grid);
 | 
					 | 
				
			||||||
	  axpy(tmp,-1.0,src[rhs],mmp[rhs][0]);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
	  RealD  mmpnorm = sqrt(norm2(mmp[rhs][0]));
 | 
					 | 
				
			||||||
	  RealD  xnorm   = sqrt(norm2(x[rhs]));
 | 
					 | 
				
			||||||
	  RealD  srcnorm = sqrt(norm2(src[rhs]));
 | 
					 | 
				
			||||||
	  RealD  tmpnorm = sqrt(norm2(tmp));
 | 
					 | 
				
			||||||
	  RealD  true_residual = tmpnorm/srcnorm;
 | 
					 | 
				
			||||||
	  std::cout<<GridLogMessage
 | 
					 | 
				
			||||||
		   <<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
 | 
					 | 
				
			||||||
		   <<" solution "<<xnorm
 | 
					 | 
				
			||||||
		   <<" source "<<srcnorm
 | 
					 | 
				
			||||||
		   <<" mmp "<<mmpnorm	  
 | 
					 | 
				
			||||||
		   <<std::endl;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	return;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    HDCGTimer.Stop();
 | 
					 | 
				
			||||||
    std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++){
 | 
					 | 
				
			||||||
      RealD  xnorm   = sqrt(norm2(x[rhs]));
 | 
					 | 
				
			||||||
      RealD  srcnorm = sqrt(norm2(src[rhs]));
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 public:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out) = 0;
 | 
					 | 
				
			||||||
  virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src) = 0;
 | 
					 | 
				
			||||||
  virtual void PcgM2(const Field & in, Field & out) {
 | 
					 | 
				
			||||||
    out=in;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual RealD PcgM3(const Field & p, Field & mmp){
 | 
					 | 
				
			||||||
    RealD dd;
 | 
					 | 
				
			||||||
    _FineLinop.HermOp(p,mmp);
 | 
					 | 
				
			||||||
    ComplexD dot = innerProduct(p,mmp);
 | 
					 | 
				
			||||||
    dd=real(dot);
 | 
					 | 
				
			||||||
    return dd;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class Field, class CoarseField>
 | 
					 | 
				
			||||||
class TwoLevelADEF2mrhs : public TwoLevelCGmrhs<Field>
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  GridBase *coarsegrid;
 | 
					 | 
				
			||||||
  GridBase *coarsegridmrhs;
 | 
					 | 
				
			||||||
  LinearFunction<CoarseField> &_CoarseSolverMrhs;
 | 
					 | 
				
			||||||
  LinearFunction<CoarseField> &_CoarseSolverPreciseMrhs;
 | 
					 | 
				
			||||||
  MultiRHSBlockProject<Field>    &_Projector;
 | 
					 | 
				
			||||||
  MultiRHSDeflation<CoarseField> &_Deflator;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  TwoLevelADEF2mrhs(RealD tol,
 | 
					 | 
				
			||||||
		    Integer maxit,
 | 
					 | 
				
			||||||
		    LinearOperatorBase<Field>    &FineLinop,
 | 
					 | 
				
			||||||
		    LinearFunction<Field>        &Smoother,
 | 
					 | 
				
			||||||
		    LinearFunction<CoarseField>  &CoarseSolverMrhs,
 | 
					 | 
				
			||||||
		    LinearFunction<CoarseField>  &CoarseSolverPreciseMrhs,
 | 
					 | 
				
			||||||
		    MultiRHSBlockProject<Field>    &Projector,
 | 
					 | 
				
			||||||
		    MultiRHSDeflation<CoarseField> &Deflator,
 | 
					 | 
				
			||||||
		    GridBase *_coarsemrhsgrid) :
 | 
					 | 
				
			||||||
    TwoLevelCGmrhs<Field>(tol, maxit,FineLinop,Smoother,Projector.fine_grid),
 | 
					 | 
				
			||||||
    _CoarseSolverMrhs(CoarseSolverMrhs),
 | 
					 | 
				
			||||||
    _CoarseSolverPreciseMrhs(CoarseSolverPreciseMrhs),
 | 
					 | 
				
			||||||
    _Projector(Projector),
 | 
					 | 
				
			||||||
    _Deflator(Deflator)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    coarsegrid = Projector.coarse_grid;
 | 
					 | 
				
			||||||
    coarsegridmrhs = _coarsemrhsgrid;// Thi could be in projector
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  // Override Vstart
 | 
					 | 
				
			||||||
  virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int nrhs=x.size();
 | 
					 | 
				
			||||||
    ///////////////////////////////////
 | 
					 | 
				
			||||||
    // Choose x_0 such that 
 | 
					 | 
				
			||||||
    // x_0 = guess +  (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
 | 
					 | 
				
			||||||
    //                               = [1 - Ass_inv A] Guess + Assinv src
 | 
					 | 
				
			||||||
    //                               = P^T guess + Assinv src 
 | 
					 | 
				
			||||||
    //                               = Vstart  [Tang notation]
 | 
					 | 
				
			||||||
    // This gives:
 | 
					 | 
				
			||||||
    // W^T (src - A x_0) = src_s - A guess_s - r_s
 | 
					 | 
				
			||||||
    //                   = src_s - (A guess)_s - src_s  + (A guess)_s 
 | 
					 | 
				
			||||||
    //                   = 0 
 | 
					 | 
				
			||||||
    ///////////////////////////////////
 | 
					 | 
				
			||||||
    std::vector<CoarseField> PleftProj(nrhs,this->coarsegrid);
 | 
					 | 
				
			||||||
    std::vector<CoarseField> PleftMss_proj(nrhs,this->coarsegrid);
 | 
					 | 
				
			||||||
    CoarseField PleftProjMrhs(this->coarsegridmrhs);
 | 
					 | 
				
			||||||
    CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    this->_Projector.blockProject(src,PleftProj);
 | 
					 | 
				
			||||||
    this->_Deflator.DeflateSources(PleftProj,PleftMss_proj);
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
					 | 
				
			||||||
      InsertSliceFast(PleftProj[rhs],PleftProjMrhs,rhs,0);
 | 
					 | 
				
			||||||
      InsertSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); // the guess
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    this->_CoarseSolverPreciseMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} r_s
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
					 | 
				
			||||||
      ExtractSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    this->_Projector.blockPromote(x,PleftMss_proj);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int nrhs=in.size();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
 | 
					 | 
				
			||||||
    std::vector<Field> tmp(nrhs,this->grid);
 | 
					 | 
				
			||||||
    std::vector<Field> Min(nrhs,this->grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<CoarseField> PleftProj(nrhs,this->coarsegrid);
 | 
					 | 
				
			||||||
    std::vector<CoarseField> PleftMss_proj(nrhs,this->coarsegrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    CoarseField PleftProjMrhs(this->coarsegridmrhs);
 | 
					 | 
				
			||||||
    CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //    this->rrr=in[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#undef SMOOTHER_BLOCK_SOLVE
 | 
					 | 
				
			||||||
#if SMOOTHER_BLOCK_SOLVE
 | 
					 | 
				
			||||||
    this->SmoothTimer.Start();
 | 
					 | 
				
			||||||
    this->_Smoother(in,Min);
 | 
					 | 
				
			||||||
    this->SmoothTimer.Stop();
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
					 | 
				
			||||||
      this->SmoothTimer.Start();
 | 
					 | 
				
			||||||
      this->_Smoother(in[rhs],Min[rhs]);
 | 
					 | 
				
			||||||
      this->SmoothTimer.Stop();
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
    //    this->sss=Min[0];
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      this->FineTimer.Start();
 | 
					 | 
				
			||||||
      this->_FineLinop.HermOp(Min[rhs],out[rhs]);
 | 
					 | 
				
			||||||
      axpy(tmp[rhs],-1.0,out[rhs],in[rhs]);          // resid  = in - A Min
 | 
					 | 
				
			||||||
      this->FineTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    this->ProjectTimer.Start();
 | 
					 | 
				
			||||||
    this->_Projector.blockProject(tmp,PleftProj);
 | 
					 | 
				
			||||||
    this->ProjectTimer.Stop();
 | 
					 | 
				
			||||||
    this->DeflateTimer.Start();
 | 
					 | 
				
			||||||
    this->_Deflator.DeflateSources(PleftProj,PleftMss_proj);
 | 
					 | 
				
			||||||
    this->DeflateTimer.Stop();
 | 
					 | 
				
			||||||
    this->InsertTimer.Start();
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
					 | 
				
			||||||
      InsertSliceFast(PleftProj[rhs],PleftProjMrhs,rhs,0);
 | 
					 | 
				
			||||||
      InsertSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); // the guess
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    this->InsertTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    this->CoarseTimer.Start();
 | 
					 | 
				
			||||||
    this->_CoarseSolverMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} [in - A Min]_s
 | 
					 | 
				
			||||||
    this->CoarseTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    this->InsertTimer.Start();
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
					 | 
				
			||||||
      ExtractSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    this->InsertTimer.Stop();
 | 
					 | 
				
			||||||
    this->PromoteTimer.Start();
 | 
					 | 
				
			||||||
    this->_Projector.blockPromote(tmp,PleftMss_proj);// tmp= Q[in - A Min]  
 | 
					 | 
				
			||||||
    this->PromoteTimer.Stop();
 | 
					 | 
				
			||||||
    this->FineTimer.Start();
 | 
					 | 
				
			||||||
    //    this->qqq=tmp[0];
 | 
					 | 
				
			||||||
    for(int rhs=0;rhs<nrhs;rhs++) {
 | 
					 | 
				
			||||||
      axpy(out[rhs],1.0,Min[rhs],tmp[rhs]); // Min+tmp
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    //    this->zzz=out[0];
 | 
					 | 
				
			||||||
    this->FineTimer.Stop();
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
@@ -37,7 +37,6 @@ template<class FieldD, class FieldF, typename std::enable_if< getPrecision<Field
 | 
				
			|||||||
class MixedPrecisionBiCGSTAB : public LinearFunction<FieldD> 
 | 
					class MixedPrecisionBiCGSTAB : public LinearFunction<FieldD> 
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  public:                                                
 | 
					  public:                                                
 | 
				
			||||||
    using LinearFunction<FieldD>::operator();
 | 
					 | 
				
			||||||
    RealD   Tolerance;
 | 
					    RealD   Tolerance;
 | 
				
			||||||
    RealD   InnerTolerance; // Initial tolerance for inner CG. Defaults to Tolerance but can be changed
 | 
					    RealD   InnerTolerance; // Initial tolerance for inner CG. Defaults to Tolerance but can be changed
 | 
				
			||||||
    Integer MaxInnerIterations;
 | 
					    Integer MaxInnerIterations;
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -31,58 +31,6 @@ directory
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					NAMESPACE_BEGIN(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class Field>
 | 
					 | 
				
			||||||
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){
 | 
					 | 
				
			||||||
  typedef typename Field::scalar_type scomplex;
 | 
					 | 
				
			||||||
  int Nblock = X.size();
 | 
					 | 
				
			||||||
  for(int b=0;b<Nblock;b++){
 | 
					 | 
				
			||||||
  for(int bp=0;bp<Nblock;bp++) {
 | 
					 | 
				
			||||||
    m(b,bp) = innerProduct(X[b],Y[bp]);  
 | 
					 | 
				
			||||||
  }}
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
template<class Field>
 | 
					 | 
				
			||||||
void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){
 | 
					 | 
				
			||||||
  // Should make this cache friendly with site outermost, parallel_for
 | 
					 | 
				
			||||||
  // Deal with case AP aliases with either Y or X
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  //Could pack "X" and "AP" into a Nblock x Volume dense array.
 | 
					 | 
				
			||||||
  // AP(Nrhs x vol) = Y(Nrhs x vol) + scale * m(nrhs x nrhs) * X(nrhs*vol)
 | 
					 | 
				
			||||||
  typedef typename Field::scalar_type scomplex;
 | 
					 | 
				
			||||||
  int Nblock = AP.size();
 | 
					 | 
				
			||||||
  std::vector<Field> tmp(Nblock,X[0]);
 | 
					 | 
				
			||||||
  for(int b=0;b<Nblock;b++){
 | 
					 | 
				
			||||||
    tmp[b]   = Y[b];
 | 
					 | 
				
			||||||
    for(int bp=0;bp<Nblock;bp++) {
 | 
					 | 
				
			||||||
      tmp[b] = tmp[b] +scomplex(scale*m(bp,b))*X[bp]; 
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  for(int b=0;b<Nblock;b++){
 | 
					 | 
				
			||||||
    AP[b] = tmp[b];
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
template<class Field>
 | 
					 | 
				
			||||||
void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){
 | 
					 | 
				
			||||||
  // Should make this cache friendly with site outermost, parallel_for
 | 
					 | 
				
			||||||
  typedef typename Field::scalar_type scomplex;
 | 
					 | 
				
			||||||
  int Nblock = AP.size();
 | 
					 | 
				
			||||||
  for(int b=0;b<Nblock;b++){
 | 
					 | 
				
			||||||
    AP[b] = Zero();
 | 
					 | 
				
			||||||
    for(int bp=0;bp<Nblock;bp++) {
 | 
					 | 
				
			||||||
      AP[b] += scomplex(m(bp,b))*X[bp]; 
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
template<class Field>
 | 
					 | 
				
			||||||
double normv(const std::vector<Field> &P){
 | 
					 | 
				
			||||||
  int Nblock = P.size();
 | 
					 | 
				
			||||||
  double nn = 0.0;
 | 
					 | 
				
			||||||
  for(int b=0;b<Nblock;b++) {
 | 
					 | 
				
			||||||
    nn+=norm2(P[b]);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  return nn;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS, BlockCGVec, BlockCGrQVec };
 | 
					enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS, BlockCGVec, BlockCGrQVec };
 | 
				
			||||||
 | 
					
 | 
				
			||||||
//////////////////////////////////////////////////////////////////////////
 | 
					//////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -139,19 +87,10 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
 | 
				
			|||||||
  sliceInnerProductMatrix(m_rr,R,R,Orthog);
 | 
					  sliceInnerProductMatrix(m_rr,R,R,Orthog);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Force manifest hermitian to avoid rounding related
 | 
					  // Force manifest hermitian to avoid rounding related
 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
  int rank=m_rr.rows();
 | 
					 | 
				
			||||||
  for(int r=0;r<rank;r++){
 | 
					 | 
				
			||||||
  for(int s=0;s<rank;s++){
 | 
					 | 
				
			||||||
    std::cout << "QR m_rr["<<r<<","<<s<<"] "<<m_rr(r,s)<<std::endl;
 | 
					 | 
				
			||||||
  }}
 | 
					 | 
				
			||||||
  */
 | 
					 | 
				
			||||||
  m_rr = 0.5*(m_rr+m_rr.adjoint());
 | 
					  m_rr = 0.5*(m_rr+m_rr.adjoint());
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  Eigen::MatrixXcd L    = m_rr.llt().matrixL(); 
 | 
					  Eigen::MatrixXcd L    = m_rr.llt().matrixL(); 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
//  ComplexD det = L.determinant();
 | 
					 | 
				
			||||||
//  std::cout << " Det m_rr "<<det<<std::endl;
 | 
					 | 
				
			||||||
  C    = L.adjoint();
 | 
					  C    = L.adjoint();
 | 
				
			||||||
  Cinv = C.inverse();
 | 
					  Cinv = C.inverse();
 | 
				
			||||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -171,20 +110,11 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
 | 
				
			|||||||
		 const std::vector<Field> & R)
 | 
							 const std::vector<Field> & R)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  InnerProductMatrix(m_rr,R,R);
 | 
					  InnerProductMatrix(m_rr,R,R);
 | 
				
			||||||
  /*
 | 
					
 | 
				
			||||||
  int rank=m_rr.rows();
 | 
					 | 
				
			||||||
  for(int r=0;r<rank;r++){
 | 
					 | 
				
			||||||
  for(int s=0;s<rank;s++){
 | 
					 | 
				
			||||||
    std::cout << "QRvec m_rr["<<r<<","<<s<<"] "<<m_rr(r,s)<<std::endl;
 | 
					 | 
				
			||||||
  }}
 | 
					 | 
				
			||||||
  */
 | 
					 | 
				
			||||||
  m_rr = 0.5*(m_rr+m_rr.adjoint());
 | 
					  m_rr = 0.5*(m_rr+m_rr.adjoint());
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  Eigen::MatrixXcd L    = m_rr.llt().matrixL(); 
 | 
					  Eigen::MatrixXcd L    = m_rr.llt().matrixL(); 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //  ComplexD det = L.determinant();
 | 
					 | 
				
			||||||
  //  std::cout << " Det m_rr "<<det<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  C    = L.adjoint();
 | 
					  C    = L.adjoint();
 | 
				
			||||||
  Cinv = C.inverse();
 | 
					  Cinv = C.inverse();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -256,7 +186,6 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
 | 
				
			|||||||
  sliceNorm(ssq,B,Orthog);
 | 
					  sliceNorm(ssq,B,Orthog);
 | 
				
			||||||
  RealD sssum=0;
 | 
					  RealD sssum=0;
 | 
				
			||||||
  for(int b=0;b<Nblock;b++) sssum+=ssq[b];
 | 
					  for(int b=0;b<Nblock;b++) sssum+=ssq[b];
 | 
				
			||||||
  for(int b=0;b<Nblock;b++) std::cout << "src["<<b<<"]" << ssq[b] <<std::endl;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  sliceNorm(residuals,B,Orthog);
 | 
					  sliceNorm(residuals,B,Orthog);
 | 
				
			||||||
  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
					  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
				
			||||||
@@ -292,9 +221,6 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
 | 
				
			|||||||
  Linop.HermOp(X, AD);
 | 
					  Linop.HermOp(X, AD);
 | 
				
			||||||
  tmp = B - AD;  
 | 
					  tmp = B - AD;  
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  sliceNorm(residuals,tmp,Orthog);
 | 
					 | 
				
			||||||
  for(int b=0;b<Nblock;b++) std::cout << "res["<<b<<"]" << residuals[b] <<std::endl;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
 | 
					  ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
 | 
				
			||||||
  D=Q;
 | 
					  D=Q;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -310,8 +236,6 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
 | 
				
			|||||||
  GridStopWatch SolverTimer;
 | 
					  GridStopWatch SolverTimer;
 | 
				
			||||||
  SolverTimer.Start();
 | 
					  SolverTimer.Start();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  RealD max_resid=0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int k;
 | 
					  int k;
 | 
				
			||||||
  for (k = 1; k <= MaxIterations; k++) {
 | 
					  for (k = 1; k <= MaxIterations; k++) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -356,7 +280,7 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
 | 
				
			|||||||
     */
 | 
					     */
 | 
				
			||||||
    m_rr = m_C.adjoint() * m_C;
 | 
					    m_rr = m_C.adjoint() * m_C;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    max_resid=0;
 | 
					    RealD max_resid=0;
 | 
				
			||||||
    RealD rrsum=0;
 | 
					    RealD rrsum=0;
 | 
				
			||||||
    RealD rr;
 | 
					    RealD rr;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -398,9 +322,7 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					  std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge" << std::endl;
 | 
				
			||||||
  std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge "<<k<<" / "<<MaxIterations
 | 
					 | 
				
			||||||
	    <<" residual "<< std::sqrt(max_resid)<< std::endl;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  if (ErrorOnNoConverge) assert(0);
 | 
					  if (ErrorOnNoConverge) assert(0);
 | 
				
			||||||
  IterationsToComplete = k;
 | 
					  IterationsToComplete = k;
 | 
				
			||||||
@@ -544,6 +466,43 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &
 | 
				
			|||||||
  IterationsToComplete = k;
 | 
					  IterationsToComplete = k;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){
 | 
				
			||||||
 | 
					  for(int b=0;b<Nblock;b++){
 | 
				
			||||||
 | 
					  for(int bp=0;bp<Nblock;bp++) {
 | 
				
			||||||
 | 
					    m(b,bp) = innerProduct(X[b],Y[bp]);  
 | 
				
			||||||
 | 
					  }}
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){
 | 
				
			||||||
 | 
					  // Should make this cache friendly with site outermost, parallel_for
 | 
				
			||||||
 | 
					  // Deal with case AP aliases with either Y or X
 | 
				
			||||||
 | 
					  std::vector<Field> tmp(Nblock,X[0]);
 | 
				
			||||||
 | 
					  for(int b=0;b<Nblock;b++){
 | 
				
			||||||
 | 
					    tmp[b]   = Y[b];
 | 
				
			||||||
 | 
					    for(int bp=0;bp<Nblock;bp++) {
 | 
				
			||||||
 | 
					      tmp[b] = tmp[b] + scomplex(scale*m(bp,b))*X[bp]; 
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  for(int b=0;b<Nblock;b++){
 | 
				
			||||||
 | 
					    AP[b] = tmp[b];
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){
 | 
				
			||||||
 | 
					  // Should make this cache friendly with site outermost, parallel_for
 | 
				
			||||||
 | 
					  for(int b=0;b<Nblock;b++){
 | 
				
			||||||
 | 
					    AP[b] = Zero();
 | 
				
			||||||
 | 
					    for(int bp=0;bp<Nblock;bp++) {
 | 
				
			||||||
 | 
					      AP[b] += scomplex(m(bp,b))*X[bp]; 
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					double normv(const std::vector<Field> &P){
 | 
				
			||||||
 | 
					  double nn = 0.0;
 | 
				
			||||||
 | 
					  for(int b=0;b<Nblock;b++) {
 | 
				
			||||||
 | 
					    nn+=norm2(P[b]);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  return nn;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
////////////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
// BlockCGrQvec implementation:
 | 
					// BlockCGrQvec implementation:
 | 
				
			||||||
//--------------------------
 | 
					//--------------------------
 | 
				
			||||||
@@ -590,7 +549,6 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  RealD sssum=0;
 | 
					  RealD sssum=0;
 | 
				
			||||||
  for(int b=0;b<Nblock;b++){ ssq[b] = norm2(B[b]);}
 | 
					  for(int b=0;b<Nblock;b++){ ssq[b] = norm2(B[b]);}
 | 
				
			||||||
  for(int b=0;b<Nblock;b++){ std::cout << "ssq["<<b<<"] "<<ssq[b]<<std::endl;}
 | 
					 | 
				
			||||||
  for(int b=0;b<Nblock;b++) sssum+=ssq[b];
 | 
					  for(int b=0;b<Nblock;b++) sssum+=ssq[b];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  for(int b=0;b<Nblock;b++){ residuals[b] = norm2(B[b]);}
 | 
					  for(int b=0;b<Nblock;b++){ residuals[b] = norm2(B[b]);}
 | 
				
			||||||
@@ -627,7 +585,6 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
 | 
				
			|||||||
  for(int b=0;b<Nblock;b++) {
 | 
					  for(int b=0;b<Nblock;b++) {
 | 
				
			||||||
    Linop.HermOp(X[b], AD[b]);
 | 
					    Linop.HermOp(X[b], AD[b]);
 | 
				
			||||||
    tmp[b] = B[b] - AD[b];  
 | 
					    tmp[b] = B[b] - AD[b];  
 | 
				
			||||||
    std::cout << "r0["<<b<<"] "<<norm2(tmp[b])<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
 | 
					  ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -38,7 +38,6 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
// single input vec, single output vec.
 | 
					// single input vec, single output vec.
 | 
				
			||||||
/////////////////////////////////////////////////////////////
 | 
					/////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
template <class Field>
 | 
					template <class Field>
 | 
				
			||||||
class ConjugateGradient : public OperatorFunction<Field> {
 | 
					class ConjugateGradient : public OperatorFunction<Field> {
 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
@@ -55,26 +54,10 @@ public:
 | 
				
			|||||||
  ConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
 | 
					  ConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
 | 
				
			||||||
    : Tolerance(tol),
 | 
					    : Tolerance(tol),
 | 
				
			||||||
      MaxIterations(maxit),
 | 
					      MaxIterations(maxit),
 | 
				
			||||||
      ErrorOnNoConverge(err_on_no_conv)
 | 
					      ErrorOnNoConverge(err_on_no_conv){};
 | 
				
			||||||
  {};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void LogIteration(int k,RealD a,RealD b){
 | 
					 | 
				
			||||||
    //    std::cout << "ConjugageGradient::LogIteration() "<<std::endl;
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  virtual void LogBegin(void){
 | 
					 | 
				
			||||||
    std::cout << "ConjugageGradient::LogBegin() "<<std::endl;
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
 | 
					  void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      this->LogBegin();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      GRID_TRACE("ConjugateGradient");
 | 
					 | 
				
			||||||
    GridStopWatch PreambleTimer;
 | 
					 | 
				
			||||||
    GridStopWatch ConstructTimer;
 | 
					 | 
				
			||||||
    GridStopWatch NormTimer;
 | 
					 | 
				
			||||||
    GridStopWatch AssignTimer;
 | 
					 | 
				
			||||||
    PreambleTimer.Start();
 | 
					 | 
				
			||||||
    psi.Checkerboard() = src.Checkerboard();
 | 
					    psi.Checkerboard() = src.Checkerboard();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    conformable(psi, src);
 | 
					    conformable(psi, src);
 | 
				
			||||||
@@ -82,32 +65,22 @@ public:
 | 
				
			|||||||
    RealD cp, c, a, d, b, ssq, qq;
 | 
					    RealD cp, c, a, d, b, ssq, qq;
 | 
				
			||||||
    //RealD b_pred;
 | 
					    //RealD b_pred;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // Was doing copies
 | 
					    Field p(src);
 | 
				
			||||||
    ConstructTimer.Start();
 | 
					    Field mmp(src);
 | 
				
			||||||
    Field p  (src.Grid());
 | 
					    Field r(src);
 | 
				
			||||||
    Field mmp(src.Grid());
 | 
					 | 
				
			||||||
    Field r  (src.Grid());
 | 
					 | 
				
			||||||
    ConstructTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // Initial residual computation & set up
 | 
					    // Initial residual computation & set up
 | 
				
			||||||
    NormTimer.Start();
 | 
					 | 
				
			||||||
    ssq = norm2(src);
 | 
					 | 
				
			||||||
    RealD guess = norm2(psi);
 | 
					    RealD guess = norm2(psi);
 | 
				
			||||||
    NormTimer.Stop();
 | 
					 | 
				
			||||||
    assert(std::isnan(guess) == 0);
 | 
					    assert(std::isnan(guess) == 0);
 | 
				
			||||||
    AssignTimer.Start();
 | 
					    
 | 
				
			||||||
    if ( guess == 0.0 ) {
 | 
					 | 
				
			||||||
      r = src;
 | 
					 | 
				
			||||||
      p = r;
 | 
					 | 
				
			||||||
      a = ssq;
 | 
					 | 
				
			||||||
    } else { 
 | 
					 | 
				
			||||||
    Linop.HermOpAndNorm(psi, mmp, d, b);
 | 
					    Linop.HermOpAndNorm(psi, mmp, d, b);
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
    r = src - mmp;
 | 
					    r = src - mmp;
 | 
				
			||||||
    p = r;
 | 
					    p = r;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    a = norm2(p);
 | 
					    a = norm2(p);
 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    cp = a;
 | 
					    cp = a;
 | 
				
			||||||
    AssignTimer.Stop();
 | 
					    ssq = norm2(src);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // Handle trivial case of zero src
 | 
					    // Handle trivial case of zero src
 | 
				
			||||||
    if (ssq == 0.){
 | 
					    if (ssq == 0.){
 | 
				
			||||||
@@ -137,7 +110,6 @@ public:
 | 
				
			|||||||
    std::cout << GridLogIterative << std::setprecision(8)
 | 
					    std::cout << GridLogIterative << std::setprecision(8)
 | 
				
			||||||
              << "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
 | 
					              << "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    PreambleTimer.Stop();
 | 
					 | 
				
			||||||
    GridStopWatch LinalgTimer;
 | 
					    GridStopWatch LinalgTimer;
 | 
				
			||||||
    GridStopWatch InnerTimer;
 | 
					    GridStopWatch InnerTimer;
 | 
				
			||||||
    GridStopWatch AxpyNormTimer;
 | 
					    GridStopWatch AxpyNormTimer;
 | 
				
			||||||
@@ -145,13 +117,9 @@ public:
 | 
				
			|||||||
    GridStopWatch MatrixTimer;
 | 
					    GridStopWatch MatrixTimer;
 | 
				
			||||||
    GridStopWatch SolverTimer;
 | 
					    GridStopWatch SolverTimer;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    RealD usecs = -usecond();
 | 
					 | 
				
			||||||
    SolverTimer.Start();
 | 
					    SolverTimer.Start();
 | 
				
			||||||
    int k;
 | 
					    int k;
 | 
				
			||||||
    for (k = 1; k <= MaxIterations; k++) {
 | 
					    for (k = 1; k <= MaxIterations; k++) {
 | 
				
			||||||
 | 
					 | 
				
			||||||
      GridStopWatch IterationTimer;
 | 
					 | 
				
			||||||
      IterationTimer.Start();
 | 
					 | 
				
			||||||
      c = cp;
 | 
					      c = cp;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      MatrixTimer.Start();
 | 
					      MatrixTimer.Start();
 | 
				
			||||||
@@ -183,44 +151,32 @@ public:
 | 
				
			|||||||
      }
 | 
					      }
 | 
				
			||||||
      LinearCombTimer.Stop();
 | 
					      LinearCombTimer.Stop();
 | 
				
			||||||
      LinalgTimer.Stop();
 | 
					      LinalgTimer.Stop();
 | 
				
			||||||
      LogIteration(k,a,b);
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
      IterationTimer.Stop();
 | 
					 | 
				
			||||||
      if ( (k % 500) == 0 ) {
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage << "ConjugateGradient: Iteration " << k
 | 
					 | 
				
			||||||
                << " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl;
 | 
					 | 
				
			||||||
      } else { 
 | 
					 | 
				
			||||||
      std::cout << GridLogIterative << "ConjugateGradient: Iteration " << k
 | 
					      std::cout << GridLogIterative << "ConjugateGradient: Iteration " << k
 | 
				
			||||||
		  << " residual " << sqrt(cp/ssq) << " target " << Tolerance << " took " << IterationTimer.Elapsed() << std::endl;
 | 
					                << " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl;
 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
      // Stopping condition
 | 
					      // Stopping condition
 | 
				
			||||||
      if (cp <= rsq) {
 | 
					      if (cp <= rsq) {
 | 
				
			||||||
	usecs +=usecond();
 | 
					 | 
				
			||||||
        SolverTimer.Stop();
 | 
					        SolverTimer.Stop();
 | 
				
			||||||
        Linop.HermOpAndNorm(psi, mmp, d, qq);
 | 
					        Linop.HermOpAndNorm(psi, mmp, d, qq);
 | 
				
			||||||
        p = mmp - src;
 | 
					        p = mmp - src;
 | 
				
			||||||
	GridBase *grid = src.Grid();
 | 
					
 | 
				
			||||||
	RealD DwfFlops = (1452. )*grid->gSites()*4*k
 | 
					 | 
				
			||||||
   	               + (8+4+8+4+4)*12*grid->gSites()*k; // CG linear algebra
 | 
					 | 
				
			||||||
        RealD srcnorm = std::sqrt(norm2(src));
 | 
					        RealD srcnorm = std::sqrt(norm2(src));
 | 
				
			||||||
        RealD resnorm = std::sqrt(norm2(p));
 | 
					        RealD resnorm = std::sqrt(norm2(p));
 | 
				
			||||||
        RealD true_residual = resnorm / srcnorm;
 | 
					        RealD true_residual = resnorm / srcnorm;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k 
 | 
					        std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k 
 | 
				
			||||||
		  << "\tComputed residual " << std::sqrt(cp / ssq)
 | 
							  << "\tComputed residual " << std::sqrt(cp / ssq)
 | 
				
			||||||
		  << "\tTrue residual " << true_residual
 | 
							  << "\tTrue residual " << true_residual
 | 
				
			||||||
		  << "\tTarget " << Tolerance << std::endl;
 | 
							  << "\tTarget " << Tolerance << std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	//	std::cout << GridLogMessage << "\tPreamble   " << PreambleTimer.Elapsed() <<std::endl;
 | 
					        std::cout << GridLogIterative << "Time breakdown "<<std::endl;
 | 
				
			||||||
	std::cout << GridLogMessage << "\tSolver Elapsed    " << SolverTimer.Elapsed() <<std::endl;
 | 
						std::cout << GridLogIterative << "\tElapsed    " << SolverTimer.Elapsed() <<std::endl;
 | 
				
			||||||
        std::cout << GridLogPerformance << "Time breakdown "<<std::endl;
 | 
						std::cout << GridLogIterative << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
				
			||||||
	std::cout << GridLogPerformance << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
						std::cout << GridLogIterative << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
				
			||||||
	std::cout << GridLogPerformance << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
						std::cout << GridLogIterative << "\tInner      " << InnerTimer.Elapsed() <<std::endl;
 | 
				
			||||||
	std::cout << GridLogPerformance << "\t\tInner      " << InnerTimer.Elapsed() <<std::endl;
 | 
						std::cout << GridLogIterative << "\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl;
 | 
				
			||||||
	std::cout << GridLogPerformance << "\t\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl;
 | 
						std::cout << GridLogIterative << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
 | 
				
			||||||
	std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
        if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
 | 
					        if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -231,143 +187,17 @@ public:
 | 
				
			|||||||
      }
 | 
					      }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    // Failed. Calculate true residual before giving up                                                         
 | 
					    // Failed. Calculate true residual before giving up                                                         
 | 
				
			||||||
    // Linop.HermOpAndNorm(psi, mmp, d, qq);
 | 
					    Linop.HermOpAndNorm(psi, mmp, d, qq);
 | 
				
			||||||
    //    p = mmp - src;
 | 
					    p = mmp - src;
 | 
				
			||||||
    //TrueResidual = sqrt(norm2(p)/ssq);
 | 
					 | 
				
			||||||
    //    TrueResidual = 1;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations
 | 
					    TrueResidual = sqrt(norm2(p)/ssq);
 | 
				
			||||||
    	      <<" residual "<< std::sqrt(cp / ssq)<< std::endl;
 | 
					
 | 
				
			||||||
    SolverTimer.Stop();
 | 
					    std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations<< std::endl;
 | 
				
			||||||
    std::cout << GridLogMessage << "\tPreamble   " << PreambleTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "\tConstruct  " << ConstructTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "\tNorm       " << NormTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "\tAssign     " << AssignTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "\tSolver     " << SolverTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "Solver breakdown "<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<< "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "\t\tInner      " << InnerTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "\t\tAxpyNorm   " << AxpyNormTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if (ErrorOnNoConverge) assert(0);
 | 
					    if (ErrorOnNoConverge) assert(0);
 | 
				
			||||||
    IterationsToComplete = k;
 | 
					    IterationsToComplete = k;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template <class Field>
 | 
					 | 
				
			||||||
class ConjugateGradientPolynomial : public ConjugateGradient<Field> {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  // Optionally record the CG polynomial
 | 
					 | 
				
			||||||
  std::vector<double> ak;
 | 
					 | 
				
			||||||
  std::vector<double> bk;
 | 
					 | 
				
			||||||
  std::vector<double> poly_p;
 | 
					 | 
				
			||||||
  std::vector<double> poly_r;
 | 
					 | 
				
			||||||
  std::vector<double> poly_Ap;
 | 
					 | 
				
			||||||
  std::vector<double> polynomial;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  ConjugateGradientPolynomial(RealD tol, Integer maxit, bool err_on_no_conv = true)
 | 
					 | 
				
			||||||
    : ConjugateGradient<Field>(tol,maxit,err_on_no_conv)
 | 
					 | 
				
			||||||
  { };
 | 
					 | 
				
			||||||
  void PolyHermOp(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    Field tmp(src.Grid());
 | 
					 | 
				
			||||||
    Field AtoN(src.Grid());
 | 
					 | 
				
			||||||
    AtoN = src;
 | 
					 | 
				
			||||||
    psi=AtoN*polynomial[0];
 | 
					 | 
				
			||||||
    for(int n=1;n<polynomial.size();n++){
 | 
					 | 
				
			||||||
      tmp = AtoN;
 | 
					 | 
				
			||||||
      Linop.HermOp(tmp,AtoN);
 | 
					 | 
				
			||||||
      psi = psi + polynomial[n]*AtoN;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void CGsequenceHermOp(LinearOperatorBase<Field> &Linop, const Field &src, Field &x)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    Field Ap(src.Grid());
 | 
					 | 
				
			||||||
    Field r(src.Grid());
 | 
					 | 
				
			||||||
    Field p(src.Grid());
 | 
					 | 
				
			||||||
    p=src;
 | 
					 | 
				
			||||||
    r=src;
 | 
					 | 
				
			||||||
    x=Zero();
 | 
					 | 
				
			||||||
    x.Checkerboard()=src.Checkerboard();
 | 
					 | 
				
			||||||
    for(int k=0;k<ak.size();k++){
 | 
					 | 
				
			||||||
      x = x + ak[k]*p;
 | 
					 | 
				
			||||||
      Linop.HermOp(p,Ap);
 | 
					 | 
				
			||||||
      r = r - ak[k] * Ap;
 | 
					 | 
				
			||||||
      p = r + bk[k] * p;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void Solve(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    psi=Zero();
 | 
					 | 
				
			||||||
    this->operator ()(Linop,src,psi);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  virtual void LogBegin(void)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::cout << "ConjugageGradientPolynomial::LogBegin() "<<std::endl;
 | 
					 | 
				
			||||||
    ak.resize(0);
 | 
					 | 
				
			||||||
    bk.resize(0);
 | 
					 | 
				
			||||||
    polynomial.resize(0);
 | 
					 | 
				
			||||||
    poly_Ap.resize(0);
 | 
					 | 
				
			||||||
    poly_Ap.resize(0);
 | 
					 | 
				
			||||||
    poly_p.resize(1);
 | 
					 | 
				
			||||||
    poly_r.resize(1);
 | 
					 | 
				
			||||||
    poly_p[0]=1.0;
 | 
					 | 
				
			||||||
    poly_r[0]=1.0;
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  virtual void LogIteration(int k,RealD a,RealD b)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    // With zero guess,
 | 
					 | 
				
			||||||
    // p = r = src
 | 
					 | 
				
			||||||
    //
 | 
					 | 
				
			||||||
    // iterate:
 | 
					 | 
				
			||||||
    //   x =  x + a p
 | 
					 | 
				
			||||||
    //   r =  r - a A p
 | 
					 | 
				
			||||||
    //   p =  r + b p
 | 
					 | 
				
			||||||
    //
 | 
					 | 
				
			||||||
    // [0]
 | 
					 | 
				
			||||||
    // r = x
 | 
					 | 
				
			||||||
    // p = x
 | 
					 | 
				
			||||||
    // Ap=0
 | 
					 | 
				
			||||||
    //
 | 
					 | 
				
			||||||
    // [1]
 | 
					 | 
				
			||||||
    // Ap = A x + 0  ==> shift poly P right by 1 and add 0.
 | 
					 | 
				
			||||||
    // x  = x + a p  ==> add polynomials term by term 
 | 
					 | 
				
			||||||
    // r  = r - a A p  ==> add polynomials term by term
 | 
					 | 
				
			||||||
    // p  = r + b p  ==> add polynomials term by term
 | 
					 | 
				
			||||||
    //
 | 
					 | 
				
			||||||
    std::cout << "ConjugageGradientPolynomial::LogIteration() "<<k<<std::endl;
 | 
					 | 
				
			||||||
    ak.push_back(a);
 | 
					 | 
				
			||||||
    bk.push_back(b);
 | 
					 | 
				
			||||||
    //  Ap= right_shift(p)
 | 
					 | 
				
			||||||
    poly_Ap.resize(k+1);
 | 
					 | 
				
			||||||
    poly_Ap[0]=0.0;
 | 
					 | 
				
			||||||
    for(int i=0;i<k;i++){
 | 
					 | 
				
			||||||
      poly_Ap[i+1]=poly_p[i];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //  x = x + a p
 | 
					 | 
				
			||||||
    polynomial.resize(k);
 | 
					 | 
				
			||||||
    polynomial[k-1]=0.0;
 | 
					 | 
				
			||||||
    for(int i=0;i<k;i++){
 | 
					 | 
				
			||||||
      polynomial[i] = polynomial[i] + a * poly_p[i];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    //  r = r - a Ap
 | 
					 | 
				
			||||||
    //  p = r + b p
 | 
					 | 
				
			||||||
    poly_r.resize(k+1);
 | 
					 | 
				
			||||||
    poly_p.resize(k+1);
 | 
					 | 
				
			||||||
    poly_r[k] = poly_p[k] = 0.0;
 | 
					 | 
				
			||||||
    for(int i=0;i<k+1;i++){
 | 
					 | 
				
			||||||
      poly_r[i] = poly_r[i] - a * poly_Ap[i];
 | 
					 | 
				
			||||||
      poly_p[i] = poly_r[i] + b * poly_p[i];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -36,7 +36,6 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
    typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0> 
 | 
					    typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0> 
 | 
				
			||||||
  class MixedPrecisionConjugateGradient : public LinearFunction<FieldD> {
 | 
					  class MixedPrecisionConjugateGradient : public LinearFunction<FieldD> {
 | 
				
			||||||
  public:                                                
 | 
					  public:                                                
 | 
				
			||||||
    using LinearFunction<FieldD>::operator();
 | 
					 | 
				
			||||||
    RealD   Tolerance;
 | 
					    RealD   Tolerance;
 | 
				
			||||||
    RealD   InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
 | 
					    RealD   InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
 | 
				
			||||||
    Integer MaxInnerIterations;
 | 
					    Integer MaxInnerIterations;
 | 
				
			||||||
@@ -49,7 +48,6 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
    Integer TotalInnerIterations; //Number of inner CG iterations
 | 
					    Integer TotalInnerIterations; //Number of inner CG iterations
 | 
				
			||||||
    Integer TotalOuterIterations; //Number of restarts
 | 
					    Integer TotalOuterIterations; //Number of restarts
 | 
				
			||||||
    Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
 | 
					    Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
 | 
				
			||||||
    RealD TrueResidual;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    //Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
 | 
					    //Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
 | 
				
			||||||
    LinearFunction<FieldF> *guesser;
 | 
					    LinearFunction<FieldF> *guesser;
 | 
				
			||||||
@@ -69,7 +67,6 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  void operator() (const FieldD &src_d_in, FieldD &sol_d){
 | 
					  void operator() (const FieldD &src_d_in, FieldD &sol_d){
 | 
				
			||||||
    std::cout << GridLogMessage << "MixedPrecisionConjugateGradient: Starting mixed precision CG with outer tolerance " << Tolerance << " and inner tolerance " << InnerTolerance << std::endl;
 | 
					 | 
				
			||||||
    TotalInnerIterations = 0;
 | 
					    TotalInnerIterations = 0;
 | 
				
			||||||
	
 | 
						
 | 
				
			||||||
    GridStopWatch TotalTimer;
 | 
					    GridStopWatch TotalTimer;
 | 
				
			||||||
@@ -99,7 +96,6 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
    FieldF sol_f(SinglePrecGrid);
 | 
					    FieldF sol_f(SinglePrecGrid);
 | 
				
			||||||
    sol_f.Checkerboard() = cb;
 | 
					    sol_f.Checkerboard() = cb;
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Starting initial inner CG with tolerance " << inner_tol << std::endl;
 | 
					 | 
				
			||||||
    ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
 | 
					    ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
 | 
				
			||||||
    CG_f.ErrorOnNoConverge = false;
 | 
					    CG_f.ErrorOnNoConverge = false;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -109,24 +105,21 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
    
 | 
					    
 | 
				
			||||||
    Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
 | 
					    Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    precisionChangeWorkspace pc_wk_sp_to_dp(DoublePrecGrid, SinglePrecGrid);
 | 
					 | 
				
			||||||
    precisionChangeWorkspace pc_wk_dp_to_sp(SinglePrecGrid, DoublePrecGrid);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){
 | 
					    for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){
 | 
				
			||||||
      //Compute double precision rsd and also new RHS vector.
 | 
					      //Compute double precision rsd and also new RHS vector.
 | 
				
			||||||
      Linop_d.HermOp(sol_d, tmp_d);
 | 
					      Linop_d.HermOp(sol_d, tmp_d);
 | 
				
			||||||
      RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector
 | 
					      RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector
 | 
				
			||||||
      std::cout<<GridLogMessage<<" rsd norm "<<norm<<std::endl;
 | 
					      
 | 
				
			||||||
      std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " <<outer_iter<<" residual "<< norm<< " target "<< stop<<std::endl;
 | 
					      std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " <<outer_iter<<" residual "<< norm<< " target "<< stop<<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      if(norm < OuterLoopNormMult * stop){
 | 
					      if(norm < OuterLoopNormMult * stop){
 | 
				
			||||||
	std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration converged on iteration " <<outer_iter <<std::endl;
 | 
						std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration converged on iteration " <<outer_iter <<std::endl;
 | 
				
			||||||
	break;
 | 
						break;
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
      while(norm * inner_tol * inner_tol < stop*1.01) inner_tol *= 2;  // inner_tol = sqrt(stop/norm) ??
 | 
					      while(norm * inner_tol * inner_tol < stop) inner_tol *= 2;  // inner_tol = sqrt(stop/norm) ??
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      PrecChangeTimer.Start();
 | 
					      PrecChangeTimer.Start();
 | 
				
			||||||
      precisionChange(src_f, src_d, pc_wk_dp_to_sp);
 | 
					      precisionChange(src_f, src_d);
 | 
				
			||||||
      PrecChangeTimer.Stop();
 | 
					      PrecChangeTimer.Stop();
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
      sol_f = Zero();
 | 
					      sol_f = Zero();
 | 
				
			||||||
@@ -136,7 +129,6 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
	(*guesser)(src_f, sol_f);
 | 
						(*guesser)(src_f, sol_f);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      //Inner CG
 | 
					      //Inner CG
 | 
				
			||||||
      std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " << outer_iter << " starting inner CG with tolerance " << inner_tol << std::endl;
 | 
					 | 
				
			||||||
      CG_f.Tolerance = inner_tol;
 | 
					      CG_f.Tolerance = inner_tol;
 | 
				
			||||||
      InnerCGtimer.Start();
 | 
					      InnerCGtimer.Start();
 | 
				
			||||||
      CG_f(Linop_f, src_f, sol_f);
 | 
					      CG_f(Linop_f, src_f, sol_f);
 | 
				
			||||||
@@ -145,7 +137,7 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
      
 | 
					      
 | 
				
			||||||
      //Convert sol back to double and add to double prec solution
 | 
					      //Convert sol back to double and add to double prec solution
 | 
				
			||||||
      PrecChangeTimer.Start();
 | 
					      PrecChangeTimer.Start();
 | 
				
			||||||
      precisionChange(tmp_d, sol_f, pc_wk_sp_to_dp);
 | 
					      precisionChange(tmp_d, sol_f);
 | 
				
			||||||
      PrecChangeTimer.Stop();
 | 
					      PrecChangeTimer.Stop();
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
      axpy(sol_d, 1.0, tmp_d, sol_d);
 | 
					      axpy(sol_d, 1.0, tmp_d, sol_d);
 | 
				
			||||||
@@ -157,7 +149,6 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
    ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations);
 | 
					    ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations);
 | 
				
			||||||
    CG_d(Linop_d, src_d_in, sol_d);
 | 
					    CG_d(Linop_d, src_d_in, sol_d);
 | 
				
			||||||
    TotalFinalStepIterations = CG_d.IterationsToComplete;
 | 
					    TotalFinalStepIterations = CG_d.IterationsToComplete;
 | 
				
			||||||
    TrueResidual = CG_d.TrueResidual;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    TotalTimer.Stop();
 | 
					    TotalTimer.Stop();
 | 
				
			||||||
    std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;
 | 
					    std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1,213 +0,0 @@
 | 
				
			|||||||
/*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: ./lib/algorithms/iterative/ConjugateGradientMixedPrecBatched.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2015
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Author: Raoul Hodgson <raoul.hodgson@ed.ac.uk>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
*************************************************************************************/
 | 
					 | 
				
			||||||
/*  END LEGAL */
 | 
					 | 
				
			||||||
#ifndef GRID_CONJUGATE_GRADIENT_MIXED_PREC_BATCHED_H
 | 
					 | 
				
			||||||
#define GRID_CONJUGATE_GRADIENT_MIXED_PREC_BATCHED_H
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
//Mixed precision restarted defect correction CG
 | 
					 | 
				
			||||||
template<class FieldD,class FieldF, 
 | 
					 | 
				
			||||||
  typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
 | 
					 | 
				
			||||||
  typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0> 
 | 
					 | 
				
			||||||
class MixedPrecisionConjugateGradientBatched : public LinearFunction<FieldD> {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  using LinearFunction<FieldD>::operator();
 | 
					 | 
				
			||||||
  RealD   Tolerance;
 | 
					 | 
				
			||||||
  RealD   InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
 | 
					 | 
				
			||||||
  Integer MaxInnerIterations;
 | 
					 | 
				
			||||||
  Integer MaxOuterIterations;
 | 
					 | 
				
			||||||
  Integer MaxPatchupIterations;
 | 
					 | 
				
			||||||
  GridBase* SinglePrecGrid; //Grid for single-precision fields
 | 
					 | 
				
			||||||
  RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
 | 
					 | 
				
			||||||
  LinearOperatorBase<FieldF> &Linop_f;
 | 
					 | 
				
			||||||
  LinearOperatorBase<FieldD> &Linop_d;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  //Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
 | 
					 | 
				
			||||||
  LinearFunction<FieldF> *guesser;
 | 
					 | 
				
			||||||
  bool updateResidual;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  MixedPrecisionConjugateGradientBatched(RealD tol, 
 | 
					 | 
				
			||||||
          Integer maxinnerit, 
 | 
					 | 
				
			||||||
          Integer maxouterit, 
 | 
					 | 
				
			||||||
          Integer maxpatchit,
 | 
					 | 
				
			||||||
          GridBase* _sp_grid, 
 | 
					 | 
				
			||||||
          LinearOperatorBase<FieldF> &_Linop_f, 
 | 
					 | 
				
			||||||
          LinearOperatorBase<FieldD> &_Linop_d,
 | 
					 | 
				
			||||||
          bool _updateResidual=true) :
 | 
					 | 
				
			||||||
    Linop_f(_Linop_f), Linop_d(_Linop_d),
 | 
					 | 
				
			||||||
    Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit), MaxOuterIterations(maxouterit), MaxPatchupIterations(maxpatchit), SinglePrecGrid(_sp_grid),
 | 
					 | 
				
			||||||
    OuterLoopNormMult(100.), guesser(NULL), updateResidual(_updateResidual) { };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void useGuesser(LinearFunction<FieldF> &g){
 | 
					 | 
				
			||||||
    guesser = &g;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  void operator() (const FieldD &src_d_in, FieldD &sol_d){
 | 
					 | 
				
			||||||
    std::vector<FieldD> srcs_d_in{src_d_in};
 | 
					 | 
				
			||||||
    std::vector<FieldD> sols_d{sol_d};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    (*this)(srcs_d_in,sols_d);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    sol_d = sols_d[0];
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void operator() (const std::vector<FieldD> &src_d_in, std::vector<FieldD> &sol_d){
 | 
					 | 
				
			||||||
    assert(src_d_in.size() == sol_d.size());
 | 
					 | 
				
			||||||
    int NBatch = src_d_in.size();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "NBatch = " << NBatch << std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Integer TotalOuterIterations = 0; //Number of restarts
 | 
					 | 
				
			||||||
    std::vector<Integer> TotalInnerIterations(NBatch,0);     //Number of inner CG iterations
 | 
					 | 
				
			||||||
    std::vector<Integer> TotalFinalStepIterations(NBatch,0); //Number of CG iterations in final patch-up step
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    GridStopWatch TotalTimer;
 | 
					 | 
				
			||||||
    TotalTimer.Start();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridStopWatch InnerCGtimer;
 | 
					 | 
				
			||||||
    GridStopWatch PrecChangeTimer;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    int cb = src_d_in[0].Checkerboard();
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    std::vector<RealD> src_norm;
 | 
					 | 
				
			||||||
    std::vector<RealD> norm;
 | 
					 | 
				
			||||||
    std::vector<RealD> stop;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    GridBase* DoublePrecGrid = src_d_in[0].Grid();
 | 
					 | 
				
			||||||
    FieldD tmp_d(DoublePrecGrid);
 | 
					 | 
				
			||||||
    tmp_d.Checkerboard() = cb;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    FieldD tmp2_d(DoublePrecGrid);
 | 
					 | 
				
			||||||
    tmp2_d.Checkerboard() = cb;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<FieldD> src_d;
 | 
					 | 
				
			||||||
    std::vector<FieldF> src_f;
 | 
					 | 
				
			||||||
    std::vector<FieldF> sol_f;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for (int i=0; i<NBatch; i++) {
 | 
					 | 
				
			||||||
      sol_d[i].Checkerboard() = cb;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      src_norm.push_back(norm2(src_d_in[i]));
 | 
					 | 
				
			||||||
      norm.push_back(0.);
 | 
					 | 
				
			||||||
      stop.push_back(src_norm[i] * Tolerance*Tolerance);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      src_d.push_back(src_d_in[i]); //source for next inner iteration, computed from residual during operation
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      src_f.push_back(SinglePrecGrid);
 | 
					 | 
				
			||||||
      src_f[i].Checkerboard() = cb;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      sol_f.push_back(SinglePrecGrid);
 | 
					 | 
				
			||||||
      sol_f[i].Checkerboard() = cb;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    RealD inner_tol = InnerTolerance;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
 | 
					 | 
				
			||||||
    CG_f.ErrorOnNoConverge = false;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage << std::endl;
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage << "Outer iteration " << outer_iter << std::endl;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      bool allConverged = true;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      for (int i=0; i<NBatch; i++) {
 | 
					 | 
				
			||||||
        //Compute double precision rsd and also new RHS vector.
 | 
					 | 
				
			||||||
        Linop_d.HermOp(sol_d[i], tmp_d);
 | 
					 | 
				
			||||||
        norm[i] = axpy_norm(src_d[i], -1., tmp_d, src_d_in[i]); //src_d is residual vector
 | 
					 | 
				
			||||||
        
 | 
					 | 
				
			||||||
        std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Outer iteration " << outer_iter <<" solve " << i << " residual "<< norm[i] << " target "<< stop[i] <<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        PrecChangeTimer.Start();
 | 
					 | 
				
			||||||
        precisionChange(src_f[i], src_d[i]);
 | 
					 | 
				
			||||||
        PrecChangeTimer.Stop();
 | 
					 | 
				
			||||||
        
 | 
					 | 
				
			||||||
        sol_f[i] = Zero();
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
        if(norm[i] > OuterLoopNormMult * stop[i]) {
 | 
					 | 
				
			||||||
          allConverged = false;
 | 
					 | 
				
			||||||
        }
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      if (allConverged) break;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      if (updateResidual) {
 | 
					 | 
				
			||||||
        RealD normMax = *std::max_element(std::begin(norm), std::end(norm));
 | 
					 | 
				
			||||||
        RealD stopMax = *std::max_element(std::begin(stop), std::end(stop));
 | 
					 | 
				
			||||||
        while( normMax * inner_tol * inner_tol < stopMax) inner_tol *= 2;  // inner_tol = sqrt(stop/norm) ??
 | 
					 | 
				
			||||||
        CG_f.Tolerance = inner_tol;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      //Optionally improve inner solver guess (eg using known eigenvectors)
 | 
					 | 
				
			||||||
      if(guesser != NULL) {
 | 
					 | 
				
			||||||
        (*guesser)(src_f, sol_f);
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for (int i=0; i<NBatch; i++) {
 | 
					 | 
				
			||||||
        //Inner CG
 | 
					 | 
				
			||||||
        InnerCGtimer.Start();
 | 
					 | 
				
			||||||
        CG_f(Linop_f, src_f[i], sol_f[i]);
 | 
					 | 
				
			||||||
        InnerCGtimer.Stop();
 | 
					 | 
				
			||||||
        TotalInnerIterations[i] += CG_f.IterationsToComplete;
 | 
					 | 
				
			||||||
        
 | 
					 | 
				
			||||||
        //Convert sol back to double and add to double prec solution
 | 
					 | 
				
			||||||
        PrecChangeTimer.Start();
 | 
					 | 
				
			||||||
        precisionChange(tmp_d, sol_f[i]);
 | 
					 | 
				
			||||||
        PrecChangeTimer.Stop();
 | 
					 | 
				
			||||||
        
 | 
					 | 
				
			||||||
        axpy(sol_d[i], 1.0, tmp_d, sol_d[i]);
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    //Final trial CG
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << std::endl;
 | 
					 | 
				
			||||||
    std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Starting final patch-up double-precision solve"<<std::endl;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    for (int i=0; i<NBatch; i++) {
 | 
					 | 
				
			||||||
      ConjugateGradient<FieldD> CG_d(Tolerance, MaxPatchupIterations);
 | 
					 | 
				
			||||||
      CG_d(Linop_d, src_d_in[i], sol_d[i]);
 | 
					 | 
				
			||||||
      TotalFinalStepIterations[i] += CG_d.IterationsToComplete;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    TotalTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << std::endl;
 | 
					 | 
				
			||||||
    for (int i=0; i<NBatch; i++) {
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: solve " << i << " Inner CG iterations " << TotalInnerIterations[i] << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations[i] << std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << std::endl;
 | 
					 | 
				
			||||||
    std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Total time " << TotalTimer.Elapsed() << " Precision change " << PrecChangeTimer.Elapsed() << " Inner CG total " << InnerCGtimer.Elapsed() << std::endl;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
@@ -44,7 +44,7 @@ public:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  using OperatorFunction<Field>::operator();
 | 
					  using OperatorFunction<Field>::operator();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //  RealD   Tolerance;
 | 
					  RealD   Tolerance;
 | 
				
			||||||
  Integer MaxIterations;
 | 
					  Integer MaxIterations;
 | 
				
			||||||
  Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
 | 
					  Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
 | 
				
			||||||
  std::vector<int> IterationsToCompleteShift;  // Iterations for this shift
 | 
					  std::vector<int> IterationsToCompleteShift;  // Iterations for this shift
 | 
				
			||||||
@@ -52,7 +52,7 @@ public:
 | 
				
			|||||||
  MultiShiftFunction shifts;
 | 
					  MultiShiftFunction shifts;
 | 
				
			||||||
  std::vector<RealD> TrueResidualShift;
 | 
					  std::vector<RealD> TrueResidualShift;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  ConjugateGradientMultiShift(Integer maxit, const MultiShiftFunction &_shifts) : 
 | 
					  ConjugateGradientMultiShift(Integer maxit,MultiShiftFunction &_shifts) : 
 | 
				
			||||||
    MaxIterations(maxit),
 | 
					    MaxIterations(maxit),
 | 
				
			||||||
    shifts(_shifts)
 | 
					    shifts(_shifts)
 | 
				
			||||||
  { 
 | 
					  { 
 | 
				
			||||||
@@ -84,7 +84,6 @@ public:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector<Field> &psi)
 | 
					  void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector<Field> &psi)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    GRID_TRACE("ConjugateGradientMultiShift");
 | 
					 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
    GridBase *grid = src.Grid();
 | 
					    GridBase *grid = src.Grid();
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
@@ -102,11 +101,11 @@ public:
 | 
				
			|||||||
    assert(mass.size()==nshift);
 | 
					    assert(mass.size()==nshift);
 | 
				
			||||||
    assert(mresidual.size()==nshift);
 | 
					    assert(mresidual.size()==nshift);
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
    // remove dynamic sized arrays on stack; 2d is a pain with vector
 | 
					    // dynamic sized arrays on stack; 2d is a pain with vector
 | 
				
			||||||
    std::vector<RealD>  bs(nshift);
 | 
					    RealD  bs[nshift];
 | 
				
			||||||
    std::vector<RealD>  rsq(nshift);
 | 
					    RealD  rsq[nshift];
 | 
				
			||||||
    std::vector<std::array<RealD,2> >  z(nshift);
 | 
					    RealD  z[nshift][2];
 | 
				
			||||||
    std::vector<int>     converged(nshift);
 | 
					    int     converged[nshift];
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
    const int       primary =0;
 | 
					    const int       primary =0;
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
@@ -144,7 +143,7 @@ public:
 | 
				
			|||||||
    for(int s=0;s<nshift;s++){
 | 
					    for(int s=0;s<nshift;s++){
 | 
				
			||||||
      rsq[s] = cp * mresidual[s] * mresidual[s];
 | 
					      rsq[s] = cp * mresidual[s] * mresidual[s];
 | 
				
			||||||
      std::cout<<GridLogMessage<<"ConjugateGradientMultiShift: shift "<<s
 | 
					      std::cout<<GridLogMessage<<"ConjugateGradientMultiShift: shift "<<s
 | 
				
			||||||
	       <<" target resid^2 "<<rsq[s]<<std::endl;
 | 
						       <<" target resid "<<rsq[s]<<std::endl;
 | 
				
			||||||
      ps[s] = src;
 | 
					      ps[s] = src;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    // r and p for primary
 | 
					    // r and p for primary
 | 
				
			||||||
@@ -184,9 +183,6 @@ public:
 | 
				
			|||||||
      axpby(psi[s],0.,-bs[s]*alpha[s],src,src);
 | 
					      axpby(psi[s],0.,-bs[s]*alpha[s],src,src);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
    std::cout << GridLogIterative << "ConjugateGradientMultiShift: initial rn (|src|^2) =" << rn << " qq (|MdagM src|^2) =" << qq << " d ( dot(src, [MdagM + m_0]src) ) =" << d << " c=" << c << std::endl;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  ///////////////////////////////////////
 | 
					  ///////////////////////////////////////
 | 
				
			||||||
  // Timers
 | 
					  // Timers
 | 
				
			||||||
  ///////////////////////////////////////
 | 
					  ///////////////////////////////////////
 | 
				
			||||||
@@ -326,7 +322,7 @@ public:
 | 
				
			|||||||
      std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
 | 
					      std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
 | 
				
			||||||
      std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed()     <<std::endl;
 | 
					      std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed()     <<std::endl;
 | 
				
			||||||
      std::cout << GridLogMessage << "\tAXPY    " << AXPYTimer.Elapsed()     <<std::endl;
 | 
					      std::cout << GridLogMessage << "\tAXPY    " << AXPYTimer.Elapsed()     <<std::endl;
 | 
				
			||||||
      std::cout << GridLogMessage << "\tMatrix   " << MatrixTimer.Elapsed()     <<std::endl;
 | 
					      std::cout << GridLogMessage << "\tMarix    " << MatrixTimer.Elapsed()     <<std::endl;
 | 
				
			||||||
      std::cout << GridLogMessage << "\tShift    " << ShiftTimer.Elapsed()     <<std::endl;
 | 
					      std::cout << GridLogMessage << "\tShift    " << ShiftTimer.Elapsed()     <<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      IterationsToComplete = k;	
 | 
					      IterationsToComplete = k;	
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1,373 +0,0 @@
 | 
				
			|||||||
/*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2015
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
					 | 
				
			||||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
					 | 
				
			||||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
*************************************************************************************/
 | 
					 | 
				
			||||||
/*  END LEGAL */
 | 
					 | 
				
			||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
//CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision. 
 | 
					 | 
				
			||||||
//The residual is stored in single precision, but the search directions and solution are stored in double precision. 
 | 
					 | 
				
			||||||
//Every update_freq iterations the residual is corrected in double precision. 
 | 
					 | 
				
			||||||
//For safety the a final regular CG is applied to clean up if necessary
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
//PB Pure single, then double fixup
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class FieldD, class FieldF,
 | 
					 | 
				
			||||||
	 typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
 | 
					 | 
				
			||||||
	 typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0> 
 | 
					 | 
				
			||||||
class ConjugateGradientMultiShiftMixedPrecCleanup : public OperatorMultiFunction<FieldD>,
 | 
					 | 
				
			||||||
					     public OperatorFunction<FieldD>
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
public:                                                
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  using OperatorFunction<FieldD>::operator();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  RealD   Tolerance;
 | 
					 | 
				
			||||||
  Integer MaxIterationsMshift;
 | 
					 | 
				
			||||||
  Integer MaxIterations;
 | 
					 | 
				
			||||||
  Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
 | 
					 | 
				
			||||||
  std::vector<int> IterationsToCompleteShift;  // Iterations for this shift
 | 
					 | 
				
			||||||
  int verbose;
 | 
					 | 
				
			||||||
  MultiShiftFunction shifts;
 | 
					 | 
				
			||||||
  std::vector<RealD> TrueResidualShift;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int ReliableUpdateFreq; //number of iterations between reliable updates
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  GridBase* SinglePrecGrid; //Grid for single-precision fields
 | 
					 | 
				
			||||||
  LinearOperatorBase<FieldF> &Linop_f; //single precision
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ConjugateGradientMultiShiftMixedPrecCleanup(Integer maxit, const MultiShiftFunction &_shifts,
 | 
					 | 
				
			||||||
				       GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f,
 | 
					 | 
				
			||||||
				       int _ReliableUpdateFreq) : 
 | 
					 | 
				
			||||||
    MaxIterationsMshift(maxit),  shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq),
 | 
					 | 
				
			||||||
    MaxIterations(20000)
 | 
					 | 
				
			||||||
  { 
 | 
					 | 
				
			||||||
    verbose=1;
 | 
					 | 
				
			||||||
    IterationsToCompleteShift.resize(_shifts.order);
 | 
					 | 
				
			||||||
    TrueResidualShift.resize(_shifts.order);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    GridBase *grid = src.Grid();
 | 
					 | 
				
			||||||
    int nshift = shifts.order;
 | 
					 | 
				
			||||||
    std::vector<FieldD> results(nshift,grid);
 | 
					 | 
				
			||||||
    (*this)(Linop,src,results,psi);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int nshift = shifts.order;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    (*this)(Linop,src,results);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    psi = shifts.norm*src;
 | 
					 | 
				
			||||||
    for(int i=0;i<nshift;i++){
 | 
					 | 
				
			||||||
      psi = psi + shifts.residues[i]*results[i];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    return;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d)
 | 
					 | 
				
			||||||
  { 
 | 
					 | 
				
			||||||
    GRID_TRACE("ConjugateGradientMultiShiftMixedPrecCleanup");
 | 
					 | 
				
			||||||
    GridBase *DoublePrecGrid = src_d.Grid();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Convenience references to the info stored in "MultiShiftFunction"
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    int nshift = shifts.order;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
 | 
					 | 
				
			||||||
    std::vector<RealD> &mresidual(shifts.tolerances);
 | 
					 | 
				
			||||||
    std::vector<RealD> alpha(nshift,1.0);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //Double precision search directions
 | 
					 | 
				
			||||||
    FieldD p_d(DoublePrecGrid);
 | 
					 | 
				
			||||||
    std::vector<FieldF> ps_f (nshift, SinglePrecGrid);// Search directions (single precision)
 | 
					 | 
				
			||||||
    std::vector<FieldF> psi_f(nshift, SinglePrecGrid);// solutions (single precision)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    FieldD tmp_d(DoublePrecGrid);
 | 
					 | 
				
			||||||
    FieldD r_d(DoublePrecGrid);
 | 
					 | 
				
			||||||
    FieldF r_f(SinglePrecGrid);
 | 
					 | 
				
			||||||
    FieldD mmp_d(DoublePrecGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    assert(psi_d.size()==nshift);
 | 
					 | 
				
			||||||
    assert(mass.size()==nshift);
 | 
					 | 
				
			||||||
    assert(mresidual.size()==nshift);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    // dynamic sized arrays on stack; 2d is a pain with vector
 | 
					 | 
				
			||||||
    std::vector<RealD>  bs(nshift);
 | 
					 | 
				
			||||||
    std::vector<RealD>  rsq(nshift);
 | 
					 | 
				
			||||||
    std::vector<RealD>  rsqf(nshift);
 | 
					 | 
				
			||||||
    std::vector<std::array<RealD,2> >  z(nshift);
 | 
					 | 
				
			||||||
    std::vector<int>     converged(nshift);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    const int       primary =0;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    //Primary shift fields CG iteration
 | 
					 | 
				
			||||||
    RealD a,b,c,d;
 | 
					 | 
				
			||||||
    RealD cp,bp,qq; //prev
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    // Matrix mult fields
 | 
					 | 
				
			||||||
    FieldF p_f(SinglePrecGrid);
 | 
					 | 
				
			||||||
    FieldF mmp_f(SinglePrecGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Check lightest mass
 | 
					 | 
				
			||||||
    for(int s=0;s<nshift;s++){
 | 
					 | 
				
			||||||
      assert( mass[s]>= mass[primary] );
 | 
					 | 
				
			||||||
      converged[s]=0;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    // Wire guess to zero
 | 
					 | 
				
			||||||
    // Residuals "r" are src
 | 
					 | 
				
			||||||
    // First search direction "p" is also src
 | 
					 | 
				
			||||||
    cp = norm2(src_d);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Handle trivial case of zero src.
 | 
					 | 
				
			||||||
    if( cp == 0. ){
 | 
					 | 
				
			||||||
      for(int s=0;s<nshift;s++){
 | 
					 | 
				
			||||||
	psi_d[s] = Zero();
 | 
					 | 
				
			||||||
	psi_f[s] = Zero();
 | 
					 | 
				
			||||||
	IterationsToCompleteShift[s] = 1;
 | 
					 | 
				
			||||||
	TrueResidualShift[s] = 0.;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      return;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int s=0;s<nshift;s++){
 | 
					 | 
				
			||||||
      rsq[s] = cp * mresidual[s] * mresidual[s];
 | 
					 | 
				
			||||||
      rsqf[s] =rsq[s];
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: shift "<< s <<" target resid "<<rsq[s]<<std::endl;
 | 
					 | 
				
			||||||
      //      ps_d[s] = src_d;
 | 
					 | 
				
			||||||
      precisionChange(ps_f[s],src_d);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    // r and p for primary
 | 
					 | 
				
			||||||
    p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys
 | 
					 | 
				
			||||||
    r_d = p_d;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    //MdagM+m[0]
 | 
					 | 
				
			||||||
    precisionChange(p_f,p_d);
 | 
					 | 
				
			||||||
    Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp)
 | 
					 | 
				
			||||||
    precisionChange(tmp_d,mmp_f);
 | 
					 | 
				
			||||||
    Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp)
 | 
					 | 
				
			||||||
    tmp_d = tmp_d - mmp_d;
 | 
					 | 
				
			||||||
    std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
 | 
					 | 
				
			||||||
    //    assert(norm2(tmp_d)< 1.0e-4);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    axpy(mmp_d,mass[0],p_d,mmp_d);
 | 
					 | 
				
			||||||
    RealD rn = norm2(p_d);
 | 
					 | 
				
			||||||
    d += rn*mass[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    b = -cp /d;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    // Set up the various shift variables
 | 
					 | 
				
			||||||
    int       iz=0;
 | 
					 | 
				
			||||||
    z[0][1-iz] = 1.0;
 | 
					 | 
				
			||||||
    z[0][iz]   = 1.0;
 | 
					 | 
				
			||||||
    bs[0]      = b;
 | 
					 | 
				
			||||||
    for(int s=1;s<nshift;s++){
 | 
					 | 
				
			||||||
      z[s][1-iz] = 1.0;
 | 
					 | 
				
			||||||
      z[s][iz]   = 1.0/( 1.0 - b*(mass[s]-mass[0]));
 | 
					 | 
				
			||||||
      bs[s]      = b*z[s][iz]; 
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    // r += b[0] A.p[0]
 | 
					 | 
				
			||||||
    // c= norm(r)
 | 
					 | 
				
			||||||
    c=axpy_norm(r_d,b,mmp_d,r_d);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    for(int s=0;s<nshift;s++) {
 | 
					 | 
				
			||||||
      axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d);
 | 
					 | 
				
			||||||
      precisionChange(psi_f[s],psi_d[s]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    ///////////////////////////////////////
 | 
					 | 
				
			||||||
    // Timers
 | 
					 | 
				
			||||||
    ///////////////////////////////////////
 | 
					 | 
				
			||||||
    GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    SolverTimer.Start();
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    // Iteration loop
 | 
					 | 
				
			||||||
    int k;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    for (k=1;k<=MaxIterationsMshift;k++){    
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      a = c /cp;
 | 
					 | 
				
			||||||
      AXPYTimer.Start();
 | 
					 | 
				
			||||||
      axpy(p_d,a,p_d,r_d); 
 | 
					 | 
				
			||||||
      AXPYTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      PrecChangeTimer.Start();
 | 
					 | 
				
			||||||
      precisionChange(r_f, r_d);
 | 
					 | 
				
			||||||
      PrecChangeTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      AXPYTimer.Start();
 | 
					 | 
				
			||||||
      for(int s=0;s<nshift;s++){
 | 
					 | 
				
			||||||
	if ( ! converged[s] ) { 
 | 
					 | 
				
			||||||
	  if (s==0){
 | 
					 | 
				
			||||||
	    axpy(ps_f[s],a,ps_f[s],r_f);
 | 
					 | 
				
			||||||
	  } else{
 | 
					 | 
				
			||||||
	    RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
 | 
					 | 
				
			||||||
	    axpby(ps_f[s],z[s][iz],as,r_f,ps_f[s]);
 | 
					 | 
				
			||||||
	  }
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      AXPYTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      cp=c;
 | 
					 | 
				
			||||||
      PrecChangeTimer.Start();
 | 
					 | 
				
			||||||
      precisionChange(p_f, p_d); //get back single prec search direction for linop
 | 
					 | 
				
			||||||
      PrecChangeTimer.Stop();
 | 
					 | 
				
			||||||
      MatrixTimer.Start();  
 | 
					 | 
				
			||||||
      Linop_f.HermOp(p_f,mmp_f);
 | 
					 | 
				
			||||||
      MatrixTimer.Stop();  
 | 
					 | 
				
			||||||
      PrecChangeTimer.Start();
 | 
					 | 
				
			||||||
      precisionChange(mmp_d, mmp_f); // From Float to Double
 | 
					 | 
				
			||||||
      PrecChangeTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      d=real(innerProduct(p_d,mmp_d));    
 | 
					 | 
				
			||||||
      axpy(mmp_d,mass[0],p_d,mmp_d);
 | 
					 | 
				
			||||||
      RealD rn = norm2(p_d);
 | 
					 | 
				
			||||||
      d += rn*mass[0];
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
      bp=b;
 | 
					 | 
				
			||||||
      b=-cp/d;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Toggle the recurrence history
 | 
					 | 
				
			||||||
      bs[0] = b;
 | 
					 | 
				
			||||||
      iz = 1-iz;
 | 
					 | 
				
			||||||
      ShiftTimer.Start();
 | 
					 | 
				
			||||||
      for(int s=1;s<nshift;s++){
 | 
					 | 
				
			||||||
	if((!converged[s])){
 | 
					 | 
				
			||||||
	  RealD z0 = z[s][1-iz];
 | 
					 | 
				
			||||||
	  RealD z1 = z[s][iz];
 | 
					 | 
				
			||||||
	  z[s][iz] = z0*z1*bp
 | 
					 | 
				
			||||||
	    / (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b)); 
 | 
					 | 
				
			||||||
	  bs[s] = b*z[s][iz]/z0; // NB sign  rel to Mike
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      ShiftTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      //Update single precision solutions
 | 
					 | 
				
			||||||
      AXPYTimer.Start();
 | 
					 | 
				
			||||||
      for(int s=0;s<nshift;s++){
 | 
					 | 
				
			||||||
	int ss = s;
 | 
					 | 
				
			||||||
	if( (!converged[s]) ) { 
 | 
					 | 
				
			||||||
	  axpy(psi_f[ss],-bs[s]*alpha[s],ps_f[s],psi_f[ss]);
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      c = axpy_norm(r_d,b,mmp_d,r_d);
 | 
					 | 
				
			||||||
      AXPYTimer.Stop();
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
      // Convergence checks
 | 
					 | 
				
			||||||
      int all_converged = 1;
 | 
					 | 
				
			||||||
      for(int s=0;s<nshift;s++){
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
	if ( (!converged[s]) ){
 | 
					 | 
				
			||||||
	  IterationsToCompleteShift[s] = k;
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	  RealD css  = c * z[s][iz]* z[s][iz];
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	  if(css<rsqf[s]){
 | 
					 | 
				
			||||||
	    if ( ! converged[s] )
 | 
					 | 
				
			||||||
	      std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
 | 
					 | 
				
			||||||
	    converged[s]=1;
 | 
					 | 
				
			||||||
	  } else {
 | 
					 | 
				
			||||||
	    all_converged=0;
 | 
					 | 
				
			||||||
	  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      if ( all_converged || k == MaxIterationsMshift-1){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	SolverTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	for(int s=0;s<nshift;s++){
 | 
					 | 
				
			||||||
	  precisionChange(psi_d[s],psi_f[s]);
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	if ( all_converged ){
 | 
					 | 
				
			||||||
	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: All shifts have converged iteration "<<k<<std::endl;
 | 
					 | 
				
			||||||
	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: Checking solutions"<<std::endl;
 | 
					 | 
				
			||||||
	} else {
 | 
					 | 
				
			||||||
	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: Not all shifts have converged iteration "<<k<<std::endl;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	// Check answers 
 | 
					 | 
				
			||||||
	for(int s=0; s < nshift; s++) { 
 | 
					 | 
				
			||||||
	  Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq);
 | 
					 | 
				
			||||||
	  axpy(tmp_d,mass[s],psi_d[s],mmp_d);
 | 
					 | 
				
			||||||
	  axpy(r_d,-alpha[s],src_d,tmp_d);
 | 
					 | 
				
			||||||
	  RealD rn = norm2(r_d);
 | 
					 | 
				
			||||||
	  RealD cn = norm2(src_d);
 | 
					 | 
				
			||||||
	  TrueResidualShift[s] = std::sqrt(rn/cn);
 | 
					 | 
				
			||||||
	  std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  //If we have not reached the desired tolerance, do a (mixed precision) CG cleanup
 | 
					 | 
				
			||||||
	  if(rn >= rsq[s]){
 | 
					 | 
				
			||||||
	    CleanupTimer.Start();
 | 
					 | 
				
			||||||
	    std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: performing cleanup step for shift " << s << std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	    //Setup linear operators for final cleanup
 | 
					 | 
				
			||||||
	    ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]);
 | 
					 | 
				
			||||||
	    ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]);
 | 
					 | 
				
			||||||
					       
 | 
					 | 
				
			||||||
	    MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d); 
 | 
					 | 
				
			||||||
	    cg(src_d, psi_d[s]);
 | 
					 | 
				
			||||||
	    
 | 
					 | 
				
			||||||
	    TrueResidualShift[s] = cg.TrueResidual;
 | 
					 | 
				
			||||||
	    CleanupTimer.Stop();
 | 
					 | 
				
			||||||
	  }
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrecCleanup: Time Breakdown for body"<<std::endl;
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage << "\tSolver    " << SolverTimer.Elapsed()     <<std::endl;
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage << "\t\tAXPY    " << AXPYTimer.Elapsed()     <<std::endl;
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage << "\t\tMatrix    " << MatrixTimer.Elapsed()     <<std::endl;
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage << "\t\tShift    " << ShiftTimer.Elapsed()     <<std::endl;
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed()     <<std::endl;
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed()     <<std::endl;
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	IterationsToComplete = k;	
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	return;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
   
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
 | 
					 | 
				
			||||||
    assert(0);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
@@ -1,416 +0,0 @@
 | 
				
			|||||||
/*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2015
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
					 | 
				
			||||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
					 | 
				
			||||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
*************************************************************************************/
 | 
					 | 
				
			||||||
/*  END LEGAL */
 | 
					 | 
				
			||||||
#ifndef GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
 | 
					 | 
				
			||||||
#define GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
//CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision. 
 | 
					 | 
				
			||||||
//The residual is stored in single precision, but the search directions and solution are stored in double precision. 
 | 
					 | 
				
			||||||
//Every update_freq iterations the residual is corrected in double precision. 
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
//For safety the a final regular CG is applied to clean up if necessary
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
//Linop to add shift to input linop, used in cleanup CG
 | 
					 | 
				
			||||||
namespace ConjugateGradientMultiShiftMixedPrecSupport{
 | 
					 | 
				
			||||||
template<typename Field>
 | 
					 | 
				
			||||||
class ShiftedLinop: public LinearOperatorBase<Field>{
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  LinearOperatorBase<Field> &linop_base;
 | 
					 | 
				
			||||||
  RealD shift;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ShiftedLinop(LinearOperatorBase<Field> &_linop_base, RealD _shift): linop_base(_linop_base), shift(_shift){}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void OpDiag (const Field &in, Field &out){ assert(0); }
 | 
					 | 
				
			||||||
  void OpDir  (const Field &in, Field &out,int dir,int disp){ assert(0); }
 | 
					 | 
				
			||||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){ assert(0); }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  void Op     (const Field &in, Field &out){ assert(0); }
 | 
					 | 
				
			||||||
  void AdjOp  (const Field &in, Field &out){ assert(0); }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void HermOp(const Field &in, Field &out){
 | 
					 | 
				
			||||||
    linop_base.HermOp(in, out);
 | 
					 | 
				
			||||||
    axpy(out, shift, in, out);
 | 
					 | 
				
			||||||
  }    
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
					 | 
				
			||||||
    HermOp(in,out);
 | 
					 | 
				
			||||||
    ComplexD dot = innerProduct(in,out);
 | 
					 | 
				
			||||||
    n1=real(dot);
 | 
					 | 
				
			||||||
    n2=norm2(out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class FieldD, class FieldF,
 | 
					 | 
				
			||||||
	 typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
 | 
					 | 
				
			||||||
	 typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0> 
 | 
					 | 
				
			||||||
class ConjugateGradientMultiShiftMixedPrec : public OperatorMultiFunction<FieldD>,
 | 
					 | 
				
			||||||
					     public OperatorFunction<FieldD>
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
public:                                                
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  using OperatorFunction<FieldD>::operator();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  RealD   Tolerance;
 | 
					 | 
				
			||||||
  Integer MaxIterationsMshift;
 | 
					 | 
				
			||||||
  Integer MaxIterations;
 | 
					 | 
				
			||||||
  Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
 | 
					 | 
				
			||||||
  std::vector<int> IterationsToCompleteShift;  // Iterations for this shift
 | 
					 | 
				
			||||||
  int verbose;
 | 
					 | 
				
			||||||
  MultiShiftFunction shifts;
 | 
					 | 
				
			||||||
  std::vector<RealD> TrueResidualShift;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int ReliableUpdateFreq; //number of iterations between reliable updates
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  GridBase* SinglePrecGrid; //Grid for single-precision fields
 | 
					 | 
				
			||||||
  LinearOperatorBase<FieldF> &Linop_f; //single precision
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ConjugateGradientMultiShiftMixedPrec(Integer maxit, const MultiShiftFunction &_shifts,
 | 
					 | 
				
			||||||
				       GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f,
 | 
					 | 
				
			||||||
				       int _ReliableUpdateFreq) : 
 | 
					 | 
				
			||||||
    MaxIterationsMshift(maxit),  shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq),
 | 
					 | 
				
			||||||
    MaxIterations(20000)
 | 
					 | 
				
			||||||
  { 
 | 
					 | 
				
			||||||
    verbose=1;
 | 
					 | 
				
			||||||
    IterationsToCompleteShift.resize(_shifts.order);
 | 
					 | 
				
			||||||
    TrueResidualShift.resize(_shifts.order);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    GridBase *grid = src.Grid();
 | 
					 | 
				
			||||||
    int nshift = shifts.order;
 | 
					 | 
				
			||||||
    std::vector<FieldD> results(nshift,grid);
 | 
					 | 
				
			||||||
    (*this)(Linop,src,results,psi);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int nshift = shifts.order;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    (*this)(Linop,src,results);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    psi = shifts.norm*src;
 | 
					 | 
				
			||||||
    for(int i=0;i<nshift;i++){
 | 
					 | 
				
			||||||
      psi = psi + shifts.residues[i]*results[i];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    return;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d)
 | 
					 | 
				
			||||||
  { 
 | 
					 | 
				
			||||||
    GRID_TRACE("ConjugateGradientMultiShiftMixedPrec");
 | 
					 | 
				
			||||||
    GridBase *DoublePrecGrid = src_d.Grid();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    precisionChangeWorkspace pc_wk_s_to_d(DoublePrecGrid,SinglePrecGrid);
 | 
					 | 
				
			||||||
    precisionChangeWorkspace pc_wk_d_to_s(SinglePrecGrid,DoublePrecGrid);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Convenience references to the info stored in "MultiShiftFunction"
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    int nshift = shifts.order;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
 | 
					 | 
				
			||||||
    std::vector<RealD> &mresidual(shifts.tolerances);
 | 
					 | 
				
			||||||
    std::vector<RealD> alpha(nshift,1.0);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //Double precision search directions
 | 
					 | 
				
			||||||
    FieldD p_d(DoublePrecGrid);
 | 
					 | 
				
			||||||
    std::vector<FieldD> ps_d(nshift, DoublePrecGrid);// Search directions (double precision)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    FieldD tmp_d(DoublePrecGrid);
 | 
					 | 
				
			||||||
    FieldD r_d(DoublePrecGrid);
 | 
					 | 
				
			||||||
    FieldD mmp_d(DoublePrecGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    assert(psi_d.size()==nshift);
 | 
					 | 
				
			||||||
    assert(mass.size()==nshift);
 | 
					 | 
				
			||||||
    assert(mresidual.size()==nshift);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    // dynamic sized arrays on stack; 2d is a pain with vector
 | 
					 | 
				
			||||||
    std::vector<RealD>  bs(nshift);
 | 
					 | 
				
			||||||
    std::vector<RealD>  rsq(nshift);
 | 
					 | 
				
			||||||
    std::vector<RealD>  rsqf(nshift);
 | 
					 | 
				
			||||||
    std::vector<std::array<RealD,2> >  z(nshift);
 | 
					 | 
				
			||||||
    std::vector<int>     converged(nshift);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    const int       primary =0;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    //Primary shift fields CG iteration
 | 
					 | 
				
			||||||
    RealD a,b,c,d;
 | 
					 | 
				
			||||||
    RealD cp,bp,qq; //prev
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    // Matrix mult fields
 | 
					 | 
				
			||||||
    FieldF p_f(SinglePrecGrid);
 | 
					 | 
				
			||||||
    FieldF mmp_f(SinglePrecGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Check lightest mass
 | 
					 | 
				
			||||||
    for(int s=0;s<nshift;s++){
 | 
					 | 
				
			||||||
      assert( mass[s]>= mass[primary] );
 | 
					 | 
				
			||||||
      converged[s]=0;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    // Wire guess to zero
 | 
					 | 
				
			||||||
    // Residuals "r" are src
 | 
					 | 
				
			||||||
    // First search direction "p" is also src
 | 
					 | 
				
			||||||
    cp = norm2(src_d);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Handle trivial case of zero src.
 | 
					 | 
				
			||||||
    if( cp == 0. ){
 | 
					 | 
				
			||||||
      for(int s=0;s<nshift;s++){
 | 
					 | 
				
			||||||
	psi_d[s] = Zero();
 | 
					 | 
				
			||||||
	IterationsToCompleteShift[s] = 1;
 | 
					 | 
				
			||||||
	TrueResidualShift[s] = 0.;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      return;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int s=0;s<nshift;s++){
 | 
					 | 
				
			||||||
      rsq[s] = cp * mresidual[s] * mresidual[s];
 | 
					 | 
				
			||||||
      rsqf[s] =rsq[s];
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift "<< s <<" target resid "<<rsq[s]<<std::endl;
 | 
					 | 
				
			||||||
      ps_d[s] = src_d;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    // r and p for primary
 | 
					 | 
				
			||||||
    p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys
 | 
					 | 
				
			||||||
    r_d = p_d;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    //MdagM+m[0]
 | 
					 | 
				
			||||||
    precisionChange(p_f, p_d, pc_wk_d_to_s);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp)
 | 
					 | 
				
			||||||
    precisionChange(tmp_d, mmp_f, pc_wk_s_to_d);
 | 
					 | 
				
			||||||
    Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp)
 | 
					 | 
				
			||||||
    tmp_d = tmp_d - mmp_d;
 | 
					 | 
				
			||||||
    std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
 | 
					 | 
				
			||||||
    assert(norm2(tmp_d)< 1.0);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    axpy(mmp_d,mass[0],p_d,mmp_d);
 | 
					 | 
				
			||||||
    RealD rn = norm2(p_d);
 | 
					 | 
				
			||||||
    d += rn*mass[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    b = -cp /d;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    // Set up the various shift variables
 | 
					 | 
				
			||||||
    int       iz=0;
 | 
					 | 
				
			||||||
    z[0][1-iz] = 1.0;
 | 
					 | 
				
			||||||
    z[0][iz]   = 1.0;
 | 
					 | 
				
			||||||
    bs[0]      = b;
 | 
					 | 
				
			||||||
    for(int s=1;s<nshift;s++){
 | 
					 | 
				
			||||||
      z[s][1-iz] = 1.0;
 | 
					 | 
				
			||||||
      z[s][iz]   = 1.0/( 1.0 - b*(mass[s]-mass[0]));
 | 
					 | 
				
			||||||
      bs[s]      = b*z[s][iz]; 
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    // r += b[0] A.p[0]
 | 
					 | 
				
			||||||
    // c= norm(r)
 | 
					 | 
				
			||||||
    c=axpy_norm(r_d,b,mmp_d,r_d);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    for(int s=0;s<nshift;s++) {
 | 
					 | 
				
			||||||
      axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    ///////////////////////////////////////
 | 
					 | 
				
			||||||
    // Timers
 | 
					 | 
				
			||||||
    ///////////////////////////////////////
 | 
					 | 
				
			||||||
    GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    SolverTimer.Start();
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    // Iteration loop
 | 
					 | 
				
			||||||
    int k;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    for (k=1;k<=MaxIterationsMshift;k++){    
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      a = c /cp;
 | 
					 | 
				
			||||||
      AXPYTimer.Start();
 | 
					 | 
				
			||||||
      axpy(p_d,a,p_d,r_d); 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int s=0;s<nshift;s++){
 | 
					 | 
				
			||||||
	if ( ! converged[s] ) { 
 | 
					 | 
				
			||||||
	  if (s==0){
 | 
					 | 
				
			||||||
	    axpy(ps_d[s],a,ps_d[s],r_d);
 | 
					 | 
				
			||||||
	  } else{
 | 
					 | 
				
			||||||
	    RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
 | 
					 | 
				
			||||||
	    axpby(ps_d[s],z[s][iz],as,r_d,ps_d[s]);
 | 
					 | 
				
			||||||
	  }
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      AXPYTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      PrecChangeTimer.Start();
 | 
					 | 
				
			||||||
      precisionChange(p_f, p_d, pc_wk_d_to_s); //get back single prec search direction for linop
 | 
					 | 
				
			||||||
      PrecChangeTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      cp=c;
 | 
					 | 
				
			||||||
      MatrixTimer.Start();  
 | 
					 | 
				
			||||||
      Linop_f.HermOp(p_f,mmp_f);
 | 
					 | 
				
			||||||
      MatrixTimer.Stop();  
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      PrecChangeTimer.Start();
 | 
					 | 
				
			||||||
      precisionChange(mmp_d, mmp_f, pc_wk_s_to_d); // From Float to Double
 | 
					 | 
				
			||||||
      PrecChangeTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      AXPYTimer.Start();
 | 
					 | 
				
			||||||
      d=real(innerProduct(p_d,mmp_d));    
 | 
					 | 
				
			||||||
      axpy(mmp_d,mass[0],p_d,mmp_d);
 | 
					 | 
				
			||||||
      AXPYTimer.Stop();
 | 
					 | 
				
			||||||
      RealD rn = norm2(p_d);
 | 
					 | 
				
			||||||
      d += rn*mass[0];
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
      bp=b;
 | 
					 | 
				
			||||||
      b=-cp/d;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Toggle the recurrence history
 | 
					 | 
				
			||||||
      bs[0] = b;
 | 
					 | 
				
			||||||
      iz = 1-iz;
 | 
					 | 
				
			||||||
      ShiftTimer.Start();
 | 
					 | 
				
			||||||
      for(int s=1;s<nshift;s++){
 | 
					 | 
				
			||||||
	if((!converged[s])){
 | 
					 | 
				
			||||||
	  RealD z0 = z[s][1-iz];
 | 
					 | 
				
			||||||
	  RealD z1 = z[s][iz];
 | 
					 | 
				
			||||||
	  z[s][iz] = z0*z1*bp
 | 
					 | 
				
			||||||
	    / (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b)); 
 | 
					 | 
				
			||||||
	  bs[s] = b*z[s][iz]/z0; // NB sign  rel to Mike
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      ShiftTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      //Update double precision solutions
 | 
					 | 
				
			||||||
      AXPYTimer.Start();
 | 
					 | 
				
			||||||
      for(int s=0;s<nshift;s++){
 | 
					 | 
				
			||||||
	int ss = s;
 | 
					 | 
				
			||||||
	if( (!converged[s]) ) { 
 | 
					 | 
				
			||||||
	  axpy(psi_d[ss],-bs[s]*alpha[s],ps_d[s],psi_d[ss]);
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      //Perform reliable update if necessary; otherwise update residual from single-prec mmp
 | 
					 | 
				
			||||||
      c = axpy_norm(r_d,b,mmp_d,r_d);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      AXPYTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      if(k % ReliableUpdateFreq == 0){
 | 
					 | 
				
			||||||
	RealD c_old = c;
 | 
					 | 
				
			||||||
	//Replace r with true residual
 | 
					 | 
				
			||||||
	MatrixTimer.Start();  
 | 
					 | 
				
			||||||
	Linop_d.HermOp(psi_d[0],mmp_d); 
 | 
					 | 
				
			||||||
	MatrixTimer.Stop();  
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	AXPYTimer.Start();
 | 
					 | 
				
			||||||
	axpy(mmp_d,mass[0],psi_d[0],mmp_d);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	c = axpy_norm(r_d, -1.0, mmp_d, src_d);
 | 
					 | 
				
			||||||
	AXPYTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<< ", replaced |r|^2 = "<<c_old <<" with |r|^2 = "<<c<<std::endl;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
      // Convergence checks
 | 
					 | 
				
			||||||
      int all_converged = 1;
 | 
					 | 
				
			||||||
      for(int s=0;s<nshift;s++){
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
	if ( (!converged[s]) ){
 | 
					 | 
				
			||||||
	  IterationsToCompleteShift[s] = k;
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	  RealD css  = c * z[s][iz]* z[s][iz];
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	  if(css<rsqf[s]){
 | 
					 | 
				
			||||||
	    if ( ! converged[s] )
 | 
					 | 
				
			||||||
	      std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
 | 
					 | 
				
			||||||
	    converged[s]=1;
 | 
					 | 
				
			||||||
	  } else {
 | 
					 | 
				
			||||||
	    all_converged=0;
 | 
					 | 
				
			||||||
	  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      if ( all_converged || k == MaxIterationsMshift-1){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	SolverTimer.Stop();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	if ( all_converged ){
 | 
					 | 
				
			||||||
	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: All shifts have converged iteration "<<k<<std::endl;
 | 
					 | 
				
			||||||
	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Checking solutions"<<std::endl;
 | 
					 | 
				
			||||||
	} else {
 | 
					 | 
				
			||||||
	  std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Not all shifts have converged iteration "<<k<<std::endl;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	// Check answers 
 | 
					 | 
				
			||||||
	for(int s=0; s < nshift; s++) { 
 | 
					 | 
				
			||||||
	  Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq);
 | 
					 | 
				
			||||||
	  axpy(tmp_d,mass[s],psi_d[s],mmp_d);
 | 
					 | 
				
			||||||
	  axpy(r_d,-alpha[s],src_d,tmp_d);
 | 
					 | 
				
			||||||
	  RealD rn = norm2(r_d);
 | 
					 | 
				
			||||||
	  RealD cn = norm2(src_d);
 | 
					 | 
				
			||||||
	  TrueResidualShift[s] = std::sqrt(rn/cn);
 | 
					 | 
				
			||||||
	  std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  //If we have not reached the desired tolerance, do a (mixed precision) CG cleanup
 | 
					 | 
				
			||||||
	  if(rn >= rsq[s]){
 | 
					 | 
				
			||||||
	    CleanupTimer.Start();
 | 
					 | 
				
			||||||
	    std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: performing cleanup step for shift " << s << std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	    //Setup linear operators for final cleanup
 | 
					 | 
				
			||||||
	    ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]);
 | 
					 | 
				
			||||||
	    ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]);
 | 
					 | 
				
			||||||
					       
 | 
					 | 
				
			||||||
	    MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d); 
 | 
					 | 
				
			||||||
	    cg(src_d, psi_d[s]);
 | 
					 | 
				
			||||||
	    
 | 
					 | 
				
			||||||
	    TrueResidualShift[s] = cg.TrueResidual;
 | 
					 | 
				
			||||||
	    CleanupTimer.Stop();
 | 
					 | 
				
			||||||
	  }
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrec: Time Breakdown for body"<<std::endl;
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage << "\tSolver    " << SolverTimer.Elapsed()     <<std::endl;
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage << "\t\tAXPY    " << AXPYTimer.Elapsed()     <<std::endl;
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage << "\t\tMatrix    " << MatrixTimer.Elapsed()     <<std::endl;
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage << "\t\tShift    " << ShiftTimer.Elapsed()     <<std::endl;
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed()     <<std::endl;
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed()     <<std::endl;
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	IterationsToComplete = k;	
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	return;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
   
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
 | 
					 | 
				
			||||||
    assert(0);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
@@ -48,7 +48,7 @@ public:
 | 
				
			|||||||
  LinearOperatorBase<FieldF> &Linop_f;
 | 
					  LinearOperatorBase<FieldF> &Linop_f;
 | 
				
			||||||
  LinearOperatorBase<FieldD> &Linop_d;
 | 
					  LinearOperatorBase<FieldD> &Linop_d;
 | 
				
			||||||
  GridBase* SinglePrecGrid;
 | 
					  GridBase* SinglePrecGrid;
 | 
				
			||||||
  RealD Delta; //reliable update parameter. A reliable update is performed when the residual drops by a factor of Delta relative to its value at the last update
 | 
					  RealD Delta; //reliable update parameter
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //Optional ability to switch to a different linear operator once the tolerance reaches a certain point. Useful for single/half -> single/single
 | 
					  //Optional ability to switch to a different linear operator once the tolerance reaches a certain point. Useful for single/half -> single/single
 | 
				
			||||||
  LinearOperatorBase<FieldF> *Linop_fallback;
 | 
					  LinearOperatorBase<FieldF> *Linop_fallback;
 | 
				
			||||||
@@ -65,9 +65,7 @@ public:
 | 
				
			|||||||
      ErrorOnNoConverge(err_on_no_conv),
 | 
					      ErrorOnNoConverge(err_on_no_conv),
 | 
				
			||||||
      DoFinalCleanup(true),
 | 
					      DoFinalCleanup(true),
 | 
				
			||||||
      Linop_fallback(NULL)
 | 
					      Linop_fallback(NULL)
 | 
				
			||||||
  {
 | 
					  {};
 | 
				
			||||||
    assert(Delta > 0. && Delta < 1. && "Expect  0 < Delta < 1");
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){
 | 
					  void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){
 | 
				
			||||||
    Linop_fallback = &_Linop_fallback;
 | 
					    Linop_fallback = &_Linop_fallback;
 | 
				
			||||||
@@ -75,7 +73,6 @@ public:
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
  void operator()(const FieldD &src, FieldD &psi) {
 | 
					  void operator()(const FieldD &src, FieldD &psi) {
 | 
				
			||||||
    GRID_TRACE("ConjugateGradientReliableUpdate");
 | 
					 | 
				
			||||||
    LinearOperatorBase<FieldF> *Linop_f_use = &Linop_f;
 | 
					    LinearOperatorBase<FieldF> *Linop_f_use = &Linop_f;
 | 
				
			||||||
    bool using_fallback = false;
 | 
					    bool using_fallback = false;
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
@@ -118,12 +115,9 @@ public:
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    //Single prec initialization
 | 
					    //Single prec initialization
 | 
				
			||||||
    precisionChangeWorkspace pc_wk_sp_to_dp(src.Grid(), SinglePrecGrid);
 | 
					 | 
				
			||||||
    precisionChangeWorkspace pc_wk_dp_to_sp(SinglePrecGrid, src.Grid());
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    FieldF r_f(SinglePrecGrid);
 | 
					    FieldF r_f(SinglePrecGrid);
 | 
				
			||||||
    r_f.Checkerboard() = r.Checkerboard();
 | 
					    r_f.Checkerboard() = r.Checkerboard();
 | 
				
			||||||
    precisionChange(r_f, r, pc_wk_dp_to_sp);
 | 
					    precisionChange(r_f, r);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    FieldF psi_f(r_f);
 | 
					    FieldF psi_f(r_f);
 | 
				
			||||||
    psi_f = Zero();
 | 
					    psi_f = Zero();
 | 
				
			||||||
@@ -139,7 +133,6 @@ public:
 | 
				
			|||||||
    GridStopWatch LinalgTimer;
 | 
					    GridStopWatch LinalgTimer;
 | 
				
			||||||
    GridStopWatch MatrixTimer;
 | 
					    GridStopWatch MatrixTimer;
 | 
				
			||||||
    GridStopWatch SolverTimer;
 | 
					    GridStopWatch SolverTimer;
 | 
				
			||||||
    GridStopWatch PrecChangeTimer;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    SolverTimer.Start();
 | 
					    SolverTimer.Start();
 | 
				
			||||||
    int k = 0;
 | 
					    int k = 0;
 | 
				
			||||||
@@ -179,9 +172,7 @@ public:
 | 
				
			|||||||
      // Stopping condition
 | 
					      // Stopping condition
 | 
				
			||||||
      if (cp <= rsq) {
 | 
					      if (cp <= rsq) {
 | 
				
			||||||
	//Although not written in the paper, I assume that I have to add on the final solution
 | 
						//Although not written in the paper, I assume that I have to add on the final solution
 | 
				
			||||||
	PrecChangeTimer.Start();
 | 
						precisionChange(mmp, psi_f);
 | 
				
			||||||
	precisionChange(mmp, psi_f, pc_wk_sp_to_dp);
 | 
					 | 
				
			||||||
	PrecChangeTimer.Stop();
 | 
					 | 
				
			||||||
	psi = psi + mmp;
 | 
						psi = psi + mmp;
 | 
				
			||||||
	
 | 
						
 | 
				
			||||||
	
 | 
						
 | 
				
			||||||
@@ -202,9 +193,6 @@ public:
 | 
				
			|||||||
	std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed() <<std::endl;
 | 
						std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed() <<std::endl;
 | 
				
			||||||
	std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
						std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
				
			||||||
	std::cout << GridLogMessage << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
						std::cout << GridLogMessage << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
				
			||||||
	std::cout << GridLogMessage << "\tPrecChange " << PrecChangeTimer.Elapsed() <<std::endl;
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage << "\tPrecChange avg time " << PrecChangeTimer.Elapsed()/(2*l+1) <<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
	IterationsToComplete = k;	
 | 
						IterationsToComplete = k;	
 | 
				
			||||||
	ReliableUpdatesPerformed = l;
 | 
						ReliableUpdatesPerformed = l;
 | 
				
			||||||
@@ -225,21 +213,14 @@ public:
 | 
				
			|||||||
      else if(cp < Delta * MaxResidSinceLastRelUp) { //reliable update
 | 
					      else if(cp < Delta * MaxResidSinceLastRelUp) { //reliable update
 | 
				
			||||||
	std::cout << GridLogMessage << "ConjugateGradientReliableUpdate "
 | 
						std::cout << GridLogMessage << "ConjugateGradientReliableUpdate "
 | 
				
			||||||
		  << cp << "(residual) < " << Delta << "(Delta) * " << MaxResidSinceLastRelUp << "(MaxResidSinceLastRelUp) on iteration " << k << " : performing reliable update\n";
 | 
							  << cp << "(residual) < " << Delta << "(Delta) * " << MaxResidSinceLastRelUp << "(MaxResidSinceLastRelUp) on iteration " << k << " : performing reliable update\n";
 | 
				
			||||||
	PrecChangeTimer.Start();
 | 
						precisionChange(mmp, psi_f);
 | 
				
			||||||
	precisionChange(mmp, psi_f, pc_wk_sp_to_dp);
 | 
					 | 
				
			||||||
	PrecChangeTimer.Stop();
 | 
					 | 
				
			||||||
	psi = psi + mmp;
 | 
						psi = psi + mmp;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	MatrixTimer.Start();
 | 
					 | 
				
			||||||
	Linop_d.HermOpAndNorm(psi, mmp, d, qq);
 | 
						Linop_d.HermOpAndNorm(psi, mmp, d, qq);
 | 
				
			||||||
	MatrixTimer.Stop();
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	r = src - mmp;
 | 
						r = src - mmp;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	psi_f = Zero();
 | 
						psi_f = Zero();
 | 
				
			||||||
	PrecChangeTimer.Start();
 | 
						precisionChange(r_f, r);
 | 
				
			||||||
	precisionChange(r_f, r, pc_wk_dp_to_sp);
 | 
					 | 
				
			||||||
	PrecChangeTimer.Stop();
 | 
					 | 
				
			||||||
	cp = norm2(r);
 | 
						cp = norm2(r);
 | 
				
			||||||
	MaxResidSinceLastRelUp = cp;
 | 
						MaxResidSinceLastRelUp = cp;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -33,19 +33,16 @@ namespace Grid {
 | 
				
			|||||||
template<class Field>
 | 
					template<class Field>
 | 
				
			||||||
class ZeroGuesser: public LinearFunction<Field> {
 | 
					class ZeroGuesser: public LinearFunction<Field> {
 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
  using LinearFunction<Field>::operator();
 | 
					 | 
				
			||||||
    virtual void operator()(const Field &src, Field &guess) { guess = Zero(); };
 | 
					    virtual void operator()(const Field &src, Field &guess) { guess = Zero(); };
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
template<class Field>
 | 
					template<class Field>
 | 
				
			||||||
class DoNothingGuesser: public LinearFunction<Field> {
 | 
					class DoNothingGuesser: public LinearFunction<Field> {
 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
  using LinearFunction<Field>::operator();
 | 
					 | 
				
			||||||
  virtual void operator()(const Field &src, Field &guess) {  };
 | 
					  virtual void operator()(const Field &src, Field &guess) {  };
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
template<class Field>
 | 
					template<class Field>
 | 
				
			||||||
class SourceGuesser: public LinearFunction<Field> {
 | 
					class SourceGuesser: public LinearFunction<Field> {
 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
  using LinearFunction<Field>::operator();
 | 
					 | 
				
			||||||
  virtual void operator()(const Field &src, Field &guess) { guess = src; };
 | 
					  virtual void operator()(const Field &src, Field &guess) { guess = src; };
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -57,24 +54,15 @@ class DeflatedGuesser: public LinearFunction<Field> {
 | 
				
			|||||||
private:
 | 
					private:
 | 
				
			||||||
  const std::vector<Field> &evec;
 | 
					  const std::vector<Field> &evec;
 | 
				
			||||||
  const std::vector<RealD> &eval;
 | 
					  const std::vector<RealD> &eval;
 | 
				
			||||||
  const unsigned int       N;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
  using LinearFunction<Field>::operator();
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  DeflatedGuesser(const std::vector<Field> & _evec,const std::vector<RealD> & _eval)
 | 
					  DeflatedGuesser(const std::vector<Field> & _evec,const std::vector<RealD> & _eval) : evec(_evec), eval(_eval) {};
 | 
				
			||||||
  : DeflatedGuesser(_evec, _eval, _evec.size())
 | 
					 | 
				
			||||||
  {}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  DeflatedGuesser(const std::vector<Field> & _evec, const std::vector<RealD> & _eval, const unsigned int _N)
 | 
					 | 
				
			||||||
  : evec(_evec), eval(_eval), N(_N)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    assert(evec.size()==eval.size());
 | 
					 | 
				
			||||||
    assert(N <= evec.size());
 | 
					 | 
				
			||||||
  } 
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  virtual void operator()(const Field &src,Field &guess) {
 | 
					  virtual void operator()(const Field &src,Field &guess) {
 | 
				
			||||||
    guess = Zero();
 | 
					    guess = Zero();
 | 
				
			||||||
 | 
					    assert(evec.size()==eval.size());
 | 
				
			||||||
 | 
					    auto N = evec.size();
 | 
				
			||||||
    for (int i=0;i<N;i++) {
 | 
					    for (int i=0;i<N;i++) {
 | 
				
			||||||
      const Field& tmp = evec[i];
 | 
					      const Field& tmp = evec[i];
 | 
				
			||||||
      axpy(guess,TensorRemove(innerProduct(tmp,src)) / eval[i],tmp,guess);
 | 
					      axpy(guess,TensorRemove(innerProduct(tmp,src)) / eval[i],tmp,guess);
 | 
				
			||||||
@@ -91,7 +79,6 @@ private:
 | 
				
			|||||||
  const std::vector<RealD>       &eval_coarse;
 | 
					  const std::vector<RealD>       &eval_coarse;
 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  using LinearFunction<FineField>::operator();
 | 
					 | 
				
			||||||
  LocalCoherenceDeflatedGuesser(const std::vector<FineField>   &_subspace,
 | 
					  LocalCoherenceDeflatedGuesser(const std::vector<FineField>   &_subspace,
 | 
				
			||||||
				const std::vector<CoarseField> &_evec_coarse,
 | 
									const std::vector<CoarseField> &_evec_coarse,
 | 
				
			||||||
				const std::vector<RealD>       &_eval_coarse)
 | 
									const std::vector<RealD>       &_eval_coarse)
 | 
				
			||||||
@@ -113,43 +100,7 @@ public:
 | 
				
			|||||||
    blockPromote(guess_coarse,guess,subspace);
 | 
					    blockPromote(guess_coarse,guess,subspace);
 | 
				
			||||||
    guess.Checkerboard() = src.Checkerboard();
 | 
					    guess.Checkerboard() = src.Checkerboard();
 | 
				
			||||||
  };
 | 
					  };
 | 
				
			||||||
 | 
					};
 | 
				
			||||||
  void operator()(const std::vector<FineField> &src,std::vector<FineField> &guess) {
 | 
					 | 
				
			||||||
    int Nevec = (int)evec_coarse.size();
 | 
					 | 
				
			||||||
    int Nsrc = (int)src.size();
 | 
					 | 
				
			||||||
    // make temp variables
 | 
					 | 
				
			||||||
    std::vector<CoarseField> src_coarse(Nsrc,evec_coarse[0].Grid());
 | 
					 | 
				
			||||||
    std::vector<CoarseField> guess_coarse(Nsrc,evec_coarse[0].Grid());    
 | 
					 | 
				
			||||||
    //Preporcessing
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "Start BlockProject for loop" << std::endl;
 | 
					 | 
				
			||||||
    for (int j=0;j<Nsrc;j++)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
    guess_coarse[j] = Zero();
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl;
 | 
					 | 
				
			||||||
    blockProject(src_coarse[j],src[j],subspace);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    //deflation set up for eigen vector batchsize 1 and source batch size equal number of sources
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "Start ProjectAccum for loop" << std::endl;
 | 
					 | 
				
			||||||
    for (int i=0;i<Nevec;i++)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage << "ProjectAccum Nvec: " << i << std::endl;
 | 
					 | 
				
			||||||
      const CoarseField & tmp = evec_coarse[i];
 | 
					 | 
				
			||||||
      for (int j=0;j<Nsrc;j++)
 | 
					 | 
				
			||||||
      {
 | 
					 | 
				
			||||||
        axpy(guess_coarse[j],TensorRemove(innerProduct(tmp,src_coarse[j])) / eval_coarse[i],tmp,guess_coarse[j]);
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    //postprocessing
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "Start BlockPromote for loop" << std::endl;
 | 
					 | 
				
			||||||
    for (int j=0;j<Nsrc;j++)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl;
 | 
					 | 
				
			||||||
    blockPromote(guess_coarse[j],guess[j],subspace);
 | 
					 | 
				
			||||||
    guess[j].Checkerboard() = src[j].Checkerboard();
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -7,8 +7,9 @@
 | 
				
			|||||||
    Copyright (C) 2015
 | 
					    Copyright (C) 2015
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
					Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
				
			||||||
 | 
					Author: Chulwoo Jung
 | 
				
			||||||
Author: Yong-Chull Jang <ypj@quark.phy.bnl.gov> 
 | 
					Author: Yong-Chull Jang <ypj@quark.phy.bnl.gov> 
 | 
				
			||||||
Author: Chulwoo Jung <chulwoo@bnl.gov>
 | 
					Author: Guido Cossu
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					    This program is free software; you can redistribute it and/or modify
 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					    it under the terms of the GNU General Public License as published by
 | 
				
			||||||
@@ -184,6 +185,10 @@ public:
 | 
				
			|||||||
  {
 | 
					  {
 | 
				
			||||||
    RealD nn = norm2(v);
 | 
					    RealD nn = norm2(v);
 | 
				
			||||||
    nn = sqrt(nn);
 | 
					    nn = sqrt(nn);
 | 
				
			||||||
 | 
					#if 0
 | 
				
			||||||
 | 
					    if(if_print && nn < 1e20)
 | 
				
			||||||
 | 
					    Glog<<"normalize: "<<nn<<std::endl;
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
    v = v * (1.0/nn);
 | 
					    v = v * (1.0/nn);
 | 
				
			||||||
    return nn;
 | 
					    return nn;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -222,7 +227,19 @@ public:
 | 
				
			|||||||
    for(int j=0; j<k; ++j){
 | 
					    for(int j=0; j<k; ++j){
 | 
				
			||||||
    for(int i=0; i<_Nu; ++i){
 | 
					    for(int i=0; i<_Nu; ++i){
 | 
				
			||||||
      ip = innerProduct(evec[j],w[i]); 
 | 
					      ip = innerProduct(evec[j],w[i]); 
 | 
				
			||||||
 | 
					#if 0
 | 
				
			||||||
 | 
					      if(if_print) 
 | 
				
			||||||
 | 
					      if( norm(ip)/norm2(w[i]) > 1e-14)
 | 
				
			||||||
 | 
					      Glog<<"orthogonalize before: "<<i<<" "<<j<<" of "<<k<<" "<< ip <<std::endl;
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
      w[i] = w[i] - ip * evec[j];
 | 
					      w[i] = w[i] - ip * evec[j];
 | 
				
			||||||
 | 
					#if 0
 | 
				
			||||||
 | 
					      if(if_print) {
 | 
				
			||||||
 | 
					        ip = innerProduct(evec[j],w[i]); 
 | 
				
			||||||
 | 
					        if( norm(ip)/norm2(w[i]) > 1e-14)
 | 
				
			||||||
 | 
					          Glog<<"orthogonalize after: "<<i<<" "<<j<<" of "<<k<<" "<< ip <<std::endl;
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
    }}
 | 
					    }}
 | 
				
			||||||
    for(int i=0; i<_Nu; ++i)
 | 
					    for(int i=0; i<_Nu; ++i)
 | 
				
			||||||
    assert(normalize(w[i],if_print) !=0);
 | 
					    assert(normalize(w[i],if_print) !=0);
 | 
				
			||||||
@@ -248,6 +265,14 @@ public:
 | 
				
			|||||||
//    Glog << "nBatch, Nevec_acc, R, Nu = " 
 | 
					//    Glog << "nBatch, Nevec_acc, R, Nu = " 
 | 
				
			||||||
//         << Nbatch << "," << Nevec_acc << "," << R << "," << Nu << std::endl;
 | 
					//         << Nbatch << "," << Nevec_acc << "," << R << "," << Nu << std::endl;
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
 | 
					#if 0 // a trivial test
 | 
				
			||||||
 | 
					    for (int col=0; col<Nu; ++col) {
 | 
				
			||||||
 | 
					      for (size_t row=0; row<sites*12; ++row) {
 | 
				
			||||||
 | 
					        w_acc[col*sites*12+row].x = 1.0;
 | 
				
			||||||
 | 
					        w_acc[col*sites*12+row].y = 0.0;
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					#else 
 | 
				
			||||||
    for (int col=0; col<Nu; ++col) {
 | 
					    for (int col=0; col<Nu; ++col) {
 | 
				
			||||||
//      auto w_v = w[col].View();
 | 
					//      auto w_v = w[col].View();
 | 
				
			||||||
      autoView( w_v,w[col], AcceleratorWrite);
 | 
					      autoView( w_v,w[col], AcceleratorWrite);
 | 
				
			||||||
@@ -257,6 +282,7 @@ public:
 | 
				
			|||||||
        w_acc[col*sites*12+row] = z[row];
 | 
					        w_acc[col*sites*12+row] = z[row];
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
    cublasHandle_t handle;
 | 
					    cublasHandle_t handle;
 | 
				
			||||||
    cublasStatus_t stat;
 | 
					    cublasStatus_t stat;
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
@@ -265,6 +291,14 @@ public:
 | 
				
			|||||||
    Glog << "cuBLAS Zgemm"<< std::endl;
 | 
					    Glog << "cuBLAS Zgemm"<< std::endl;
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    for (int b=0; b<Nbatch; ++b) {
 | 
					    for (int b=0; b<Nbatch; ++b) {
 | 
				
			||||||
 | 
					#if 0 // a trivial test
 | 
				
			||||||
 | 
					      for (int col=0; col<Nevec_acc; ++col) {
 | 
				
			||||||
 | 
					        for (size_t row=0; row<sites*12; ++row) {
 | 
				
			||||||
 | 
					          evec_acc[col*sites*12+row].x = 1.0;
 | 
				
			||||||
 | 
					          evec_acc[col*sites*12+row].y = 0.0;
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					#else 
 | 
				
			||||||
      for (int col=0; col<Nevec_acc; ++col) {
 | 
					      for (int col=0; col<Nevec_acc; ++col) {
 | 
				
			||||||
//        auto evec_v = evec[b*Nevec_acc+col].View();
 | 
					//        auto evec_v = evec[b*Nevec_acc+col].View();
 | 
				
			||||||
        autoView( evec_v,evec[b*Nevec_acc+col], AcceleratorWrite);
 | 
					        autoView( evec_v,evec[b*Nevec_acc+col], AcceleratorWrite);
 | 
				
			||||||
@@ -274,6 +308,7 @@ public:
 | 
				
			|||||||
          evec_acc[col*sites*12+row] = z[row];
 | 
					          evec_acc[col*sites*12+row] = z[row];
 | 
				
			||||||
        }
 | 
					        }
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
 | 
					#endif 
 | 
				
			||||||
      CUDA_COMPLEX alpha = MAKE_CUDA_COMPLEX(1.0,0.0);
 | 
					      CUDA_COMPLEX alpha = MAKE_CUDA_COMPLEX(1.0,0.0);
 | 
				
			||||||
      CUDA_COMPLEX beta = MAKE_CUDA_COMPLEX(0.0,0.0);
 | 
					      CUDA_COMPLEX beta = MAKE_CUDA_COMPLEX(0.0,0.0);
 | 
				
			||||||
      stat = CUDA_GEMM(handle, CUBLAS_OP_C, CUBLAS_OP_N, Nevec_acc, Nu, 12*sites,
 | 
					      stat = CUDA_GEMM(handle, CUBLAS_OP_C, CUBLAS_OP_N, Nevec_acc, Nu, 12*sites,
 | 
				
			||||||
@@ -284,6 +319,19 @@ public:
 | 
				
			|||||||
      //Glog << stat << std::endl;
 | 
					      //Glog << stat << std::endl;
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
      grid->GlobalSumVector((CUDA_FLOAT*)c_acc,2*Nu*Nevec_acc);
 | 
					      grid->GlobalSumVector((CUDA_FLOAT*)c_acc,2*Nu*Nevec_acc);
 | 
				
			||||||
 | 
					#if 0      
 | 
				
			||||||
 | 
					      for (int i=0; i<Nu; ++i) {
 | 
				
			||||||
 | 
					        for (size_t j=0; j<Nevec_acc; ++j) {
 | 
				
			||||||
 | 
					          CUDA_COMPLEX z = c_acc[i*Nevec_acc+j];
 | 
				
			||||||
 | 
					          MyComplex ip(z.x,z.y);
 | 
				
			||||||
 | 
					          if (do_print) {
 | 
				
			||||||
 | 
					            Glog << "<evec,w>[" << j << "," << i << "] = " 
 | 
				
			||||||
 | 
					                 << z.x << " + i " << z.y << std::endl;
 | 
				
			||||||
 | 
					          }
 | 
				
			||||||
 | 
					          w[i] = w[i] - ip * evec[b*Nevec_acc+j];
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
      alpha = MAKE_CUDA_COMPLEX(-1.0,0.0);
 | 
					      alpha = MAKE_CUDA_COMPLEX(-1.0,0.0);
 | 
				
			||||||
      beta = MAKE_CUDA_COMPLEX(1.0,0.0);
 | 
					      beta = MAKE_CUDA_COMPLEX(1.0,0.0);
 | 
				
			||||||
      stat = CUDA_GEMM(handle, CUBLAS_OP_N, CUBLAS_OP_N, 12*sites, Nu, Nevec_acc,
 | 
					      stat = CUDA_GEMM(handle, CUBLAS_OP_N, CUBLAS_OP_N, 12*sites, Nu, Nevec_acc,
 | 
				
			||||||
@@ -292,7 +340,9 @@ public:
 | 
				
			|||||||
                         &beta, 
 | 
					                         &beta, 
 | 
				
			||||||
                         w_acc, 12*sites);
 | 
					                         w_acc, 12*sites);
 | 
				
			||||||
      //Glog << stat << std::endl;
 | 
					      //Glog << stat << std::endl;
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					#if 1    
 | 
				
			||||||
    for (int col=0; col<Nu; ++col) {
 | 
					    for (int col=0; col<Nu; ++col) {
 | 
				
			||||||
//      auto w_v = w[col].View();
 | 
					//      auto w_v = w[col].View();
 | 
				
			||||||
      autoView( w_v,w[col], AcceleratorWrite);
 | 
					      autoView( w_v,w[col], AcceleratorWrite);
 | 
				
			||||||
@@ -301,6 +351,7 @@ public:
 | 
				
			|||||||
        z[row] = w_acc[col*sites*12+row];
 | 
					        z[row] = w_acc[col*sites*12+row];
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
    for (int i=0; i<Nu; ++i) {
 | 
					    for (int i=0; i<Nu; ++i) {
 | 
				
			||||||
      assert(normalize(w[i],do_print)!=0);
 | 
					      assert(normalize(w[i],do_print)!=0);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
@@ -317,6 +368,56 @@ public:
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#if 0
 | 
				
			||||||
 | 
					void innerProductD (std::vector<ComplexD> &inner, std::vector<Field>& lhs, int llhs, std::vector<Field>& rhs, int lrhs)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  typedef typename Field:vector_object vobj;
 | 
				
			||||||
 | 
					  typedef typename vobj::scalar_type scalar_type;
 | 
				
			||||||
 | 
					  typedef typename vobj::vector_typeD vector_type;
 | 
				
			||||||
 | 
					  GridBase *grid = lhs[0]._grid;
 | 
				
			||||||
 | 
					  assert(grid == rhs[0]._grid;
 | 
				
			||||||
 | 
					  const int pad = 8;
 | 
				
			||||||
 | 
					  int total = llhs*lrhs;
 | 
				
			||||||
 | 
					  assert(inner.size()==total);
 | 
				
			||||||
 | 
					  int sum_size=grid->SumArraySize();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					//  std::vector<ComplexD> inner(total);
 | 
				
			||||||
 | 
					  Vector<ComplexD> sumarray(sum_size*pad*total);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  parallel_for(int thr=0;thr<sum_size;thr++){
 | 
				
			||||||
 | 
					    int nwork, mywork, myoff;
 | 
				
			||||||
 | 
					    GridThread::GetWork(grid->oSites(),thr,mywork,myoff);
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    std::vector< decltype(innerProductD(lhs[0]._odata[0],rhs[0]._odata[0])) > vinner(total,zero); // private to thread; sub summation
 | 
				
			||||||
 | 
					    for(int ss=myoff;ss<mywork+myoff; ss++){
 | 
				
			||||||
 | 
					    for(int i=0; i<llhs; ++i){
 | 
				
			||||||
 | 
					    for(int j=0; j<lrhs; ++j){
 | 
				
			||||||
 | 
					      vinner[i*k+j] += innerProductD(lhs[i]._odata[ss],rhs[j]._odata[ss]);
 | 
				
			||||||
 | 
					    }}
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    // All threads sum across SIMD; reduce serial work at end
 | 
				
			||||||
 | 
					    // one write per cacheline with streaming store
 | 
				
			||||||
 | 
					    for(int i=0; i<total; ++i){
 | 
				
			||||||
 | 
					    ComplexD tmp = Reduce(TensorRemove(vinner[i])) ;
 | 
				
			||||||
 | 
					    vstream(sumarray[(i*sum_size+thr)*pad],tmp);
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
 | 
					for( int i =0;i<total;i++){
 | 
				
			||||||
 | 
					  inner[i]=0.0;
 | 
				
			||||||
 | 
					  for(int j=0;j<sum_size;j++){
 | 
				
			||||||
 | 
					    inner[i] += sumarray[(i*sum_size+j)*pad];
 | 
				
			||||||
 | 
					  } 
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					  for( int i =0;i<total;i++){
 | 
				
			||||||
 | 
					    ComplexD tmp=inner[i];
 | 
				
			||||||
 | 
					    evec[0]._grid->GlobalSum(tmp);
 | 
				
			||||||
 | 
					    inner[i]=tmp;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					//  return inner;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  void orthogonalize_blockhead(Field& w, std::vector<Field>& evec, int k, int Nu)
 | 
					  void orthogonalize_blockhead(Field& w, std::vector<Field>& evec, int k, int Nu)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
@@ -738,6 +839,14 @@ cudaStat = cudaMallocManaged((void **)&evec_acc, Nevec_acc*sites*12*sizeof(CUDA_
 | 
				
			|||||||
      Glog << fname + " CONVERGED ; Summary :\n";
 | 
					      Glog << fname + " CONVERGED ; Summary :\n";
 | 
				
			||||||
      // Sort convered eigenpairs.
 | 
					      // Sort convered eigenpairs.
 | 
				
			||||||
      std::vector<Field>  Btmp(Nstop,grid); // waste of space replicating
 | 
					      std::vector<Field>  Btmp(Nstop,grid); // waste of space replicating
 | 
				
			||||||
 | 
					#if 0
 | 
				
			||||||
 | 
					      for(int i=0; i<Nconv; ++i) Btmp[i]=0;
 | 
				
			||||||
 | 
					      for(int i=0; i<Nconv; ++i)
 | 
				
			||||||
 | 
					      for(int k = 0; k<Nr; ++k){
 | 
				
			||||||
 | 
					         Btmp[i].Checkerboard() = evec[k].Checkerboard();
 | 
				
			||||||
 | 
					         Btmp[i] += evec[k]*Qt(k,i);
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      for(int i=0; i<Nstop; ++i){
 | 
					      for(int i=0; i<Nstop; ++i){
 | 
				
			||||||
	  Btmp[i]=0.;
 | 
						  Btmp[i]=0.;
 | 
				
			||||||
@@ -755,7 +864,7 @@ cudaStat = cudaMallocManaged((void **)&evec_acc, Nevec_acc*sites*12*sizeof(CUDA_
 | 
				
			|||||||
          
 | 
					          
 | 
				
			||||||
          std::cout.precision(13);
 | 
					          std::cout.precision(13);
 | 
				
			||||||
          std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
 | 
					          std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
 | 
				
			||||||
          std::cout << "eval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< vnum/vden;
 | 
					          std::cout << "eval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< vnum/vden<<" "<<eval2[i];;
 | 
				
			||||||
          std::cout << "   resid^2 = "<< std::setw(20)<< std::setiosflags(std::ios_base::right)<< vv<< std::endl;
 | 
					          std::cout << "   resid^2 = "<< std::setw(20)<< std::setiosflags(std::ios_base::right)<< vv<< std::endl;
 | 
				
			||||||
        eval[i] = vnum/vden;
 | 
					        eval[i] = vnum/vden;
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
@@ -912,6 +1021,25 @@ if(split_test){
 | 
				
			|||||||
      }
 | 
					      }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    Glog << "LinAlg done "<< std::endl;
 | 
					    Glog << "LinAlg done "<< std::endl;
 | 
				
			||||||
 | 
					#if 0    
 | 
				
			||||||
 | 
					    Glog << "Gram Schmidt "<< std::endl;
 | 
				
			||||||
 | 
					    // re-orthogonalization for numerical stability
 | 
				
			||||||
 | 
					    if (b>0) {
 | 
				
			||||||
 | 
					      for (int u=0; u<Nu; ++u) {
 | 
				
			||||||
 | 
					        orthogonalize(w[u],evec,R);
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					      for (int u=1; u<Nu; ++u) {
 | 
				
			||||||
 | 
					        orthogonalize(w[u],w,u);
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    //if (b>0) {
 | 
				
			||||||
 | 
					    //  orthogonalize_blockhead(w[0],evec,b,Nu);
 | 
				
			||||||
 | 
					    //  for (int u=1; u<Nu; ++u) {
 | 
				
			||||||
 | 
					    //    orthogonalize(w[u],w,u);
 | 
				
			||||||
 | 
					    //  }
 | 
				
			||||||
 | 
					    //}
 | 
				
			||||||
 | 
					    Glog << "Gram Schmidt done "<< std::endl;
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if (b < Nm/Nu-1) {
 | 
					    if (b < Nm/Nu-1) {
 | 
				
			||||||
      for (int u=0; u<Nu; ++u) {
 | 
					      for (int u=0; u<Nu; ++u) {
 | 
				
			||||||
@@ -990,6 +1118,7 @@ if(split_test){
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
    //std::cout << BlockTriDiag << std::endl;
 | 
					    //std::cout << BlockTriDiag << std::endl;
 | 
				
			||||||
//#ifdef USE_LAPACK
 | 
					//#ifdef USE_LAPACK
 | 
				
			||||||
 | 
					#if 1
 | 
				
			||||||
  const int size = Nm;
 | 
					  const int size = Nm;
 | 
				
			||||||
  MKL_INT NN = Nk;
 | 
					  MKL_INT NN = Nk;
 | 
				
			||||||
//  double evals_tmp[NN];
 | 
					//  double evals_tmp[NN];
 | 
				
			||||||
@@ -1060,6 +1189,20 @@ if(split_test){
 | 
				
			|||||||
      grid->GlobalSumVector((double*)evec_tmp,2*NN*NN);
 | 
					      grid->GlobalSumVector((double*)evec_tmp,2*NN*NN);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  } 
 | 
					  } 
 | 
				
			||||||
 | 
					  // Safer to sort instead of just reversing it, 
 | 
				
			||||||
 | 
					  // but the document of the routine says evals are sorted in increasing order. 
 | 
				
			||||||
 | 
					  // qr gives evals in decreasing order.
 | 
				
			||||||
 | 
					//  for(int i=0;i<NN;i++){
 | 
				
			||||||
 | 
					//    lmd [NN-1-i]=evals_tmp[i];
 | 
				
			||||||
 | 
					//    for(int j=0;j<NN;j++){
 | 
				
			||||||
 | 
					//      Qt((NN-1-i),j)=evec_tmp[i][j];
 | 
				
			||||||
 | 
					//    }
 | 
				
			||||||
 | 
					//  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					//  MKL_Complex16 *eval_tmp = malloc(NN*sizeof(MKL_Complex16));
 | 
				
			||||||
 | 
					//  MKL_Complex16 *evec_tmp = malloc(NN*NN*sizeof(MKL_Complex16));
 | 
				
			||||||
 | 
					//  MKL_Complex16 *DD = malloc(NN*NN*sizeof(MKL_Complex16));
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
    for (int i = 0; i < Nk; i++) 
 | 
					    for (int i = 0; i < Nk; i++) 
 | 
				
			||||||
      eval[Nk-1-i] = evals_tmp[i];
 | 
					      eval[Nk-1-i] = evals_tmp[i];
 | 
				
			||||||
    for (int i = 0; i < Nk; i++) {
 | 
					    for (int i = 0; i < Nk; i++) {
 | 
				
			||||||
 
 | 
				
			|||||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							@@ -79,16 +79,14 @@ template<class Field> class ImplicitlyRestartedLanczosHermOpTester  : public Imp
 | 
				
			|||||||
    RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
 | 
					    RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    std::cout.precision(13);
 | 
					    std::cout.precision(13);
 | 
				
			||||||
 | 
					 | 
				
			||||||
    int conv=0;
 | 
					 | 
				
			||||||
    if( (vv<eresid*eresid) ) conv = 1;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::cout<<GridLogIRL  << "[" << std::setw(3)<<j<<"] "
 | 
					    std::cout<<GridLogIRL  << "[" << std::setw(3)<<j<<"] "
 | 
				
			||||||
	     <<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
 | 
						     <<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
 | 
				
			||||||
	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
 | 
						     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
 | 
				
			||||||
	     <<" target " << eresid*eresid << " conv " <<conv
 | 
					 | 
				
			||||||
	     <<std::endl;
 | 
						     <<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    int conv=0;
 | 
				
			||||||
 | 
					    if( (vv<eresid*eresid) ) conv = 1;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    return conv;
 | 
					    return conv;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
@@ -245,10 +243,9 @@ until convergence
 | 
				
			|||||||
	_HermOp(src_n,tmp);
 | 
						_HermOp(src_n,tmp);
 | 
				
			||||||
	//	std::cout << GridLogMessage<< tmp<<std::endl; exit(0);
 | 
						//	std::cout << GridLogMessage<< tmp<<std::endl; exit(0);
 | 
				
			||||||
	//	std::cout << GridLogIRL << " _HermOp " << norm2(tmp) << std::endl;
 | 
						//	std::cout << GridLogIRL << " _HermOp " << norm2(tmp) << std::endl;
 | 
				
			||||||
//	RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
 | 
						RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
 | 
				
			||||||
	RealD vnum = real(innerProduct(tmp,tmp)); // HermOp^2.
 | 
					 | 
				
			||||||
	RealD vden = norm2(src_n);
 | 
						RealD vden = norm2(src_n);
 | 
				
			||||||
	RealD na = std::sqrt(vnum/vden);
 | 
						RealD na = vnum/vden;
 | 
				
			||||||
	if (fabs(evalMaxApprox/na - 1.0) < 0.0001)
 | 
						if (fabs(evalMaxApprox/na - 1.0) < 0.0001)
 | 
				
			||||||
	  i=_MAX_ITER_IRL_MEVAPP_;
 | 
						  i=_MAX_ITER_IRL_MEVAPP_;
 | 
				
			||||||
	evalMaxApprox = na;
 | 
						evalMaxApprox = na;
 | 
				
			||||||
@@ -256,7 +253,6 @@ until convergence
 | 
				
			|||||||
	src_n = tmp;
 | 
						src_n = tmp;
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    std::cout << GridLogIRL << " Final evalMaxApprox  " << evalMaxApprox << std::endl;
 | 
					 | 
				
			||||||
	
 | 
						
 | 
				
			||||||
    std::vector<RealD> lme(Nm);  
 | 
					    std::vector<RealD> lme(Nm);  
 | 
				
			||||||
    std::vector<RealD> lme2(Nm);
 | 
					    std::vector<RealD> lme2(Nm);
 | 
				
			||||||
@@ -423,15 +419,14 @@ until convergence
 | 
				
			|||||||
	}
 | 
						}
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      if ( Nconv < Nstop ) {
 | 
					      if ( Nconv < Nstop )
 | 
				
			||||||
	std::cout << GridLogIRL << "Nconv ("<<Nconv<<") < Nstop ("<<Nstop<<")"<<std::endl;
 | 
						std::cout << GridLogIRL << "Nconv ("<<Nconv<<") < Nstop ("<<Nstop<<")"<<std::endl;
 | 
				
			||||||
	std::cout << GridLogIRL << "returning Nstop vectors, the last "<< Nstop-Nconv << "of which might meet convergence criterion only approximately" <<std::endl;
 | 
					
 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      eval=eval2;
 | 
					      eval=eval2;
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
      //Keep only converged
 | 
					      //Keep only converged
 | 
				
			||||||
      eval.resize(Nstop);// was Nconv
 | 
					      eval.resize(Nconv);// Nstop?
 | 
				
			||||||
      evec.resize(Nstop,grid);// was Nconv
 | 
					      evec.resize(Nconv,grid);// Nstop?
 | 
				
			||||||
      basisSortInPlace(evec,eval,reverse);
 | 
					      basisSortInPlace(evec,eval,reverse);
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
@@ -461,7 +456,7 @@ until convergence
 | 
				
			|||||||
	    std::vector<Field>& evec,
 | 
						    std::vector<Field>& evec,
 | 
				
			||||||
	    Field& w,int Nm,int k)
 | 
						    Field& w,int Nm,int k)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    std::cout<<GridLogDebug << "Lanczos step " <<k<<std::endl;
 | 
					    std::cout<<GridLogIRL << "Lanczos step " <<k<<std::endl;
 | 
				
			||||||
    const RealD tiny = 1.0e-20;
 | 
					    const RealD tiny = 1.0e-20;
 | 
				
			||||||
    assert( k< Nm );
 | 
					    assert( k< Nm );
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -469,7 +464,7 @@ until convergence
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    Field& evec_k = evec[k];
 | 
					    Field& evec_k = evec[k];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    _PolyOp(evec_k,w);    std::cout<<GridLogDebug << "PolyOp" <<std::endl;
 | 
					    _PolyOp(evec_k,w);    std::cout<<GridLogIRL << "PolyOp" <<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if(k>0) w -= lme[k-1] * evec[k-1];
 | 
					    if(k>0) w -= lme[k-1] * evec[k-1];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -484,18 +479,18 @@ until convergence
 | 
				
			|||||||
    lme[k] = beta;
 | 
					    lme[k] = beta;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if ( (k>0) && ( (k % orth_period) == 0 )) {
 | 
					    if ( (k>0) && ( (k % orth_period) == 0 )) {
 | 
				
			||||||
      std::cout<<GridLogDebug << "Orthogonalising " <<k<<std::endl;
 | 
					      std::cout<<GridLogIRL << "Orthogonalising " <<k<<std::endl;
 | 
				
			||||||
      orthogonalize(w,evec,k); // orthonormalise
 | 
					      orthogonalize(w,evec,k); // orthonormalise
 | 
				
			||||||
      std::cout<<GridLogDebug << "Orthogonalised " <<k<<std::endl;
 | 
					      std::cout<<GridLogIRL << "Orthogonalised " <<k<<std::endl;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if(k < Nm-1) evec[k+1] = w;
 | 
					    if(k < Nm-1) evec[k+1] = w;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    std::cout<<GridLogIRL << "Lanczos step alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
 | 
					    std::cout<<GridLogIRL << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
 | 
				
			||||||
    if ( beta < tiny ) 
 | 
					    if ( beta < tiny ) 
 | 
				
			||||||
      std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl;
 | 
					      std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    std::cout<<GridLogDebug << "Lanczos step complete " <<k<<std::endl;
 | 
					    std::cout<<GridLogIRL << "Lanczos step complete " <<k<<std::endl;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme, 
 | 
					  void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme, 
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -44,7 +44,6 @@ public:
 | 
				
			|||||||
				  int, MinRes);    // Must restart
 | 
									  int, MinRes);    // Must restart
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
//This class is the input parameter class for some testing programs
 | 
					 | 
				
			||||||
struct LocalCoherenceLanczosParams : Serializable {
 | 
					struct LocalCoherenceLanczosParams : Serializable {
 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams,
 | 
					  GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams,
 | 
				
			||||||
@@ -68,7 +67,6 @@ public:
 | 
				
			|||||||
template<class Fobj,class CComplex,int nbasis>
 | 
					template<class Fobj,class CComplex,int nbasis>
 | 
				
			||||||
class ProjectedHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
 | 
					class ProjectedHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
  using LinearFunction<Lattice<iVector<CComplex,nbasis > > >::operator();
 | 
					 | 
				
			||||||
  typedef iVector<CComplex,nbasis >           CoarseSiteVector;
 | 
					  typedef iVector<CComplex,nbasis >           CoarseSiteVector;
 | 
				
			||||||
  typedef Lattice<CoarseSiteVector>           CoarseField;
 | 
					  typedef Lattice<CoarseSiteVector>           CoarseField;
 | 
				
			||||||
  typedef Lattice<CComplex>   CoarseScalar; // used for inner products on fine field
 | 
					  typedef Lattice<CComplex>   CoarseScalar; // used for inner products on fine field
 | 
				
			||||||
@@ -99,7 +97,6 @@ public:
 | 
				
			|||||||
template<class Fobj,class CComplex,int nbasis>
 | 
					template<class Fobj,class CComplex,int nbasis>
 | 
				
			||||||
class ProjectedFunctionHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
 | 
					class ProjectedFunctionHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
  using LinearFunction<Lattice<iVector<CComplex,nbasis > > >::operator();
 | 
					 | 
				
			||||||
  typedef iVector<CComplex,nbasis >           CoarseSiteVector;
 | 
					  typedef iVector<CComplex,nbasis >           CoarseSiteVector;
 | 
				
			||||||
  typedef Lattice<CoarseSiteVector>           CoarseField;
 | 
					  typedef Lattice<CoarseSiteVector>           CoarseField;
 | 
				
			||||||
  typedef Lattice<CComplex>   CoarseScalar; // used for inner products on fine field
 | 
					  typedef Lattice<CComplex>   CoarseScalar; // used for inner products on fine field
 | 
				
			||||||
@@ -147,23 +144,15 @@ public:
 | 
				
			|||||||
  RealD                             _coarse_relax_tol;
 | 
					  RealD                             _coarse_relax_tol;
 | 
				
			||||||
  std::vector<FineField>        &_subspace;
 | 
					  std::vector<FineField>        &_subspace;
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  int _largestEvalIdxForReport; //The convergence of the LCL is based on the evals of the coarse grid operator, not those of the underlying fine grid operator
 | 
					 | 
				
			||||||
                                //As a result we do not know what the eval range of the fine operator is until the very end, making tuning the Cheby bounds very difficult
 | 
					 | 
				
			||||||
                                //To work around this issue, every restart we separately reconstruct the fine operator eval for the lowest and highest evec and print these
 | 
					 | 
				
			||||||
                                //out alongside the evals of the coarse operator. To do so we need to know the index of the largest eval (i.e. Nstop-1)
 | 
					 | 
				
			||||||
                                //NOTE: If largestEvalIdxForReport=-1 (default) then this is not performed
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  ImplicitlyRestartedLanczosSmoothedTester(LinearFunction<CoarseField>   &Poly,
 | 
					  ImplicitlyRestartedLanczosSmoothedTester(LinearFunction<CoarseField>   &Poly,
 | 
				
			||||||
					   OperatorFunction<FineField>   &smoother,
 | 
										   OperatorFunction<FineField>   &smoother,
 | 
				
			||||||
					   LinearOperatorBase<FineField> &Linop,
 | 
										   LinearOperatorBase<FineField> &Linop,
 | 
				
			||||||
					   std::vector<FineField>        &subspace,
 | 
										   std::vector<FineField>        &subspace,
 | 
				
			||||||
					   RealD coarse_relax_tol=5.0e3,
 | 
										   RealD coarse_relax_tol=5.0e3) 
 | 
				
			||||||
					   int largestEvalIdxForReport=-1) 
 | 
					 | 
				
			||||||
    : _smoother(smoother), _Linop(Linop), _Poly(Poly), _subspace(subspace),
 | 
					    : _smoother(smoother), _Linop(Linop), _Poly(Poly), _subspace(subspace),
 | 
				
			||||||
      _coarse_relax_tol(coarse_relax_tol), _largestEvalIdxForReport(largestEvalIdxForReport)
 | 
					      _coarse_relax_tol(coarse_relax_tol)  
 | 
				
			||||||
  {    };
 | 
					  {    };
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //evalMaxApprox: approximation of largest eval of the fine Chebyshev operator (suitably wrapped by block projection)
 | 
					 | 
				
			||||||
  int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
 | 
					  int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    CoarseField v(B);
 | 
					    CoarseField v(B);
 | 
				
			||||||
@@ -186,26 +175,12 @@ public:
 | 
				
			|||||||
	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
 | 
						     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
 | 
				
			||||||
	     <<std::endl;
 | 
						     <<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if(_largestEvalIdxForReport != -1 && (j==0 || j==_largestEvalIdxForReport)){
 | 
					 | 
				
			||||||
      std::cout<<GridLogIRL << "Estimating true eval of fine grid operator for eval idx " << j << std::endl;
 | 
					 | 
				
			||||||
      RealD tmp_eval;
 | 
					 | 
				
			||||||
      ReconstructEval(j,eresid,B,tmp_eval,1.0); //don't use evalMaxApprox of coarse operator! (cf below)
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    int conv=0;
 | 
					    int conv=0;
 | 
				
			||||||
    if( (vv<eresid*eresid) ) conv = 1;
 | 
					    if( (vv<eresid*eresid) ) conv = 1;
 | 
				
			||||||
    return conv;
 | 
					    return conv;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					 | 
				
			||||||
  //This function is called at the end of the coarse grid Lanczos. It promotes the coarse eigenvector 'B' to the fine grid,
 | 
					 | 
				
			||||||
  //applies a smoother to the result then computes the computes the *fine grid* eigenvalue (output as 'eval').
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  //evalMaxApprox should be the approximation of the largest eval of the fine Hermop. However when this function is called by IRL it actually passes the largest eval of the *Chebyshev* operator (as this is the max approx used for the TestConvergence above)
 | 
					 | 
				
			||||||
  //As the largest eval of the Chebyshev is typically several orders of magnitude larger this makes the convergence test pass even when it should not.
 | 
					 | 
				
			||||||
  //We therefore ignore evalMaxApprox here and use a value of 1.0 (note this value is already used by TestCoarse)
 | 
					 | 
				
			||||||
  int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
 | 
					  int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    evalMaxApprox = 1.0; //cf above
 | 
					 | 
				
			||||||
    GridBase *FineGrid = _subspace[0].Grid();    
 | 
					    GridBase *FineGrid = _subspace[0].Grid();    
 | 
				
			||||||
    int checkerboard   = _subspace[0].Checkerboard();
 | 
					    int checkerboard   = _subspace[0].Checkerboard();
 | 
				
			||||||
    FineField fB(FineGrid);fB.Checkerboard() =checkerboard;
 | 
					    FineField fB(FineGrid);fB.Checkerboard() =checkerboard;
 | 
				
			||||||
@@ -224,13 +199,13 @@ public:
 | 
				
			|||||||
    eval   = vnum/vden;
 | 
					    eval   = vnum/vden;
 | 
				
			||||||
    fv -= eval*fB;
 | 
					    fv -= eval*fB;
 | 
				
			||||||
    RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0);
 | 
					    RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0);
 | 
				
			||||||
    if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    std::cout.precision(13);
 | 
					    std::cout.precision(13);
 | 
				
			||||||
    std::cout<<GridLogIRL  << "[" << std::setw(3)<<j<<"] "
 | 
					    std::cout<<GridLogIRL  << "[" << std::setw(3)<<j<<"] "
 | 
				
			||||||
	     <<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
 | 
						     <<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
 | 
				
			||||||
	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv << " target " << eresid*eresid
 | 
						     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
 | 
				
			||||||
	     <<std::endl;
 | 
						     <<std::endl;
 | 
				
			||||||
 | 
					    if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
 | 
				
			||||||
    if( (vv<eresid*eresid) ) return 1;
 | 
					    if( (vv<eresid*eresid) ) return 1;
 | 
				
			||||||
    return 0;
 | 
					    return 0;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -308,10 +283,6 @@ public:
 | 
				
			|||||||
    evals_coarse.resize(0);
 | 
					    evals_coarse.resize(0);
 | 
				
			||||||
  };
 | 
					  };
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //The block inner product is the inner product on the fine grid locally summed over the blocks
 | 
					 | 
				
			||||||
  //to give a Lattice<Scalar> on the coarse grid. This function orthnormalizes the fine-grid subspace
 | 
					 | 
				
			||||||
  //vectors under the block inner product. This step must be performed after computing the fine grid
 | 
					 | 
				
			||||||
  //eigenvectors and before computing the coarse grid eigenvectors.    
 | 
					 | 
				
			||||||
  void Orthogonalise(void ) {
 | 
					  void Orthogonalise(void ) {
 | 
				
			||||||
    CoarseScalar InnerProd(_CoarseGrid);
 | 
					    CoarseScalar InnerProd(_CoarseGrid);
 | 
				
			||||||
    std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
 | 
					    std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
 | 
				
			||||||
@@ -355,8 +326,6 @@ public:
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //While this method serves to check the coarse eigenvectors, it also recomputes the eigenvalues from the smoothed reconstructed eigenvectors
 | 
					 | 
				
			||||||
  //hence the smoother can be tuned after running the coarse Lanczos by using a different smoother here
 | 
					 | 
				
			||||||
  void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax) 
 | 
					  void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax) 
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    assert(evals_fine.size() == nbasis);
 | 
					    assert(evals_fine.size() == nbasis);
 | 
				
			||||||
@@ -405,31 +374,25 @@ public:
 | 
				
			|||||||
    evals_fine.resize(nbasis);
 | 
					    evals_fine.resize(nbasis);
 | 
				
			||||||
    subspace.resize(nbasis,_FineGrid);
 | 
					    subspace.resize(nbasis,_FineGrid);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  //cheby_op: Parameters of the fine grid Chebyshev polynomial used for the Lanczos acceleration
 | 
					 | 
				
			||||||
  //cheby_smooth: Parameters of a separate Chebyshev polynomial used after the Lanczos has completed to smooth out high frequency noise in the reconstructed fine grid eigenvectors prior to computing the eigenvalue
 | 
					 | 
				
			||||||
  //relax: Reconstructed eigenvectors (post smoothing) are naturally not as precise as true eigenvectors. This factor acts as a multiplier on the stopping condition when determining whether the results satisfy the user provided stopping condition
 | 
					 | 
				
			||||||
  void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax,
 | 
					  void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax,
 | 
				
			||||||
		  int Nstop, int Nk, int Nm,RealD resid, 
 | 
							  int Nstop, int Nk, int Nm,RealD resid, 
 | 
				
			||||||
		  RealD MaxIt, RealD betastp, int MinRes)
 | 
							  RealD MaxIt, RealD betastp, int MinRes)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    Chebyshev<FineField>                          Cheby(cheby_op); //Chebyshev of fine operator on fine grid
 | 
					    Chebyshev<FineField>                          Cheby(cheby_op);
 | 
				
			||||||
    ProjectedHermOp<Fobj,CComplex,nbasis>         Op(_FineOp,subspace); //Fine operator on coarse grid with intermediate fine grid conversion
 | 
					    ProjectedHermOp<Fobj,CComplex,nbasis>         Op(_FineOp,subspace);
 | 
				
			||||||
    ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace); //Chebyshev of fine operator on coarse grid with intermediate fine grid conversion
 | 
					    ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace);
 | 
				
			||||||
    //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					    //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
    // create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
 | 
					    // create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
 | 
				
			||||||
    //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					    //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    Chebyshev<FineField>                                           ChebySmooth(cheby_smooth); //lower order Chebyshev of fine operator on fine grid used to smooth regenerated eigenvectors
 | 
					    Chebyshev<FineField>                                           ChebySmooth(cheby_smooth);
 | 
				
			||||||
    ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax,Nstop-1); 
 | 
					    ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    evals_coarse.resize(Nm);
 | 
					    evals_coarse.resize(Nm);
 | 
				
			||||||
    evec_coarse.resize(Nm,_CoarseGrid);
 | 
					    evec_coarse.resize(Nm,_CoarseGrid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    CoarseField src(_CoarseGrid);     src=1.0; 
 | 
					    CoarseField src(_CoarseGrid);     src=1.0; 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    //Note the "tester" here is also responsible for generating the fine grid eigenvalues which are output into the "evals_coarse" array
 | 
					 | 
				
			||||||
    ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
 | 
					    ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
 | 
				
			||||||
    int Nconv=0;
 | 
					    int Nconv=0;
 | 
				
			||||||
    IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
 | 
					    IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
 | 
				
			||||||
@@ -440,14 +403,6 @@ public:
 | 
				
			|||||||
      std::cout << i << " Coarse eval = " << evals_coarse[i]  << std::endl;
 | 
					      std::cout << i << " Coarse eval = " << evals_coarse[i]  << std::endl;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					 | 
				
			||||||
  //Get the fine eigenvector 'i' by reconstruction
 | 
					 | 
				
			||||||
  void getFineEvecEval(FineField &evec, RealD &eval, const int i) const{
 | 
					 | 
				
			||||||
    blockPromote(evec_coarse[i],evec,subspace);  
 | 
					 | 
				
			||||||
    eval = evals_coarse[i];
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -33,7 +33,7 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
// Take a matrix and form an NE solver calling a Herm solver
 | 
					// Take a matrix and form an NE solver calling a Herm solver
 | 
				
			||||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
template<class Field> class NormalEquations : public LinearFunction<Field>{
 | 
					template<class Field> class NormalEquations {
 | 
				
			||||||
private:
 | 
					private:
 | 
				
			||||||
  SparseMatrixBase<Field> & _Matrix;
 | 
					  SparseMatrixBase<Field> & _Matrix;
 | 
				
			||||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
					  OperatorFunction<Field> & _HermitianSolver;
 | 
				
			||||||
@@ -60,33 +60,7 @@ public:
 | 
				
			|||||||
  }     
 | 
					  }     
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class Field> class NormalResidual : public LinearFunction<Field>{
 | 
					template<class Field> class HPDSolver {
 | 
				
			||||||
private:
 | 
					 | 
				
			||||||
  SparseMatrixBase<Field> & _Matrix;
 | 
					 | 
				
			||||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
					 | 
				
			||||||
  LinearFunction<Field>   & _Guess;
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // Wrap the usual normal equations trick
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
 NormalResidual(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver,
 | 
					 | 
				
			||||||
		 LinearFunction<Field> &Guess) 
 | 
					 | 
				
			||||||
   :  _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {}; 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void operator() (const Field &in, Field &out){
 | 
					 | 
				
			||||||
 
 | 
					 | 
				
			||||||
    Field res(in.Grid());
 | 
					 | 
				
			||||||
    Field tmp(in.Grid());
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    MMdagLinearOperator<SparseMatrixBase<Field>,Field> MMdagOp(_Matrix);
 | 
					 | 
				
			||||||
    _Guess(in,res);
 | 
					 | 
				
			||||||
    _HermitianSolver(MMdagOp,in,res);  // M Mdag res = in ;
 | 
					 | 
				
			||||||
    _Matrix.Mdag(res,out);             // out = Mdag res
 | 
					 | 
				
			||||||
  }     
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class Field> class HPDSolver : public LinearFunction<Field> {
 | 
					 | 
				
			||||||
private:
 | 
					private:
 | 
				
			||||||
  LinearOperatorBase<Field> & _Matrix;
 | 
					  LinearOperatorBase<Field> & _Matrix;
 | 
				
			||||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
					  OperatorFunction<Field> & _HermitianSolver;
 | 
				
			||||||
@@ -104,13 +78,13 @@ public:
 | 
				
			|||||||
  void operator() (const Field &in, Field &out){
 | 
					  void operator() (const Field &in, Field &out){
 | 
				
			||||||
 
 | 
					 
 | 
				
			||||||
    _Guess(in,out);
 | 
					    _Guess(in,out);
 | 
				
			||||||
    _HermitianSolver(_Matrix,in,out);  //M out = in
 | 
					    _HermitianSolver(_Matrix,in,out);  // Mdag M out = Mdag in
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  }     
 | 
					  }     
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class Field> class MdagMSolver : public LinearFunction<Field> {
 | 
					template<class Field> class MdagMSolver {
 | 
				
			||||||
private:
 | 
					private:
 | 
				
			||||||
  SparseMatrixBase<Field> & _Matrix;
 | 
					  SparseMatrixBase<Field> & _Matrix;
 | 
				
			||||||
  OperatorFunction<Field> & _HermitianSolver;
 | 
					  OperatorFunction<Field> & _HermitianSolver;
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -20,7 +20,7 @@ template<class Field> class PowerMethod
 | 
				
			|||||||
    RealD evalMaxApprox = 0.0; 
 | 
					    RealD evalMaxApprox = 0.0; 
 | 
				
			||||||
    auto src_n = src; 
 | 
					    auto src_n = src; 
 | 
				
			||||||
    auto tmp = src; 
 | 
					    auto tmp = src; 
 | 
				
			||||||
    const int _MAX_ITER_EST_ = 200; 
 | 
					    const int _MAX_ITER_EST_ = 50; 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    for (int i=0;i<_MAX_ITER_EST_;i++) { 
 | 
					    for (int i=0;i<_MAX_ITER_EST_;i++) { 
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
@@ -30,17 +30,16 @@ template<class Field> class PowerMethod
 | 
				
			|||||||
      RealD vden = norm2(src_n); 
 | 
					      RealD vden = norm2(src_n); 
 | 
				
			||||||
      RealD na = vnum/vden; 
 | 
					      RealD na = vnum/vden; 
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
      std::cout << GridLogMessage << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
 | 
					      if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) { 
 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      //      if ( (fabs(evalMaxApprox/na - 1.0) < 0.0001) || (i==_MAX_ITER_EST_-1) ) { 
 | 
					 | 
				
			||||||
	// 	evalMaxApprox = na; 
 | 
					 | 
				
			||||||
	// 	return evalMaxApprox; 
 | 
					 | 
				
			||||||
      //      } 
 | 
					 | 
				
			||||||
 	evalMaxApprox = na; 
 | 
					 	evalMaxApprox = na; 
 | 
				
			||||||
      src_n = tmp;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
 | 
						std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
 | 
				
			||||||
 	return evalMaxApprox; 
 | 
					 	return evalMaxApprox; 
 | 
				
			||||||
      } 
 | 
					      } 
 | 
				
			||||||
 | 
					      evalMaxApprox = na; 
 | 
				
			||||||
 | 
					      src_n = tmp;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    assert(0);
 | 
				
			||||||
 | 
					    return 0;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1,76 +0,0 @@
 | 
				
			|||||||
#pragma once
 | 
					 | 
				
			||||||
namespace Grid {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
class Band
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  RealD lo, hi;
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  Band(RealD _lo,RealD _hi)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    lo=_lo;
 | 
					 | 
				
			||||||
    hi=_hi;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  RealD operator() (RealD x){
 | 
					 | 
				
			||||||
    if ( x>lo && x<hi ){
 | 
					 | 
				
			||||||
      return 1.0;
 | 
					 | 
				
			||||||
    } else {
 | 
					 | 
				
			||||||
      return 0.0;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
class PowerSpectrum
 | 
					 | 
				
			||||||
{ 
 | 
					 | 
				
			||||||
 public: 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  template<typename T>  static RealD normalise(T& v) 
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    RealD nn = norm2(v);
 | 
					 | 
				
			||||||
    nn = sqrt(nn);
 | 
					 | 
				
			||||||
    v = v * (1.0/nn);
 | 
					 | 
				
			||||||
    return nn;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  std::vector<RealD> ranges;
 | 
					 | 
				
			||||||
  std::vector<int> order;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  PowerSpectrum(  std::vector<RealD> &bins, std::vector<int> &_order ) : ranges(bins), order(_order)  { };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  template<class Field>
 | 
					 | 
				
			||||||
  RealD operator()(LinearOperatorBase<Field> &HermOp, const Field &src) 
 | 
					 | 
				
			||||||
  { 
 | 
					 | 
				
			||||||
    GridBase *grid = src.Grid(); 
 | 
					 | 
				
			||||||
    int N=ranges.size();
 | 
					 | 
				
			||||||
    RealD hi = ranges[N-1];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD lo_band = 0.0;
 | 
					 | 
				
			||||||
    RealD hi_band;
 | 
					 | 
				
			||||||
    RealD nn=norm2(src);
 | 
					 | 
				
			||||||
    RealD ss=0.0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Field tmp = src;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int b=0;b<N;b++){
 | 
					 | 
				
			||||||
      hi_band = ranges[b];
 | 
					 | 
				
			||||||
      Band Notch(lo_band,hi_band);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      Chebyshev<Field> polynomial;
 | 
					 | 
				
			||||||
      polynomial.Init(0.0,hi,order[b],Notch);
 | 
					 | 
				
			||||||
      polynomial.JacksonSmooth();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      polynomial(HermOp,src,tmp) ;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      RealD p=norm2(tmp);
 | 
					 | 
				
			||||||
      ss=ss+p;
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage << " PowerSpectrum Band["<<lo_band<<","<<hi_band<<"] power "<<norm2(tmp)/nn<<std::endl;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      lo_band=hi_band;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << " PowerSpectrum total power "<<ss/nn<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << " PowerSpectrum total power (unnormalised) "<<nn<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    return 0;
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
@@ -43,7 +43,7 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
template<class Field>
 | 
					template<class Field>
 | 
				
			||||||
class PrecGeneralisedConjugateResidual : public LinearFunction<Field> {
 | 
					class PrecGeneralisedConjugateResidual : public LinearFunction<Field> {
 | 
				
			||||||
public:                                                
 | 
					public:                                                
 | 
				
			||||||
  using LinearFunction<Field>::operator();
 | 
					
 | 
				
			||||||
  RealD   Tolerance;
 | 
					  RealD   Tolerance;
 | 
				
			||||||
  Integer MaxIterations;
 | 
					  Integer MaxIterations;
 | 
				
			||||||
  int verbose;
 | 
					  int verbose;
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -43,7 +43,7 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
template<class Field>
 | 
					template<class Field>
 | 
				
			||||||
class PrecGeneralisedConjugateResidualNonHermitian : public LinearFunction<Field> {
 | 
					class PrecGeneralisedConjugateResidualNonHermitian : public LinearFunction<Field> {
 | 
				
			||||||
public:                                                
 | 
					public:                                                
 | 
				
			||||||
  using LinearFunction<Field>::operator();
 | 
					
 | 
				
			||||||
  RealD   Tolerance;
 | 
					  RealD   Tolerance;
 | 
				
			||||||
  Integer MaxIterations;
 | 
					  Integer MaxIterations;
 | 
				
			||||||
  int verbose;
 | 
					  int verbose;
 | 
				
			||||||
@@ -74,7 +74,7 @@ public:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  void operator() (const Field &src, Field &psi){
 | 
					  void operator() (const Field &src, Field &psi){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    //    psi=Zero();
 | 
					    psi=Zero();
 | 
				
			||||||
    RealD cp, ssq,rsq;
 | 
					    RealD cp, ssq,rsq;
 | 
				
			||||||
    ssq=norm2(src);
 | 
					    ssq=norm2(src);
 | 
				
			||||||
    rsq=Tolerance*Tolerance*ssq;
 | 
					    rsq=Tolerance*Tolerance*ssq;
 | 
				
			||||||
@@ -119,8 +119,7 @@ public:
 | 
				
			|||||||
  RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
 | 
					  RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    RealD cp;
 | 
					    RealD cp;
 | 
				
			||||||
    ComplexD a, b;
 | 
					    ComplexD a, b, zAz;
 | 
				
			||||||
    //    ComplexD zAz;
 | 
					 | 
				
			||||||
    RealD zAAz;
 | 
					    RealD zAAz;
 | 
				
			||||||
    ComplexD rq;
 | 
					    ComplexD rq;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -147,7 +146,7 @@ public:
 | 
				
			|||||||
    //////////////////////////////////
 | 
					    //////////////////////////////////
 | 
				
			||||||
    MatTimer.Start();
 | 
					    MatTimer.Start();
 | 
				
			||||||
    Linop.Op(psi,Az);
 | 
					    Linop.Op(psi,Az);
 | 
				
			||||||
    //    zAz = innerProduct(Az,psi);
 | 
					    zAz = innerProduct(Az,psi);
 | 
				
			||||||
    zAAz= norm2(Az);
 | 
					    zAAz= norm2(Az);
 | 
				
			||||||
    MatTimer.Stop();
 | 
					    MatTimer.Stop();
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
@@ -171,7 +170,7 @@ public:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    LinalgTimer.Start();
 | 
					    LinalgTimer.Start();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    //    zAz = innerProduct(Az,psi);
 | 
					    zAz = innerProduct(Az,psi);
 | 
				
			||||||
    zAAz= norm2(Az);
 | 
					    zAAz= norm2(Az);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    //p[0],q[0],qq[0] 
 | 
					    //p[0],q[0],qq[0] 
 | 
				
			||||||
@@ -213,7 +212,7 @@ public:
 | 
				
			|||||||
      MatTimer.Start();
 | 
					      MatTimer.Start();
 | 
				
			||||||
      Linop.Op(z,Az);
 | 
					      Linop.Op(z,Az);
 | 
				
			||||||
      MatTimer.Stop();
 | 
					      MatTimer.Stop();
 | 
				
			||||||
      //      zAz = innerProduct(Az,psi);
 | 
					      zAz = innerProduct(Az,psi);
 | 
				
			||||||
      zAAz= norm2(Az);
 | 
					      zAAz= norm2(Az);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      LinalgTimer.Start();
 | 
					      LinalgTimer.Start();
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -132,31 +132,6 @@ namespace Grid {
 | 
				
			|||||||
      (*this)(_Matrix,in,out,guess);
 | 
					      (*this)(_Matrix,in,out,guess);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    void RedBlackSource(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &src_o) 
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
					 | 
				
			||||||
      Field tmp(grid);
 | 
					 | 
				
			||||||
      int nblock = in.size();
 | 
					 | 
				
			||||||
      for(int b=0;b<nblock;b++){
 | 
					 | 
				
			||||||
	RedBlackSource(_Matrix,in[b],tmp,src_o[b]);
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    // James can write his own deflated guesser
 | 
					 | 
				
			||||||
    // with optimised code for the inner products
 | 
					 | 
				
			||||||
    //    RedBlackSolveSplitGrid();
 | 
					 | 
				
			||||||
    //    RedBlackSolve(_Matrix,src_o,sol_o); 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    void RedBlackSolution(Matrix &_Matrix, const std::vector<Field> &in, const std::vector<Field> &sol_o, std::vector<Field> &out)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
					 | 
				
			||||||
      Field tmp(grid);
 | 
					 | 
				
			||||||
      int nblock = in.size();
 | 
					 | 
				
			||||||
      for(int b=0;b<nblock;b++) {
 | 
					 | 
				
			||||||
	pickCheckerboard(Even,tmp,in[b]);
 | 
					 | 
				
			||||||
	RedBlackSolution(_Matrix,sol_o[b],tmp,out[b]);
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    template<class Guesser>
 | 
					    template<class Guesser>
 | 
				
			||||||
    void operator()(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &out,Guesser &guess) 
 | 
					    void operator()(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &out,Guesser &guess) 
 | 
				
			||||||
    {
 | 
					    {
 | 
				
			||||||
@@ -175,27 +150,22 @@ namespace Grid {
 | 
				
			|||||||
      ////////////////////////////////////////////////
 | 
					      ////////////////////////////////////////////////
 | 
				
			||||||
      // Prepare RedBlack source
 | 
					      // Prepare RedBlack source
 | 
				
			||||||
      ////////////////////////////////////////////////
 | 
					      ////////////////////////////////////////////////
 | 
				
			||||||
      RedBlackSource(_Matrix,in,src_o);
 | 
					      for(int b=0;b<nblock;b++){
 | 
				
			||||||
	//      for(int b=0;b<nblock;b++){
 | 
						RedBlackSource(_Matrix,in[b],tmp,src_o[b]);
 | 
				
			||||||
	//	RedBlackSource(_Matrix,in[b],tmp,src_o[b]);
 | 
					      }
 | 
				
			||||||
	//      }
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      ////////////////////////////////////////////////
 | 
					      ////////////////////////////////////////////////
 | 
				
			||||||
      // Make the guesses
 | 
					      // Make the guesses
 | 
				
			||||||
      ////////////////////////////////////////////////
 | 
					      ////////////////////////////////////////////////
 | 
				
			||||||
      if ( subGuess ) guess_save.resize(nblock,grid);
 | 
					      if ( subGuess ) guess_save.resize(nblock,grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      if(useSolnAsInitGuess) {
 | 
					 | 
				
			||||||
      for(int b=0;b<nblock;b++){
 | 
					      for(int b=0;b<nblock;b++){
 | 
				
			||||||
 | 
					        if(useSolnAsInitGuess) {
 | 
				
			||||||
          pickCheckerboard(Odd, sol_o[b], out[b]);
 | 
					          pickCheckerboard(Odd, sol_o[b], out[b]);
 | 
				
			||||||
        }
 | 
					 | 
				
			||||||
        } else {
 | 
					        } else {
 | 
				
			||||||
        guess(src_o, sol_o); 
 | 
					          guess(src_o[b],sol_o[b]); 
 | 
				
			||||||
        }
 | 
					        }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	if ( subGuess ) { 
 | 
						if ( subGuess ) { 
 | 
				
			||||||
        for(int b=0;b<nblock;b++){
 | 
					 | 
				
			||||||
	  guess_save[b] = sol_o[b];
 | 
						  guess_save[b] = sol_o[b];
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
@@ -499,87 +469,6 @@ namespace Grid {
 | 
				
			|||||||
      }
 | 
					      }
 | 
				
			||||||
  };
 | 
					  };
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // Site diagonal is identity, left preconditioned by Mee^inv
 | 
					 | 
				
			||||||
  // ( 1 - Mee^inv Meo Moo^inv Moe ) phi = Mee_inv ( Mee - Meo Moo^inv Moe Mee^inv  ) phi =  Mee_inv eta
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Solve:
 | 
					 | 
				
			||||||
  // ( 1 - Mee^inv Meo Moo^inv Moe )^dag ( 1 - Mee^inv Meo Moo^inv Moe ) phi = ( 1 - Mee^inv Meo Moo^inv Moe )^dag  Mee_inv eta
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Old notation e<->o
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Left precon by Moo^-1
 | 
					 | 
				
			||||||
  //  b) (Doo^{dag} M_oo^-dag) (Moo^-1 Doo) psi_o =  [ (D_oo)^dag M_oo^-dag ] Moo^-1 L^{-1}  eta_o
 | 
					 | 
				
			||||||
  //                                   eta_o'     = (D_oo)^dag  M_oo^-dag Moo^-1 (eta_o - Moe Mee^{-1} eta_e)
 | 
					 | 
				
			||||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  template<class Field> class SchurRedBlackDiagOneSolve : public SchurRedBlackBase<Field> {
 | 
					 | 
				
			||||||
  public:
 | 
					 | 
				
			||||||
    typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Wrap the usual normal equations Schur trick
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  SchurRedBlackDiagOneSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false,
 | 
					 | 
				
			||||||
      const bool _solnAsInitGuess = false)  
 | 
					 | 
				
			||||||
    : SchurRedBlackBase<Field>(HermitianRBSolver,initSubGuess,_solnAsInitGuess) {};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
					 | 
				
			||||||
      GridBase *fgrid= _Matrix.Grid();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      Field   tmp(grid);
 | 
					 | 
				
			||||||
      Field  Mtmp(grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      pickCheckerboard(Even,src_e,src);
 | 
					 | 
				
			||||||
      pickCheckerboard(Odd ,src_o,src);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
      /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
      // src_o = Mpcdag *MooeeInv * (source_o - Moe MeeInv source_e)
 | 
					 | 
				
			||||||
      /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
      _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.Checkerboard() ==Even);
 | 
					 | 
				
			||||||
      _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.Checkerboard() ==Odd);     
 | 
					 | 
				
			||||||
      Mtmp=src_o-Mtmp;                 
 | 
					 | 
				
			||||||
      _Matrix.MooeeInv(Mtmp,tmp);      assert( tmp.Checkerboard() ==Odd);     
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      // get the right MpcDag
 | 
					 | 
				
			||||||
      _HermOpEO.MpcDag(tmp,src_o);     assert(src_o.Checkerboard() ==Odd);       
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
					 | 
				
			||||||
      GridBase *fgrid= _Matrix.Grid();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      Field   tmp(grid);
 | 
					 | 
				
			||||||
      Field   sol_e(grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      ///////////////////////////////////////////////////
 | 
					 | 
				
			||||||
      // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
					 | 
				
			||||||
      ///////////////////////////////////////////////////
 | 
					 | 
				
			||||||
      _Matrix.Meooe(sol_o,tmp);    assert(  tmp.Checkerboard()   ==Even);
 | 
					 | 
				
			||||||
      tmp = src_e-tmp;             assert(  src_e.Checkerboard() ==Even);
 | 
					 | 
				
			||||||
      _Matrix.MooeeInv(tmp,sol_e); assert(  sol_e.Checkerboard() ==Even);
 | 
					 | 
				
			||||||
     
 | 
					 | 
				
			||||||
      setCheckerboard(sol,sol_e);  assert(  sol_e.Checkerboard() ==Even);
 | 
					 | 
				
			||||||
      setCheckerboard(sol,sol_o);  assert(  sol_o.Checkerboard() ==Odd );
 | 
					 | 
				
			||||||
    };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const Field &src_o, Field &sol_o)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
					 | 
				
			||||||
      this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
 | 
					 | 
				
			||||||
    };
 | 
					 | 
				
			||||||
    virtual void RedBlackSolve   (Matrix & _Matrix,const std::vector<Field> &src_o,  std::vector<Field> &sol_o)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      SchurDiagOneOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
					 | 
				
			||||||
      this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); 
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Site diagonal is identity, right preconditioned by Mee^inv
 | 
					  // Site diagonal is identity, right preconditioned by Mee^inv
 | 
				
			||||||
  // ( 1 - Meo Moo^inv Moe Mee^inv  ) phi =( 1 - Meo Moo^inv Moe Mee^inv  ) Mee psi =  = eta  = eta
 | 
					  // ( 1 - Meo Moo^inv Moe Mee^inv  ) phi =( 1 - Meo Moo^inv Moe Mee^inv  ) Mee psi =  = eta  = eta
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1,931 +0,0 @@
 | 
				
			|||||||
    /*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: ./lib/algorithms/iterative/ImplicitlyRestartedLanczos.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2015
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Chulwoo Jung <chulwoo@bnl.gov>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
    *************************************************************************************/
 | 
					 | 
				
			||||||
    /*  END LEGAL */
 | 
					 | 
				
			||||||
#ifndef GRID_LANC_H
 | 
					 | 
				
			||||||
#define GRID_LANC_H
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#include <string.h>		//memset
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#ifdef USE_LAPACK
 | 
					 | 
				
			||||||
#ifdef USE_MKL
 | 
					 | 
				
			||||||
#include<mkl_lapack.h>
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
void LAPACK_dstegr (char *jobz, char *range, int *n, double *d, double *e,
 | 
					 | 
				
			||||||
		    double *vl, double *vu, int *il, int *iu, double *abstol,
 | 
					 | 
				
			||||||
		    int *m, double *w, double *z, int *ldz, int *isuppz,
 | 
					 | 
				
			||||||
		    double *work, int *lwork, int *iwork, int *liwork,
 | 
					 | 
				
			||||||
		    int *info);
 | 
					 | 
				
			||||||
//#include <lapacke/lapacke.h>
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
//#include <Grid/algorithms/densematrix/DenseMatrix.h>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
// eliminate temorary vector in calc()
 | 
					 | 
				
			||||||
#define MEM_SAVE
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
namespace Grid
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  struct Bisection
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#if 0
 | 
					 | 
				
			||||||
    static void get_eig2 (int row_num, std::vector < RealD > &ALPHA,
 | 
					 | 
				
			||||||
			  std::vector < RealD > &BETA,
 | 
					 | 
				
			||||||
			  std::vector < RealD > &eig)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      int i, j;
 | 
					 | 
				
			||||||
        std::vector < RealD > evec1 (row_num + 3);
 | 
					 | 
				
			||||||
        std::vector < RealD > evec2 (row_num + 3);
 | 
					 | 
				
			||||||
      RealD eps2;
 | 
					 | 
				
			||||||
        ALPHA[1] = 0.;
 | 
					 | 
				
			||||||
        BETHA[1] = 0.;
 | 
					 | 
				
			||||||
      for (i = 0; i < row_num - 1; i++)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  ALPHA[i + 1] = A[i * (row_num + 1)].real ();
 | 
					 | 
				
			||||||
	  BETHA[i + 2] = A[i * (row_num + 1) + 1].real ();
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      ALPHA[row_num] = A[(row_num - 1) * (row_num + 1)].real ();
 | 
					 | 
				
			||||||
        bisec (ALPHA, BETHA, row_num, 1, row_num, 1e-10, 1e-10, evec1, eps2);
 | 
					 | 
				
			||||||
        bisec (ALPHA, BETHA, row_num, 1, row_num, 1e-16, 1e-16, evec2, eps2);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Do we really need to sort here?
 | 
					 | 
				
			||||||
      int begin = 1;
 | 
					 | 
				
			||||||
      int end = row_num;
 | 
					 | 
				
			||||||
      int swapped = 1;
 | 
					 | 
				
			||||||
      while (swapped)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  swapped = 0;
 | 
					 | 
				
			||||||
	  for (i = begin; i < end; i++)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      if (mag (evec2[i]) > mag (evec2[i + 1]))
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
		  swap (evec2 + i, evec2 + i + 1);
 | 
					 | 
				
			||||||
		  swapped = 1;
 | 
					 | 
				
			||||||
		}
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	  end--;
 | 
					 | 
				
			||||||
	  for (i = end - 1; i >= begin; i--)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      if (mag (evec2[i]) > mag (evec2[i + 1]))
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
		  swap (evec2 + i, evec2 + i + 1);
 | 
					 | 
				
			||||||
		  swapped = 1;
 | 
					 | 
				
			||||||
		}
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	  begin++;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for (i = 0; i < row_num; i++)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  for (j = 0; j < row_num; j++)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      if (i == j)
 | 
					 | 
				
			||||||
		H[i * row_num + j] = evec2[i + 1];
 | 
					 | 
				
			||||||
	      else
 | 
					 | 
				
			||||||
		H[i * row_num + j] = 0.;
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    static void bisec (std::vector < RealD > &c,
 | 
					 | 
				
			||||||
		       std::vector < RealD > &b,
 | 
					 | 
				
			||||||
		       int n,
 | 
					 | 
				
			||||||
		       int m1,
 | 
					 | 
				
			||||||
		       int m2,
 | 
					 | 
				
			||||||
		       RealD eps1,
 | 
					 | 
				
			||||||
		       RealD relfeh, std::vector < RealD > &x, RealD & eps2)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      std::vector < RealD > wu (n + 2);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      RealD h, q, x1, xu, x0, xmin, xmax;
 | 
					 | 
				
			||||||
      int i, a, k;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      b[1] = 0.0;
 | 
					 | 
				
			||||||
      xmin = c[n] - fabs (b[n]);
 | 
					 | 
				
			||||||
      xmax = c[n] + fabs (b[n]);
 | 
					 | 
				
			||||||
      for (i = 1; i < n; i++)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  h = fabs (b[i]) + fabs (b[i + 1]);
 | 
					 | 
				
			||||||
	  if (c[i] + h > xmax)
 | 
					 | 
				
			||||||
	    xmax = c[i] + h;
 | 
					 | 
				
			||||||
	  if (c[i] - h < xmin)
 | 
					 | 
				
			||||||
	    xmin = c[i] - h;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      xmax *= 2.;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      eps2 = relfeh * ((xmin + xmax) > 0.0 ? xmax : -xmin);
 | 
					 | 
				
			||||||
      if (eps1 <= 0.0)
 | 
					 | 
				
			||||||
	eps1 = eps2;
 | 
					 | 
				
			||||||
      eps2 = 0.5 * eps1 + 7.0 * (eps2);
 | 
					 | 
				
			||||||
      x0 = xmax;
 | 
					 | 
				
			||||||
      for (i = m1; i <= m2; i++)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  x[i] = xmax;
 | 
					 | 
				
			||||||
	  wu[i] = xmin;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for (k = m2; k >= m1; k--)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  xu = xmin;
 | 
					 | 
				
			||||||
	  i = k;
 | 
					 | 
				
			||||||
	  do
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      if (xu < wu[i])
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
		  xu = wu[i];
 | 
					 | 
				
			||||||
		  i = m1 - 1;
 | 
					 | 
				
			||||||
		}
 | 
					 | 
				
			||||||
	      i--;
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	  while (i >= m1);
 | 
					 | 
				
			||||||
	  if (x0 > x[k])
 | 
					 | 
				
			||||||
	    x0 = x[k];
 | 
					 | 
				
			||||||
	  while ((x0 - xu) > 2 * relfeh * (fabs (xu) + fabs (x0)) + eps1)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      x1 = (xu + x0) / 2;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	      a = 0;
 | 
					 | 
				
			||||||
	      q = 1.0;
 | 
					 | 
				
			||||||
	      for (i = 1; i <= n; i++)
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
		  q =
 | 
					 | 
				
			||||||
		    c[i] - x1 -
 | 
					 | 
				
			||||||
		    ((q != 0.0) ? b[i] * b[i] / q : fabs (b[i]) / relfeh);
 | 
					 | 
				
			||||||
		  if (q < 0)
 | 
					 | 
				
			||||||
		    a++;
 | 
					 | 
				
			||||||
		}
 | 
					 | 
				
			||||||
//      printf("x1=%0.14e a=%d\n",x1,a);
 | 
					 | 
				
			||||||
	      if (a < k)
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
		  if (a < m1)
 | 
					 | 
				
			||||||
		    {
 | 
					 | 
				
			||||||
		      xu = x1;
 | 
					 | 
				
			||||||
		      wu[m1] = x1;
 | 
					 | 
				
			||||||
		    }
 | 
					 | 
				
			||||||
		  else
 | 
					 | 
				
			||||||
		    {
 | 
					 | 
				
			||||||
		      xu = x1;
 | 
					 | 
				
			||||||
		      wu[a + 1] = x1;
 | 
					 | 
				
			||||||
		      if (x[a] > x1)
 | 
					 | 
				
			||||||
			x[a] = x1;
 | 
					 | 
				
			||||||
		    }
 | 
					 | 
				
			||||||
		}
 | 
					 | 
				
			||||||
	      else
 | 
					 | 
				
			||||||
		x0 = x1;
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	  printf ("x0=%0.14e xu=%0.14e k=%d\n", x0, xu, k);
 | 
					 | 
				
			||||||
	  x[k] = (x0 + xu) / 2;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
// Implicitly restarted lanczos
 | 
					 | 
				
			||||||
/////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  template < class Field > class SimpleLanczos
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    const RealD small = 1.0e-16;
 | 
					 | 
				
			||||||
  public:
 | 
					 | 
				
			||||||
    int lock;
 | 
					 | 
				
			||||||
    int get;
 | 
					 | 
				
			||||||
    int Niter;
 | 
					 | 
				
			||||||
    int converged;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int Nstop;			// Number of evecs checked for convergence
 | 
					 | 
				
			||||||
    int Nk;			// Number of converged sought
 | 
					 | 
				
			||||||
    int Np;			// Np -- Number of spare vecs in kryloc space
 | 
					 | 
				
			||||||
    int Nm;			// Nm -- total number of vectors
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD OrthoTime;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD eresid;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
//    SortEigen < Field > _sort;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    LinearFunction < Field > &_Linop;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
//    OperatorFunction < Field > &_poly;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////
 | 
					 | 
				
			||||||
    // Constructor
 | 
					 | 
				
			||||||
    /////////////////////////
 | 
					 | 
				
			||||||
    void init (void)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
    };
 | 
					 | 
				
			||||||
//    void Abort (int ff, std::vector < RealD > &evals, DenseVector < Denstd::vector  < RealD > >&evecs);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    SimpleLanczos (LinearFunction < Field > &Linop,	// op
 | 
					 | 
				
			||||||
//		   OperatorFunction < Field > &poly,	// polynmial
 | 
					 | 
				
			||||||
		   int _Nstop,	// sought vecs
 | 
					 | 
				
			||||||
		   int _Nk,	// sought vecs
 | 
					 | 
				
			||||||
		   int _Nm,	// spare vecs
 | 
					 | 
				
			||||||
		   RealD _eresid,	// resid in lmdue deficit 
 | 
					 | 
				
			||||||
		   int _Niter):	// Max iterations
 | 
					 | 
				
			||||||
     
 | 
					 | 
				
			||||||
      _Linop (Linop),
 | 
					 | 
				
			||||||
 //     _poly (poly),
 | 
					 | 
				
			||||||
      Nstop (_Nstop), Nk (_Nk), Nm (_Nm), eresid (_eresid), Niter (_Niter)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      Np = Nm - Nk;
 | 
					 | 
				
			||||||
      assert (Np > 0);
 | 
					 | 
				
			||||||
    };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////
 | 
					 | 
				
			||||||
    // Sanity checked this routine (step) against Saad.
 | 
					 | 
				
			||||||
    /////////////////////////
 | 
					 | 
				
			||||||
    void RitzMatrix (std::vector < Field > &evec, int k)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      if (1)
 | 
					 | 
				
			||||||
	return;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      GridBase *grid = evec[0].Grid();
 | 
					 | 
				
			||||||
      Field w (grid);
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage << "RitzMatrix " << std::endl;
 | 
					 | 
				
			||||||
      for (int i = 0; i < k; i++)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  _Linop(evec[i], w);
 | 
					 | 
				
			||||||
//      _poly(_Linop,evec[i],w);
 | 
					 | 
				
			||||||
	  std::cout << GridLogMessage << "[" << i << "] ";
 | 
					 | 
				
			||||||
	  for (int j = 0; j < k; j++)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      ComplexD in = innerProduct (evec[j], w);
 | 
					 | 
				
			||||||
	      if (fabs ((double) i - j) > 1)
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
		  if (abs (in) > 1.0e-9)
 | 
					 | 
				
			||||||
		    {
 | 
					 | 
				
			||||||
		      std::cout << GridLogMessage << "oops" << std::endl;
 | 
					 | 
				
			||||||
		      abort ();
 | 
					 | 
				
			||||||
		    }
 | 
					 | 
				
			||||||
		  else
 | 
					 | 
				
			||||||
		    std::cout << GridLogMessage << " 0 ";
 | 
					 | 
				
			||||||
		}
 | 
					 | 
				
			||||||
	      else
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
		  std::cout << GridLogMessage << " " << in << " ";
 | 
					 | 
				
			||||||
		}
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	  std::cout << GridLogMessage << std::endl;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    void step (std::vector < RealD > &lmd,
 | 
					 | 
				
			||||||
	       std::vector < RealD > &lme,
 | 
					 | 
				
			||||||
	       Field & last, Field & current, Field & next, uint64_t k)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      if (lmd.size () <= k)
 | 
					 | 
				
			||||||
	lmd.resize (k + Nm);
 | 
					 | 
				
			||||||
      if (lme.size () <= k)
 | 
					 | 
				
			||||||
	lme.resize (k + Nm);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
//      _poly(_Linop,current,next );   // 3. wk:=Avk−βkv_{k−1}
 | 
					 | 
				
			||||||
      _Linop(current, next);	// 3. wk:=Avk−βkv_{k−1}
 | 
					 | 
				
			||||||
      if (k > 0)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  next -= lme[k - 1] * last;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
//      std::cout<<GridLogMessage << "<last|next>" << innerProduct(last,next) <<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      ComplexD zalph = innerProduct (current, next);	// 4. αk:=(wk,vk)
 | 
					 | 
				
			||||||
      RealD alph = real (zalph);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      next = next - alph * current;	// 5. wk:=wk−αkvk
 | 
					 | 
				
			||||||
//      std::cout<<GridLogMessage << "<current|next>" << innerProduct(current,next) <<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      RealD beta = normalise (next);	// 6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
 | 
					 | 
				
			||||||
      // 7. vk+1 := wk/βk+1
 | 
					 | 
				
			||||||
//       norm=beta;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      int interval = Nm / 100 + 1;
 | 
					 | 
				
			||||||
      if ((k % interval) == 0)
 | 
					 | 
				
			||||||
	std::
 | 
					 | 
				
			||||||
	  cout << GridLogMessage << k << " : alpha = " << zalph << " beta " <<
 | 
					 | 
				
			||||||
	  beta << std::endl;
 | 
					 | 
				
			||||||
      const RealD tiny = 1.0e-20;
 | 
					 | 
				
			||||||
      if (beta < tiny)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  std::cout << GridLogMessage << " beta is tiny " << beta << std::
 | 
					 | 
				
			||||||
	    endl;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      lmd[k] = alph;
 | 
					 | 
				
			||||||
      lme[k] = beta;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    void qr_decomp (std::vector < RealD > &lmd,
 | 
					 | 
				
			||||||
		    std::vector  < RealD > &lme,
 | 
					 | 
				
			||||||
		    int Nk,
 | 
					 | 
				
			||||||
		    int Nm,
 | 
					 | 
				
			||||||
		    std::vector  < RealD > &Qt, RealD Dsh, int kmin, int kmax)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      int k = kmin - 1;
 | 
					 | 
				
			||||||
      RealD x;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      RealD Fden = 1.0 / hypot (lmd[k] - Dsh, lme[k]);
 | 
					 | 
				
			||||||
      RealD c = (lmd[k] - Dsh) * Fden;
 | 
					 | 
				
			||||||
      RealD s = -lme[k] * Fden;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      RealD tmpa1 = lmd[k];
 | 
					 | 
				
			||||||
      RealD tmpa2 = lmd[k + 1];
 | 
					 | 
				
			||||||
      RealD tmpb = lme[k];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      lmd[k] = c * c * tmpa1 + s * s * tmpa2 - 2.0 * c * s * tmpb;
 | 
					 | 
				
			||||||
      lmd[k + 1] = s * s * tmpa1 + c * c * tmpa2 + 2.0 * c * s * tmpb;
 | 
					 | 
				
			||||||
      lme[k] = c * s * (tmpa1 - tmpa2) + (c * c - s * s) * tmpb;
 | 
					 | 
				
			||||||
      x = -s * lme[k + 1];
 | 
					 | 
				
			||||||
      lme[k + 1] = c * lme[k + 1];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for (int i = 0; i < Nk; ++i)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  RealD Qtmp1 = Qt[i + Nm * k];
 | 
					 | 
				
			||||||
	  RealD Qtmp2 = Qt[i + Nm * (k + 1)];
 | 
					 | 
				
			||||||
	  Qt[i + Nm * k] = c * Qtmp1 - s * Qtmp2;
 | 
					 | 
				
			||||||
	  Qt[i + Nm * (k + 1)] = s * Qtmp1 + c * Qtmp2;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Givens transformations
 | 
					 | 
				
			||||||
      for (int k = kmin; k < kmax - 1; ++k)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  RealD Fden = 1.0 / hypot (x, lme[k - 1]);
 | 
					 | 
				
			||||||
	  RealD c = lme[k - 1] * Fden;
 | 
					 | 
				
			||||||
	  RealD s = -x * Fden;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  RealD tmpa1 = lmd[k];
 | 
					 | 
				
			||||||
	  RealD tmpa2 = lmd[k + 1];
 | 
					 | 
				
			||||||
	  RealD tmpb = lme[k];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  lmd[k] = c * c * tmpa1 + s * s * tmpa2 - 2.0 * c * s * tmpb;
 | 
					 | 
				
			||||||
	  lmd[k + 1] = s * s * tmpa1 + c * c * tmpa2 + 2.0 * c * s * tmpb;
 | 
					 | 
				
			||||||
	  lme[k] = c * s * (tmpa1 - tmpa2) + (c * c - s * s) * tmpb;
 | 
					 | 
				
			||||||
	  lme[k - 1] = c * lme[k - 1] - s * x;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  if (k != kmax - 2)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      x = -s * lme[k + 1];
 | 
					 | 
				
			||||||
	      lme[k + 1] = c * lme[k + 1];
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  for (int i = 0; i < Nk; ++i)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      RealD Qtmp1 = Qt[i + Nm * k];
 | 
					 | 
				
			||||||
	      RealD Qtmp2 = Qt[i + Nm * (k + 1)];
 | 
					 | 
				
			||||||
	      Qt[i + Nm * k] = c * Qtmp1 - s * Qtmp2;
 | 
					 | 
				
			||||||
	      Qt[i + Nm * (k + 1)] = s * Qtmp1 + c * Qtmp2;
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#if 0
 | 
					 | 
				
			||||||
#ifdef USE_LAPACK
 | 
					 | 
				
			||||||
#ifdef USE_MKL
 | 
					 | 
				
			||||||
#define LAPACK_INT MKL_INT
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
#define LAPACK_INT long long
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
    void diagonalize_lapack (std::vector  < RealD > &lmd, std::vector  < RealD > &lme, int N1,	// all
 | 
					 | 
				
			||||||
			     int N2,	// get
 | 
					 | 
				
			||||||
			     GridBase * grid)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      const int size = Nm;
 | 
					 | 
				
			||||||
      LAPACK_INT NN = N1;
 | 
					 | 
				
			||||||
      double evals_tmp[NN];
 | 
					 | 
				
			||||||
      double DD[NN];
 | 
					 | 
				
			||||||
      double EE[NN];
 | 
					 | 
				
			||||||
      for (int i = 0; i < NN; i++)
 | 
					 | 
				
			||||||
	for (int j = i - 1; j <= i + 1; j++)
 | 
					 | 
				
			||||||
	  if (j < NN && j >= 0)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      if (i == j)
 | 
					 | 
				
			||||||
		DD[i] = lmd[i];
 | 
					 | 
				
			||||||
	      if (i == j)
 | 
					 | 
				
			||||||
		evals_tmp[i] = lmd[i];
 | 
					 | 
				
			||||||
	      if (j == (i - 1))
 | 
					 | 
				
			||||||
		EE[j] = lme[j];
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
      LAPACK_INT evals_found;
 | 
					 | 
				
			||||||
      LAPACK_INT lwork =
 | 
					 | 
				
			||||||
	((18 * NN) >
 | 
					 | 
				
			||||||
	 (1 + 4 * NN + NN * NN) ? (18 * NN) : (1 + 4 * NN + NN * NN));
 | 
					 | 
				
			||||||
      LAPACK_INT liwork = 3 + NN * 10;
 | 
					 | 
				
			||||||
      LAPACK_INT iwork[liwork];
 | 
					 | 
				
			||||||
      double work[lwork];
 | 
					 | 
				
			||||||
      LAPACK_INT isuppz[2 * NN];
 | 
					 | 
				
			||||||
      char jobz = 'N';		// calculate evals only
 | 
					 | 
				
			||||||
      char range = 'I';		// calculate il-th to iu-th evals
 | 
					 | 
				
			||||||
      //    char range = 'A'; // calculate all evals
 | 
					 | 
				
			||||||
      char uplo = 'U';		// refer to upper half of original matrix
 | 
					 | 
				
			||||||
      char compz = 'I';		// Compute eigenvectors of tridiagonal matrix
 | 
					 | 
				
			||||||
      int ifail[NN];
 | 
					 | 
				
			||||||
      LAPACK_INT info;
 | 
					 | 
				
			||||||
//  int total = QMP_get_number_of_nodes();
 | 
					 | 
				
			||||||
//  int node = QMP_get_node_number();
 | 
					 | 
				
			||||||
//  GridBase *grid = evec[0]._grid;
 | 
					 | 
				
			||||||
      int total = grid->_Nprocessors;
 | 
					 | 
				
			||||||
      int node = grid->_processor;
 | 
					 | 
				
			||||||
      int interval = (NN / total) + 1;
 | 
					 | 
				
			||||||
      double vl = 0.0, vu = 0.0;
 | 
					 | 
				
			||||||
      LAPACK_INT il = interval * node + 1, iu = interval * (node + 1);
 | 
					 | 
				
			||||||
      if (iu > NN)
 | 
					 | 
				
			||||||
	iu = NN;
 | 
					 | 
				
			||||||
      double tol = 0.0;
 | 
					 | 
				
			||||||
      if (1)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  memset (evals_tmp, 0, sizeof (double) * NN);
 | 
					 | 
				
			||||||
	  if (il <= NN)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      printf ("total=%d node=%d il=%d iu=%d\n", total, node, il, iu);
 | 
					 | 
				
			||||||
#ifdef USE_MKL
 | 
					 | 
				
			||||||
	      dstegr (&jobz, &range, &NN,
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	      LAPACK_dstegr (&jobz, &range, &NN,
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
			     (double *) DD, (double *) EE, &vl, &vu, &il, &iu,	// these four are ignored if second parameteris 'A'
 | 
					 | 
				
			||||||
			     &tol,	// tolerance
 | 
					 | 
				
			||||||
			     &evals_found, evals_tmp, (double *) NULL, &NN,
 | 
					 | 
				
			||||||
			     isuppz, work, &lwork, iwork, &liwork, &info);
 | 
					 | 
				
			||||||
	      for (int i = iu - 1; i >= il - 1; i--)
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
		  printf ("node=%d evals_found=%d evals_tmp[%d] = %g\n", node,
 | 
					 | 
				
			||||||
			  evals_found, i - (il - 1), evals_tmp[i - (il - 1)]);
 | 
					 | 
				
			||||||
		  evals_tmp[i] = evals_tmp[i - (il - 1)];
 | 
					 | 
				
			||||||
		  if (il > 1)
 | 
					 | 
				
			||||||
		    evals_tmp[i - (il - 1)] = 0.;
 | 
					 | 
				
			||||||
		}
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	  {
 | 
					 | 
				
			||||||
	    grid->GlobalSumVector (evals_tmp, NN);
 | 
					 | 
				
			||||||
	  }
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
// cheating a bit. It is better to sort instead of just reversing it, but the document of the routine says evals are sorted in increasing order. qr gives evals in decreasing order.
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
#undef LAPACK_INT
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    void diagonalize (std::vector  < RealD > &lmd,
 | 
					 | 
				
			||||||
		      std::vector  < RealD > &lme,
 | 
					 | 
				
			||||||
		      int N2, int N1, GridBase * grid)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#ifdef USE_LAPACK
 | 
					 | 
				
			||||||
      const int check_lapack = 0;	// just use lapack if 0, check against lapack if 1
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      if (!check_lapack)
 | 
					 | 
				
			||||||
	return diagonalize_lapack (lmd, lme, N2, N1, grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
//      diagonalize_lapack(lmd2,lme2,Nm2,Nm,Qt,grid);
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    static RealD normalise (Field & v)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      RealD nn = norm2 (v);
 | 
					 | 
				
			||||||
      nn = sqrt (nn);
 | 
					 | 
				
			||||||
      v = v * (1.0 / nn);
 | 
					 | 
				
			||||||
      return nn;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    void orthogonalize (Field & w, std::vector < Field > &evec, int k)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      double t0 = -usecond () / 1e6;
 | 
					 | 
				
			||||||
      typedef typename Field::scalar_type MyComplex;
 | 
					 | 
				
			||||||
      MyComplex ip;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      if (0)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  for (int j = 0; j < k; ++j)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      normalise (evec[j]);
 | 
					 | 
				
			||||||
	      for (int i = 0; i < j; i++)
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
		  ip = innerProduct (evec[i], evec[j]);	// are the evecs normalised? ; this assumes so.
 | 
					 | 
				
			||||||
		  evec[j] = evec[j] - ip * evec[i];
 | 
					 | 
				
			||||||
		}
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for (int j = 0; j < k; ++j)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  ip = innerProduct (evec[j], w);	// are the evecs normalised? ; this assumes so.
 | 
					 | 
				
			||||||
	  w = w - ip * evec[j];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      normalise (w);
 | 
					 | 
				
			||||||
      t0 += usecond () / 1e6;
 | 
					 | 
				
			||||||
      OrthoTime += t0;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    void setUnit_Qt (int Nm, std::vector < RealD > &Qt)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      for (int i = 0; i < Qt.size (); ++i)
 | 
					 | 
				
			||||||
	Qt[i] = 0.0;
 | 
					 | 
				
			||||||
      for (int k = 0; k < Nm; ++k)
 | 
					 | 
				
			||||||
	Qt[k + k * Nm] = 1.0;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    void calc (std::vector < RealD > &eval, const Field & src, int &Nconv)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      GridBase *grid = src.Grid();
 | 
					 | 
				
			||||||
//      assert(grid == src._grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      std::
 | 
					 | 
				
			||||||
	cout << GridLogMessage << " -- Nk = " << Nk << " Np = " << Np << std::
 | 
					 | 
				
			||||||
	endl;
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage << " -- Nm = " << Nm << std::endl;
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage << " -- size of eval   = " << eval.
 | 
					 | 
				
			||||||
	size () << std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
//      assert(c.size() && Nm == eval.size());
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      std::vector < RealD > lme (Nm);
 | 
					 | 
				
			||||||
      std::vector < RealD > lmd (Nm);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      Field current (grid);
 | 
					 | 
				
			||||||
      Field last (grid);
 | 
					 | 
				
			||||||
      Field next (grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      Nconv = 0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      RealD beta_k;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Set initial vector
 | 
					 | 
				
			||||||
      // (uniform vector) Why not src??
 | 
					 | 
				
			||||||
      //      evec[0] = 1.0;
 | 
					 | 
				
			||||||
      current = src;
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage << "norm2(src)= " << norm2 (src) << std::
 | 
					 | 
				
			||||||
	endl;
 | 
					 | 
				
			||||||
      normalise (current);
 | 
					 | 
				
			||||||
      std::
 | 
					 | 
				
			||||||
	cout << GridLogMessage << "norm2(evec[0])= " << norm2 (current) <<
 | 
					 | 
				
			||||||
	std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Initial Nk steps
 | 
					 | 
				
			||||||
      OrthoTime = 0.;
 | 
					 | 
				
			||||||
      double t0 = usecond () / 1e6;
 | 
					 | 
				
			||||||
      RealD norm;		// sqrt norm of last vector
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      uint64_t iter = 0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      bool initted = false;
 | 
					 | 
				
			||||||
      std::vector < RealD > low (Nstop * 10);
 | 
					 | 
				
			||||||
      std::vector < RealD > high (Nstop * 10);
 | 
					 | 
				
			||||||
      RealD cont = 0.;
 | 
					 | 
				
			||||||
      while (1) {
 | 
					 | 
				
			||||||
	  cont = 0.;
 | 
					 | 
				
			||||||
	  std::vector < RealD > lme2 (Nm);
 | 
					 | 
				
			||||||
	  std::vector < RealD > lmd2 (Nm);
 | 
					 | 
				
			||||||
	  for (uint64_t k = 0; k < Nm; ++k, iter++) {
 | 
					 | 
				
			||||||
	      step (lmd, lme, last, current, next, iter);
 | 
					 | 
				
			||||||
	      last = current;
 | 
					 | 
				
			||||||
	      current = next;
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	  double t1 = usecond () / 1e6;
 | 
					 | 
				
			||||||
	  std::cout << GridLogMessage << "IRL::Initial steps: " << t1 -
 | 
					 | 
				
			||||||
	    t0 << "seconds" << std::endl;
 | 
					 | 
				
			||||||
	  t0 = t1;
 | 
					 | 
				
			||||||
	  std::
 | 
					 | 
				
			||||||
	    cout << GridLogMessage << "IRL::Initial steps:OrthoTime " <<
 | 
					 | 
				
			||||||
	    OrthoTime << "seconds" << std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  // getting eigenvalues
 | 
					 | 
				
			||||||
	  lmd2.resize (iter + 2);
 | 
					 | 
				
			||||||
	  lme2.resize (iter + 2);
 | 
					 | 
				
			||||||
	  for (uint64_t k = 0; k < iter; ++k) {
 | 
					 | 
				
			||||||
	      lmd2[k + 1] = lmd[k];
 | 
					 | 
				
			||||||
	      lme2[k + 2] = lme[k];
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	  t1 = usecond () / 1e6;
 | 
					 | 
				
			||||||
	  std::cout << GridLogMessage << "IRL:: copy: " << t1 -
 | 
					 | 
				
			||||||
	    t0 << "seconds" << std::endl;
 | 
					 | 
				
			||||||
	  t0 = t1;
 | 
					 | 
				
			||||||
	  {
 | 
					 | 
				
			||||||
	    int total = grid->_Nprocessors;
 | 
					 | 
				
			||||||
	    int node = grid->_processor;
 | 
					 | 
				
			||||||
	    int interval = (Nstop / total) + 1;
 | 
					 | 
				
			||||||
	    int iu = (iter + 1) - (interval * node + 1);
 | 
					 | 
				
			||||||
	    int il = (iter + 1) - (interval * (node + 1));
 | 
					 | 
				
			||||||
	    std::vector < RealD > eval2 (iter + 3);
 | 
					 | 
				
			||||||
	    RealD eps2;
 | 
					 | 
				
			||||||
	    Bisection::bisec (lmd2, lme2, iter, il, iu, 1e-16, 1e-10, eval2,
 | 
					 | 
				
			||||||
			      eps2);
 | 
					 | 
				
			||||||
//        diagonalize(eval2,lme2,iter,Nk,grid);
 | 
					 | 
				
			||||||
	    RealD diff = 0.;
 | 
					 | 
				
			||||||
	    for (int i = il; i <= iu; i++) {
 | 
					 | 
				
			||||||
		if (initted)
 | 
					 | 
				
			||||||
		  diff =
 | 
					 | 
				
			||||||
		    fabs (eval2[i] - high[iu-i]) / (fabs (eval2[i]) +
 | 
					 | 
				
			||||||
						      fabs (high[iu-i]));
 | 
					 | 
				
			||||||
		if (initted && (diff > eresid))
 | 
					 | 
				
			||||||
		  cont = 1.;
 | 
					 | 
				
			||||||
		if (initted)
 | 
					 | 
				
			||||||
		  printf ("eval[%d]=%0.14e %0.14e, %0.14e\n", i, eval2[i],
 | 
					 | 
				
			||||||
			  high[iu-i], diff);
 | 
					 | 
				
			||||||
		high[iu-i] = eval2[i];
 | 
					 | 
				
			||||||
	      }
 | 
					 | 
				
			||||||
	    il = (interval * node + 1);
 | 
					 | 
				
			||||||
	    iu = (interval * (node + 1));
 | 
					 | 
				
			||||||
	    Bisection::bisec (lmd2, lme2, iter, il, iu, 1e-16, 1e-10, eval2,
 | 
					 | 
				
			||||||
			      eps2);
 | 
					 | 
				
			||||||
	    for (int i = il; i <= iu; i++) {
 | 
					 | 
				
			||||||
		if (initted)
 | 
					 | 
				
			||||||
		  diff =
 | 
					 | 
				
			||||||
		    fabs (eval2[i] - low[i]) / (fabs (eval2[i]) +
 | 
					 | 
				
			||||||
						fabs (low[i]));
 | 
					 | 
				
			||||||
		if (initted && (diff > eresid))
 | 
					 | 
				
			||||||
		  cont = 1.;
 | 
					 | 
				
			||||||
		if (initted)
 | 
					 | 
				
			||||||
		  printf ("eval[%d]=%0.14e %0.14e, %0.14e\n", i, eval2[i],
 | 
					 | 
				
			||||||
			  low[i], diff);
 | 
					 | 
				
			||||||
		low[i] = eval2[i];
 | 
					 | 
				
			||||||
	      }
 | 
					 | 
				
			||||||
	    t1 = usecond () / 1e6;
 | 
					 | 
				
			||||||
	    std::cout << GridLogMessage << "IRL:: diagonalize: " << t1 -
 | 
					 | 
				
			||||||
	      t0 << "seconds" << std::endl;
 | 
					 | 
				
			||||||
	    t0 = t1;
 | 
					 | 
				
			||||||
	  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  for (uint64_t k = 0; k < Nk; ++k) {
 | 
					 | 
				
			||||||
//          eval[k] = eval2[k];
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	  if (initted)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      grid->GlobalSumVector (&cont, 1);
 | 
					 | 
				
			||||||
	      if (cont < 1.) return;
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	  initted = true;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#if 0
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/**
 | 
					 | 
				
			||||||
   There is some matrix Q such that for any vector y
 | 
					 | 
				
			||||||
   Q.e_1 = y and Q is unitary.
 | 
					 | 
				
			||||||
**/
 | 
					 | 
				
			||||||
    template < class T >
 | 
					 | 
				
			||||||
      static T orthQ (DenseMatrix < T > &Q, std::vector < T > y)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      int N = y.size ();	//Matrix Size
 | 
					 | 
				
			||||||
      Fill (Q, 0.0);
 | 
					 | 
				
			||||||
      T tau;
 | 
					 | 
				
			||||||
      for (int i = 0; i < N; i++)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  Q[i][0] = y[i];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      T sig = conj (y[0]) * y[0];
 | 
					 | 
				
			||||||
      T tau0 = fabs (sqrt (sig));
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for (int j = 1; j < N; j++)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  sig += conj (y[j]) * y[j];
 | 
					 | 
				
			||||||
	  tau = abs (sqrt (sig));
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  if (abs (tau0) > 0.0)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	      T gam = conj ((y[j] / tau) / tau0);
 | 
					 | 
				
			||||||
	      for (int k = 0; k <= j - 1; k++)
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
		  Q[k][j] = -gam * y[k];
 | 
					 | 
				
			||||||
		}
 | 
					 | 
				
			||||||
	      Q[j][j] = tau0 / tau;
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	  else
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      Q[j - 1][j] = 1.0;
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	  tau0 = tau;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      return tau;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/**
 | 
					 | 
				
			||||||
	There is some matrix Q such that for any vector y
 | 
					 | 
				
			||||||
	Q.e_k = y and Q is unitary.
 | 
					 | 
				
			||||||
**/
 | 
					 | 
				
			||||||
    template < class T >
 | 
					 | 
				
			||||||
      static T orthU (DenseMatrix < T > &Q, std::vector < T > y)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      T tau = orthQ (Q, y);
 | 
					 | 
				
			||||||
      SL (Q);
 | 
					 | 
				
			||||||
      return tau;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/**
 | 
					 | 
				
			||||||
	Wind up with a matrix with the first con rows untouched
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
say con = 2
 | 
					 | 
				
			||||||
	Q is such that Qdag H Q has {x, x, val, 0, 0, 0, 0, ...} as 1st colum
 | 
					 | 
				
			||||||
	and the matrix is upper hessenberg
 | 
					 | 
				
			||||||
	and with f and Q appropriately modidied with Q is the arnoldi factorization
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
**/
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    template < class T > static void Lock (DenseMatrix < T > &H,	///Hess mtx     
 | 
					 | 
				
			||||||
					   DenseMatrix < T > &Q,	///Lock Transform
 | 
					 | 
				
			||||||
					   T val,	///value to be locked
 | 
					 | 
				
			||||||
					   int con,	///number already locked
 | 
					 | 
				
			||||||
					   RealD small, int dfg, bool herm)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      //ForceTridiagonal(H);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      int M = H.dim;
 | 
					 | 
				
			||||||
      DenseVector < T > vec;
 | 
					 | 
				
			||||||
      Resize (vec, M - con);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      DenseMatrix < T > AH;
 | 
					 | 
				
			||||||
      Resize (AH, M - con, M - con);
 | 
					 | 
				
			||||||
      AH = GetSubMtx (H, con, M, con, M);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      DenseMatrix < T > QQ;
 | 
					 | 
				
			||||||
      Resize (QQ, M - con, M - con);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      Unity (Q);
 | 
					 | 
				
			||||||
      Unity (QQ);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      DenseVector < T > evals;
 | 
					 | 
				
			||||||
      Resize (evals, M - con);
 | 
					 | 
				
			||||||
      DenseMatrix < T > evecs;
 | 
					 | 
				
			||||||
      Resize (evecs, M - con, M - con);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      Wilkinson < T > (AH, evals, evecs, small);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      int k = 0;
 | 
					 | 
				
			||||||
      RealD cold = abs (val - evals[k]);
 | 
					 | 
				
			||||||
      for (int i = 1; i < M - con; i++)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  RealD cnew = abs (val - evals[i]);
 | 
					 | 
				
			||||||
	  if (cnew < cold)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      k = i;
 | 
					 | 
				
			||||||
	      cold = cnew;
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      vec = evecs[k];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      ComplexD tau;
 | 
					 | 
				
			||||||
      orthQ (QQ, vec);
 | 
					 | 
				
			||||||
      //orthQM(QQ,AH,vec);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      AH = Hermitian (QQ) * AH;
 | 
					 | 
				
			||||||
      AH = AH * QQ;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for (int i = con; i < M; i++)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
	  for (int j = con; j < M; j++)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      Q[i][j] = QQ[i - con][j - con];
 | 
					 | 
				
			||||||
	      H[i][j] = AH[i - con][j - con];
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for (int j = M - 1; j > con + 2; j--)
 | 
					 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  DenseMatrix < T > U;
 | 
					 | 
				
			||||||
	  Resize (U, j - 1 - con, j - 1 - con);
 | 
					 | 
				
			||||||
	  DenseVector < T > z;
 | 
					 | 
				
			||||||
	  Resize (z, j - 1 - con);
 | 
					 | 
				
			||||||
	  T nm = norm (z);
 | 
					 | 
				
			||||||
	  for (int k = con + 0; k < j - 1; k++)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      z[k - con] = conj (H (j, k + 1));
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
	  normalise (z);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  RealD tmp = 0;
 | 
					 | 
				
			||||||
	  for (int i = 0; i < z.size () - 1; i++)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      tmp = tmp + abs (z[i]);
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  if (tmp < small / ((RealD) z.size () - 1.0))
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      continue;
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  tau = orthU (U, z);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  DenseMatrix < T > Hb;
 | 
					 | 
				
			||||||
	  Resize (Hb, j - 1 - con, M);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  for (int a = 0; a < M; a++)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      for (int b = 0; b < j - 1 - con; b++)
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
		  T sum = 0;
 | 
					 | 
				
			||||||
		  for (int c = 0; c < j - 1 - con; c++)
 | 
					 | 
				
			||||||
		    {
 | 
					 | 
				
			||||||
		      sum += H[a][con + 1 + c] * U[c][b];
 | 
					 | 
				
			||||||
		    }		//sum += H(a,con+1+c)*U(c,b);}
 | 
					 | 
				
			||||||
		  Hb[b][a] = sum;
 | 
					 | 
				
			||||||
		}
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  for (int k = con + 1; k < j; k++)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      for (int l = 0; l < M; l++)
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
		  H[l][k] = Hb[k - 1 - con][l];
 | 
					 | 
				
			||||||
		}
 | 
					 | 
				
			||||||
	    }			//H(Hb[k-1-con][l] , l,k);}}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  DenseMatrix < T > Qb;
 | 
					 | 
				
			||||||
	  Resize (Qb, M, M);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  for (int a = 0; a < M; a++)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      for (int b = 0; b < j - 1 - con; b++)
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
		  T sum = 0;
 | 
					 | 
				
			||||||
		  for (int c = 0; c < j - 1 - con; c++)
 | 
					 | 
				
			||||||
		    {
 | 
					 | 
				
			||||||
		      sum += Q[a][con + 1 + c] * U[c][b];
 | 
					 | 
				
			||||||
		    }		//sum += Q(a,con+1+c)*U(c,b);}
 | 
					 | 
				
			||||||
		  Qb[b][a] = sum;
 | 
					 | 
				
			||||||
		}
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  for (int k = con + 1; k < j; k++)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      for (int l = 0; l < M; l++)
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
		  Q[l][k] = Qb[k - 1 - con][l];
 | 
					 | 
				
			||||||
		}
 | 
					 | 
				
			||||||
	    }			//Q(Qb[k-1-con][l] , l,k);}}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  DenseMatrix < T > Hc;
 | 
					 | 
				
			||||||
	  Resize (Hc, M, M);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  for (int a = 0; a < j - 1 - con; a++)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      for (int b = 0; b < M; b++)
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
		  T sum = 0;
 | 
					 | 
				
			||||||
		  for (int c = 0; c < j - 1 - con; c++)
 | 
					 | 
				
			||||||
		    {
 | 
					 | 
				
			||||||
		      sum += conj (U[c][a]) * H[con + 1 + c][b];
 | 
					 | 
				
			||||||
		    }		//sum += conj( U(c,a) )*H(con+1+c,b);}
 | 
					 | 
				
			||||||
		  Hc[b][a] = sum;
 | 
					 | 
				
			||||||
		}
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  for (int k = 0; k < M; k++)
 | 
					 | 
				
			||||||
	    {
 | 
					 | 
				
			||||||
	      for (int l = con + 1; l < j; l++)
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
		  H[l][k] = Hc[k][l - 1 - con];
 | 
					 | 
				
			||||||
		}
 | 
					 | 
				
			||||||
	    }			//H(Hc[k][l-1-con] , l,k);}}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
@@ -1,608 +0,0 @@
 | 
				
			|||||||
/*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: ./lib/algorithms/Aggregates.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2015
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
					 | 
				
			||||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
					 | 
				
			||||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
 | 
					 | 
				
			||||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
*************************************************************************************/
 | 
					 | 
				
			||||||
/*  END LEGAL */
 | 
					 | 
				
			||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidualNonHermitian.h>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
inline RealD AggregatePowerLaw(RealD x)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  //  return std::pow(x,-4);
 | 
					 | 
				
			||||||
  //  return std::pow(x,-3);
 | 
					 | 
				
			||||||
  return std::pow(x,-5);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class Fobj,class CComplex,int nbasis>
 | 
					 | 
				
			||||||
class Aggregation {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  constexpr int Nbasis(void) { return nbasis; };
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  typedef iVector<CComplex,nbasis >             siteVector;
 | 
					 | 
				
			||||||
  typedef Lattice<siteVector>                 CoarseVector;
 | 
					 | 
				
			||||||
  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
					 | 
				
			||||||
  typedef Lattice<Fobj >        FineField;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  GridBase *CoarseGrid;
 | 
					 | 
				
			||||||
  GridBase *FineGrid;
 | 
					 | 
				
			||||||
  std::vector<Lattice<Fobj> > subspace;
 | 
					 | 
				
			||||||
  int checkerboard;
 | 
					 | 
				
			||||||
  int Checkerboard(void){return checkerboard;}
 | 
					 | 
				
			||||||
  Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) : 
 | 
					 | 
				
			||||||
    CoarseGrid(_CoarseGrid),
 | 
					 | 
				
			||||||
    FineGrid(_FineGrid),
 | 
					 | 
				
			||||||
    subspace(nbasis,_FineGrid),
 | 
					 | 
				
			||||||
    checkerboard(_checkerboard)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  void Orthogonalise(void){
 | 
					 | 
				
			||||||
    CoarseScalar InnerProd(CoarseGrid); 
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
 | 
					 | 
				
			||||||
    blockOrthogonalise(InnerProd,subspace);
 | 
					 | 
				
			||||||
  } 
 | 
					 | 
				
			||||||
  void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
 | 
					 | 
				
			||||||
    blockProject(CoarseVec,FineVec,subspace);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
 | 
					 | 
				
			||||||
    FineVec.Checkerboard() = subspace[0].Checkerboard();
 | 
					 | 
				
			||||||
    blockPromote(CoarseVec,FineVec,subspace);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void CreateSubspaceRandom(GridParallelRNG  &RNG) {
 | 
					 | 
				
			||||||
    int nn=nbasis;
 | 
					 | 
				
			||||||
    RealD scale;
 | 
					 | 
				
			||||||
    FineField noise(FineGrid);
 | 
					 | 
				
			||||||
    for(int b=0;b<nn;b++){
 | 
					 | 
				
			||||||
      subspace[b] = Zero();
 | 
					 | 
				
			||||||
      gaussian(RNG,noise);
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
      noise=noise*scale;
 | 
					 | 
				
			||||||
      subspace[b] = noise;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  virtual void CreateSubspace(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ConjugateGradient<FineField> CG(1.0e-3,400,false);
 | 
					 | 
				
			||||||
    FineField noise(FineGrid);
 | 
					 | 
				
			||||||
    FineField Mn(FineGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int b=0;b<nn;b++){
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      subspace[b] = Zero();
 | 
					 | 
				
			||||||
      gaussian(RNG,noise);
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
      noise=noise*scale;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int i=0;i<4;i++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	CG(hermop,noise,subspace[b]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	noise = subspace[b];
 | 
					 | 
				
			||||||
	scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
	noise=noise*scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
 | 
					 | 
				
			||||||
      subspace[b]   = noise;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void CreateSubspaceGCR(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &DiracOp,int nn=nbasis)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    RealD scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    TrivialPrecon<FineField> simple_fine;
 | 
					 | 
				
			||||||
    PrecGeneralisedConjugateResidualNonHermitian<FineField> GCR(0.001,30,DiracOp,simple_fine,12,12);
 | 
					 | 
				
			||||||
    FineField noise(FineGrid);
 | 
					 | 
				
			||||||
    FineField src(FineGrid);
 | 
					 | 
				
			||||||
    FineField guess(FineGrid);
 | 
					 | 
				
			||||||
    FineField Mn(FineGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int b=0;b<nn;b++){
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      subspace[b] = Zero();
 | 
					 | 
				
			||||||
      gaussian(RNG,noise);
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
      noise=noise*scale;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "noise   ["<<b<<"] <n|Op|n> "<<innerProduct(noise,Mn)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int i=0;i<2;i++){
 | 
					 | 
				
			||||||
	//  void operator() (const Field &src, Field &psi){
 | 
					 | 
				
			||||||
#if 1
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage << " inverting on noise "<<std::endl;
 | 
					 | 
				
			||||||
	src = noise;
 | 
					 | 
				
			||||||
	guess=Zero();
 | 
					 | 
				
			||||||
	GCR(src,guess);
 | 
					 | 
				
			||||||
	subspace[b] = guess;
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	std::cout << GridLogMessage << " inverting on zero "<<std::endl;
 | 
					 | 
				
			||||||
	src=Zero();
 | 
					 | 
				
			||||||
	guess = noise;
 | 
					 | 
				
			||||||
	GCR(src,guess);
 | 
					 | 
				
			||||||
	subspace[b] = guess;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
	noise = subspace[b];
 | 
					 | 
				
			||||||
	scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
	noise=noise*scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      DiracOp.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|Op|f> "<<innerProduct(noise,Mn)<<std::endl;
 | 
					 | 
				
			||||||
      subspace[b]   = noise;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
 | 
					 | 
				
			||||||
  // and this is the best I found
 | 
					 | 
				
			||||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
					 | 
				
			||||||
				       int nn,
 | 
					 | 
				
			||||||
				       double hi,
 | 
					 | 
				
			||||||
				       double lo,
 | 
					 | 
				
			||||||
				       int orderfilter,
 | 
					 | 
				
			||||||
				       int ordermin,
 | 
					 | 
				
			||||||
				       int orderstep,
 | 
					 | 
				
			||||||
				       double filterlo
 | 
					 | 
				
			||||||
				       ) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    FineField noise(FineGrid);
 | 
					 | 
				
			||||||
    FineField Mn(FineGrid);
 | 
					 | 
				
			||||||
    FineField tmp(FineGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // New normalised noise
 | 
					 | 
				
			||||||
    gaussian(RNG,noise);
 | 
					 | 
				
			||||||
    scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
    noise=noise*scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<" Chebyshev subspace pass-1 : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<" Chebyshev subspace pass-2 : nbasis"<<nn<<" min "
 | 
					 | 
				
			||||||
	      <<ordermin<<" step "<<orderstep
 | 
					 | 
				
			||||||
	      <<" lo"<<filterlo<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Initial matrix element
 | 
					 | 
				
			||||||
    hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int b =0;
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      ComplexD ip;
 | 
					 | 
				
			||||||
      // Filter
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb(lo,hi,orderfilter);
 | 
					 | 
				
			||||||
      Cheb(hermop,noise,Mn);
 | 
					 | 
				
			||||||
      // normalise
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
					 | 
				
			||||||
      subspace[b]   = Mn;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      hermop.Op(Mn,tmp);
 | 
					 | 
				
			||||||
      ip= innerProduct(Mn,tmp); 
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      hermop.AdjOp(Mn,tmp); 
 | 
					 | 
				
			||||||
      ip = innerProduct(Mn,tmp); 
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
 | 
					 | 
				
			||||||
      b++;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Generate a full sequence of Chebyshevs
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      lo=filterlo;
 | 
					 | 
				
			||||||
      noise=Mn;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      FineField T0(FineGrid); T0 = noise;  
 | 
					 | 
				
			||||||
      FineField T1(FineGrid); 
 | 
					 | 
				
			||||||
      FineField T2(FineGrid);
 | 
					 | 
				
			||||||
      FineField y(FineGrid);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      FineField *Tnm = &T0;
 | 
					 | 
				
			||||||
      FineField *Tn  = &T1;
 | 
					 | 
				
			||||||
      FineField *Tnp = &T2;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Tn=T1 = (xscale M + mscale)in
 | 
					 | 
				
			||||||
      RealD xscale = 2.0/(hi-lo);
 | 
					 | 
				
			||||||
      RealD mscale = -(hi+lo)/(hi-lo);
 | 
					 | 
				
			||||||
      hermop.HermOp(T0,y);
 | 
					 | 
				
			||||||
      T1=y*xscale+noise*mscale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	hermop.HermOp(*Tn,y);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	autoView( y_v , y, AcceleratorWrite);
 | 
					 | 
				
			||||||
	autoView( Tn_v , (*Tn), AcceleratorWrite);
 | 
					 | 
				
			||||||
	autoView( Tnp_v , (*Tnp), AcceleratorWrite);
 | 
					 | 
				
			||||||
	autoView( Tnm_v , (*Tnm), AcceleratorWrite);
 | 
					 | 
				
			||||||
	const int Nsimd = CComplex::Nsimd();
 | 
					 | 
				
			||||||
	accelerator_for(ss, FineGrid->oSites(), Nsimd, {
 | 
					 | 
				
			||||||
	  coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
 | 
					 | 
				
			||||||
	  coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
 | 
					 | 
				
			||||||
        });
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	// Possible more fine grained control is needed than a linear sweep,
 | 
					 | 
				
			||||||
	// but huge productivity gain if this is simple algorithm and not a tunable
 | 
					 | 
				
			||||||
	int m =1;
 | 
					 | 
				
			||||||
	if ( n>=ordermin ) m=n-ordermin;
 | 
					 | 
				
			||||||
	if ( (m%orderstep)==0 ) { 
 | 
					 | 
				
			||||||
	  Mn=*Tnp;
 | 
					 | 
				
			||||||
	  scale = std::pow(norm2(Mn),-0.5);         Mn=Mn*scale;
 | 
					 | 
				
			||||||
	  subspace[b] = Mn;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  ComplexD ip;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  hermop.Op(Mn,tmp);
 | 
					 | 
				
			||||||
	  ip= innerProduct(Mn,tmp); 
 | 
					 | 
				
			||||||
	  std::cout<<GridLogMessage << "filt ["<<b<<"] <n|Op|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  hermop.AdjOp(Mn,tmp); 
 | 
					 | 
				
			||||||
	  ip = innerProduct(Mn,tmp); 
 | 
					 | 
				
			||||||
	  std::cout<<GridLogMessage << "filt ["<<b<<"] <n|AdjOp|n> "<<norm2(tmp)<<" "<<ip<<std::endl;
 | 
					 | 
				
			||||||
	  
 | 
					 | 
				
			||||||
	  b++;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	// Cycle pointers to avoid copies
 | 
					 | 
				
			||||||
	FineField *swizzle = Tnm;
 | 
					 | 
				
			||||||
	Tnm    =Tn;
 | 
					 | 
				
			||||||
	Tn     =Tnp;
 | 
					 | 
				
			||||||
	Tnp    =swizzle;
 | 
					 | 
				
			||||||
	  
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    assert(b==nn);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void CreateSubspacePolyCheby(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
					 | 
				
			||||||
				       int nn,
 | 
					 | 
				
			||||||
				       double hi,
 | 
					 | 
				
			||||||
				       double lo1,
 | 
					 | 
				
			||||||
				       int orderfilter,
 | 
					 | 
				
			||||||
				       double lo2,
 | 
					 | 
				
			||||||
				       int orderstep)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    RealD scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    FineField noise(FineGrid);
 | 
					 | 
				
			||||||
    FineField Mn(FineGrid);
 | 
					 | 
				
			||||||
    FineField tmp(FineGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // New normalised noise
 | 
					 | 
				
			||||||
    gaussian(RNG,noise);
 | 
					 | 
				
			||||||
    scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
    noise=noise*scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<" CreateSubspacePolyCheby "<<std::endl;
 | 
					 | 
				
			||||||
    // Initial matrix element
 | 
					 | 
				
			||||||
    hermop.Op(noise,Mn);
 | 
					 | 
				
			||||||
    std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int b =0;
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      // Filter
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage << "Cheby "<<lo1<<","<<hi<<" "<<orderstep<<std::endl;
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb(lo1,hi,orderfilter);
 | 
					 | 
				
			||||||
      Cheb(hermop,noise,Mn);
 | 
					 | 
				
			||||||
      // normalise
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
					 | 
				
			||||||
      subspace[b]   = Mn;
 | 
					 | 
				
			||||||
      hermop.Op(Mn,tmp); 
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|n> "<<norm2(Mn)<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Generate a full sequence of Chebyshevs
 | 
					 | 
				
			||||||
    for(int n=1;n<nn;n++){
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage << "Cheby "<<lo2<<","<<hi<<" "<<orderstep<<std::endl;
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb(lo2,hi,orderstep);
 | 
					 | 
				
			||||||
      Cheb(hermop,subspace[n-1],Mn);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int m=0;m<n;m++){
 | 
					 | 
				
			||||||
	ComplexD c = innerProduct(subspace[m],Mn);
 | 
					 | 
				
			||||||
	Mn = Mn - c*subspace[m];
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      // normalise
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(Mn),-0.5);
 | 
					 | 
				
			||||||
      Mn=Mn*scale;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      subspace[n]=Mn;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      hermop.Op(Mn,tmp); 
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<n<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<n<<"] <n|n> "<<norm2(Mn)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void CreateSubspaceChebyshev(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
					 | 
				
			||||||
				       int nn,
 | 
					 | 
				
			||||||
				       double hi,
 | 
					 | 
				
			||||||
				       double lo,
 | 
					 | 
				
			||||||
				       int orderfilter
 | 
					 | 
				
			||||||
				       ) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    FineField noise(FineGrid);
 | 
					 | 
				
			||||||
    FineField Mn(FineGrid);
 | 
					 | 
				
			||||||
    FineField tmp(FineGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // New normalised noise
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<" Chebyshev subspace pure noise  : nbasis "<<nn<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int b =0;b<nbasis;b++)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      gaussian(RNG,noise);
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
      noise=noise*scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Initial matrix element
 | 
					 | 
				
			||||||
      hermop.Op(noise,Mn);
 | 
					 | 
				
			||||||
      if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Filter
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb(lo,hi,orderfilter);
 | 
					 | 
				
			||||||
      Cheb(hermop,noise,Mn);
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Refine
 | 
					 | 
				
			||||||
      Chebyshev<FineField> PowerLaw(lo,hi,1000,AggregatePowerLaw);
 | 
					 | 
				
			||||||
      noise = Mn;
 | 
					 | 
				
			||||||
      PowerLaw(hermop,noise,Mn);
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // normalise
 | 
					 | 
				
			||||||
      subspace[b]   = Mn;
 | 
					 | 
				
			||||||
      hermop.Op(Mn,tmp); 
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void CreateSubspaceChebyshevPowerLaw(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
					 | 
				
			||||||
					       int nn,
 | 
					 | 
				
			||||||
					       double hi,
 | 
					 | 
				
			||||||
					       int orderfilter
 | 
					 | 
				
			||||||
					       ) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    FineField noise(FineGrid);
 | 
					 | 
				
			||||||
    FineField Mn(FineGrid);
 | 
					 | 
				
			||||||
    FineField tmp(FineGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // New normalised noise
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" [0,"<<hi<<"]"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<" Chebyshev subspace pure noise  : nbasis "<<nn<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int b =0;b<nbasis;b++)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      gaussian(RNG,noise);
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
      noise=noise*scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Initial matrix element
 | 
					 | 
				
			||||||
      hermop.Op(noise,Mn);
 | 
					 | 
				
			||||||
      if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
					 | 
				
			||||||
      // Filter
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb(0.0,hi,orderfilter,AggregatePowerLaw);
 | 
					 | 
				
			||||||
      Cheb(hermop,noise,Mn);
 | 
					 | 
				
			||||||
      // normalise
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
					 | 
				
			||||||
      subspace[b]   = Mn;
 | 
					 | 
				
			||||||
      hermop.Op(Mn,tmp); 
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  virtual void CreateSubspaceChebyshevNew(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
					 | 
				
			||||||
					  double hi
 | 
					 | 
				
			||||||
					  ) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    FineField noise(FineGrid);
 | 
					 | 
				
			||||||
    FineField Mn(FineGrid);
 | 
					 | 
				
			||||||
    FineField tmp(FineGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // New normalised noise
 | 
					 | 
				
			||||||
    for(int b =0;b<nbasis;b++)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      gaussian(RNG,noise);
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
      noise=noise*scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Initial matrix element
 | 
					 | 
				
			||||||
      hermop.Op(noise,Mn);
 | 
					 | 
				
			||||||
      if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
					 | 
				
			||||||
      // Filter
 | 
					 | 
				
			||||||
      //#opt2(x) =  acheb(x,3,90,300)* acheb(x,1,90,50) * acheb(x,0.5,90,200) * acheb(x,0.05,90,400) * acheb(x,0.01,90,1500)
 | 
					 | 
				
			||||||
      /*266
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb1(3.0,hi,300);
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb2(1.0,hi,50);
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb3(0.5,hi,300);
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb4(0.05,hi,500);
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb5(0.01,hi,2000);
 | 
					 | 
				
			||||||
      */
 | 
					 | 
				
			||||||
      /* 242 */
 | 
					 | 
				
			||||||
      /*
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb3(0.1,hi,300);
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb2(0.02,hi,1000);
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb1(0.003,hi,2000);
 | 
					 | 
				
			||||||
      8?
 | 
					 | 
				
			||||||
      */
 | 
					 | 
				
			||||||
      /* How many??
 | 
					 | 
				
			||||||
      */
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb2(0.001,hi,2500); // 169 iters on HDCG after refine
 | 
					 | 
				
			||||||
      Chebyshev<FineField> Cheb1(0.02,hi,600);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      //      Chebyshev<FineField> Cheb2(0.001,hi,1500);
 | 
					 | 
				
			||||||
      //      Chebyshev<FineField> Cheb1(0.02,hi,600);
 | 
					 | 
				
			||||||
      Cheb1(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale;
 | 
					 | 
				
			||||||
      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb1 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
      Cheb2(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale;
 | 
					 | 
				
			||||||
      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb2 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
      //      Cheb3(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale;
 | 
					 | 
				
			||||||
      //      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb3 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
      //      Cheb4(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale;
 | 
					 | 
				
			||||||
      //      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb4 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
      //      Cheb5(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); 	noise=Mn*scale;
 | 
					 | 
				
			||||||
      //      hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb5 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
      subspace[b]   = noise;
 | 
					 | 
				
			||||||
      hermop.Op(subspace[b],tmp); 
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<< " norm " << norm2(noise)<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual void CreateSubspaceMultishift(GridParallelRNG  &RNG,LinearOperatorBase<FineField> &hermop,
 | 
					 | 
				
			||||||
					double Lo,double tol,int maxit)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    FineField noise(FineGrid);
 | 
					 | 
				
			||||||
    FineField Mn(FineGrid);
 | 
					 | 
				
			||||||
    FineField tmp(FineGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // New normalised noise
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<" Multishift subspace : Lo "<<Lo<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Filter
 | 
					 | 
				
			||||||
    // [ 1/6(x+Lo)  - 1/2(x+2Lo) + 1/2(x+3Lo)  -1/6(x+4Lo) = Lo^3 /[ (x+1Lo)(x+2Lo)(x+3Lo)(x+4Lo) ]
 | 
					 | 
				
			||||||
    //
 | 
					 | 
				
			||||||
    // 1/(x+Lo)  - 1/(x+2 Lo)
 | 
					 | 
				
			||||||
    double epsilon      = Lo/3;
 | 
					 | 
				
			||||||
    std::vector<RealD> alpha({1.0/6.0,-1.0/2.0,1.0/2.0,-1.0/6.0});
 | 
					 | 
				
			||||||
    std::vector<RealD> shifts({Lo,Lo+epsilon,Lo+2*epsilon,Lo+3*epsilon});
 | 
					 | 
				
			||||||
    std::vector<RealD> tols({tol,tol,tol,tol});
 | 
					 | 
				
			||||||
    std::cout << "sizes "<<alpha.size()<<" "<<shifts.size()<<" "<<tols.size()<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    MultiShiftFunction msf(4,0.0,95.0);
 | 
					 | 
				
			||||||
    std::cout << "msf constructed "<<std::endl;
 | 
					 | 
				
			||||||
    msf.poles=shifts;
 | 
					 | 
				
			||||||
    msf.residues=alpha;
 | 
					 | 
				
			||||||
    msf.tolerances=tols;
 | 
					 | 
				
			||||||
    msf.norm=0.0;
 | 
					 | 
				
			||||||
    msf.order=alpha.size();
 | 
					 | 
				
			||||||
    ConjugateGradientMultiShift<FineField> MSCG(maxit,msf);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    for(int b =0;b<nbasis;b++)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      gaussian(RNG,noise);
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(noise),-0.5); 
 | 
					 | 
				
			||||||
      noise=noise*scale;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Initial matrix element
 | 
					 | 
				
			||||||
      hermop.Op(noise,Mn);
 | 
					 | 
				
			||||||
      if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      MSCG(hermop,noise,Mn);
 | 
					 | 
				
			||||||
      scale = std::pow(norm2(Mn),-0.5); 	Mn=Mn*scale;
 | 
					 | 
				
			||||||
      subspace[b]   = Mn;
 | 
					 | 
				
			||||||
      hermop.Op(Mn,tmp); 
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  virtual void RefineSubspace(LinearOperatorBase<FineField> &hermop,
 | 
					 | 
				
			||||||
			      double Lo,double tol,int maxit)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    FineField tmp(FineGrid);
 | 
					 | 
				
			||||||
    for(int b =0;b<nbasis;b++)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      ConjugateGradient<FineField>  CGsloppy(tol,maxit,false);
 | 
					 | 
				
			||||||
      ShiftedHermOpLinearOperator<FineField> ShiftedFineHermOp(hermop,Lo);
 | 
					 | 
				
			||||||
      tmp=Zero();
 | 
					 | 
				
			||||||
      CGsloppy(hermop,subspace[b],tmp);
 | 
					 | 
				
			||||||
      RealD scale = std::pow(norm2(tmp),-0.5); 	tmp=tmp*scale;
 | 
					 | 
				
			||||||
      subspace[b]=tmp;
 | 
					 | 
				
			||||||
      hermop.Op(subspace[b],tmp);
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  virtual void RefineSubspaceHDCG(LinearOperatorBase<FineField> &hermop,
 | 
					 | 
				
			||||||
				  TwoLevelADEF2mrhs<FineField,CoarseVector> & theHDCG,
 | 
					 | 
				
			||||||
				  int nrhs)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::vector<FineField> src_mrhs(nrhs,FineGrid);
 | 
					 | 
				
			||||||
    std::vector<FineField> res_mrhs(nrhs,FineGrid);
 | 
					 | 
				
			||||||
    FineField tmp(FineGrid);
 | 
					 | 
				
			||||||
    for(int b =0;b<nbasis;b+=nrhs)
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      tmp = subspace[b];
 | 
					 | 
				
			||||||
      RealD scale = std::pow(norm2(tmp),-0.5); 	tmp=tmp*scale;
 | 
					 | 
				
			||||||
      subspace[b] =tmp;
 | 
					 | 
				
			||||||
      hermop.Op(subspace[b],tmp);
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "before filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int r=0;r<MIN(nbasis-b,nrhs);r++){
 | 
					 | 
				
			||||||
	src_mrhs[r] = subspace[b+r];
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      for(int r=0;r<nrhs;r++){
 | 
					 | 
				
			||||||
	res_mrhs[r] = Zero();
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      theHDCG(src_mrhs,res_mrhs);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int r=0;r<MIN(nbasis-b,nrhs);r++){
 | 
					 | 
				
			||||||
	tmp = res_mrhs[r];
 | 
					 | 
				
			||||||
	RealD scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
 | 
					 | 
				
			||||||
	subspace[b+r]=tmp;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      hermop.Op(subspace[b],tmp);
 | 
					 | 
				
			||||||
      std::cout<<GridLogMessage << "after filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
@@ -1,629 +0,0 @@
 | 
				
			|||||||
/*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2015
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
*************************************************************************************/
 | 
					 | 
				
			||||||
/*  END LEGAL */
 | 
					 | 
				
			||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#include <Grid/lattice/PaddedCell.h>
 | 
					 | 
				
			||||||
#include <Grid/stencil/GeneralLocalStencil.h>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
// Fine Object == (per site) type of fine field
 | 
					 | 
				
			||||||
// nbasis      == number of deflation vectors
 | 
					 | 
				
			||||||
template<class Fobj,class CComplex,int nbasis>
 | 
					 | 
				
			||||||
class GeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > >  {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
 | 
					 | 
				
			||||||
  typedef iVector<CComplex,nbasis >           siteVector;
 | 
					 | 
				
			||||||
  typedef iMatrix<CComplex,nbasis >           siteMatrix;
 | 
					 | 
				
			||||||
  typedef Lattice<iScalar<CComplex> >         CoarseComplexField;
 | 
					 | 
				
			||||||
  typedef Lattice<siteVector>                 CoarseVector;
 | 
					 | 
				
			||||||
  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
					 | 
				
			||||||
  typedef iMatrix<CComplex,nbasis >  Cobj;
 | 
					 | 
				
			||||||
  typedef iVector<CComplex,nbasis >  Cvec;
 | 
					 | 
				
			||||||
  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
					 | 
				
			||||||
  typedef Lattice<Fobj >        FineField;
 | 
					 | 
				
			||||||
  typedef Lattice<CComplex >    FineComplexField;
 | 
					 | 
				
			||||||
  typedef CoarseVector Field;
 | 
					 | 
				
			||||||
  ////////////////////
 | 
					 | 
				
			||||||
  // Data members
 | 
					 | 
				
			||||||
  ////////////////////
 | 
					 | 
				
			||||||
  int hermitian;
 | 
					 | 
				
			||||||
  GridBase      *       _FineGrid; 
 | 
					 | 
				
			||||||
  GridCartesian *       _CoarseGrid; 
 | 
					 | 
				
			||||||
  NonLocalStencilGeometry &geom;
 | 
					 | 
				
			||||||
  PaddedCell Cell;
 | 
					 | 
				
			||||||
  GeneralLocalStencil Stencil;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  std::vector<CoarseMatrix> _A;
 | 
					 | 
				
			||||||
  std::vector<CoarseMatrix> _Adag;
 | 
					 | 
				
			||||||
  std::vector<CoarseVector> MultTemporaries;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ///////////////////////
 | 
					 | 
				
			||||||
  // Interface
 | 
					 | 
				
			||||||
  ///////////////////////
 | 
					 | 
				
			||||||
  GridBase      * Grid(void)           { return _CoarseGrid; };   // this is all the linalg routines need to know
 | 
					 | 
				
			||||||
  GridBase      * FineGrid(void)       { return _FineGrid; };   // this is all the linalg routines need to know
 | 
					 | 
				
			||||||
  GridCartesian * CoarseGrid(void)     { return _CoarseGrid; };   // this is all the linalg routines need to know
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /*  void ShiftMatrix(RealD shift)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int Nd=_FineGrid->Nd(); 
 | 
					 | 
				
			||||||
    Coordinate zero_shift(Nd,0);
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
      if ( zero_shift==geom.shifts[p] ) {
 | 
					 | 
				
			||||||
	_A[p] = _A[p]+shift;
 | 
					 | 
				
			||||||
	//	_Adag[p] = _Adag[p]+shift;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }    
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void ProjectNearestNeighbour(RealD shift, GeneralCoarseOp &CopyMe)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int nfound=0;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage <<"GeneralCoarsenedMatrix::ProjectNearestNeighbour "<< CopyMe._A[0].Grid()<<std::endl;
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
      for(int pp=0;pp<CopyMe.geom.npoint;pp++){
 | 
					 | 
				
			||||||
 	// Search for the same relative shift
 | 
					 | 
				
			||||||
	// Avoids brutal handling of Grid pointers
 | 
					 | 
				
			||||||
	if ( CopyMe.geom.shifts[pp]==geom.shifts[p] ) {
 | 
					 | 
				
			||||||
	  _A[p] = CopyMe.Cell.Extract(CopyMe._A[pp]);
 | 
					 | 
				
			||||||
	  //	  _Adag[p] = CopyMe.Cell.Extract(CopyMe._Adag[pp]);
 | 
					 | 
				
			||||||
	  nfound++;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    assert(nfound==geom.npoint);
 | 
					 | 
				
			||||||
    ExchangeCoarseLinks();
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  */
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  GeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridBase *FineGrid, GridCartesian * CoarseGrid)
 | 
					 | 
				
			||||||
    : geom(_geom),
 | 
					 | 
				
			||||||
      _FineGrid(FineGrid),
 | 
					 | 
				
			||||||
      _CoarseGrid(CoarseGrid),
 | 
					 | 
				
			||||||
      hermitian(1),
 | 
					 | 
				
			||||||
      Cell(_geom.Depth(),_CoarseGrid),
 | 
					 | 
				
			||||||
      Stencil(Cell.grids.back(),geom.shifts)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      int npoint = _geom.npoint;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    _A.resize(geom.npoint,CoarseGrid);
 | 
					 | 
				
			||||||
    //    _Adag.resize(geom.npoint,CoarseGrid);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void M (const CoarseVector &in, CoarseVector &out)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    Mult(_A,in,out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void Mdag (const CoarseVector &in, CoarseVector &out)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    assert(hermitian);
 | 
					 | 
				
			||||||
    Mult(_A,in,out);
 | 
					 | 
				
			||||||
    //    if ( hermitian ) M(in,out);
 | 
					 | 
				
			||||||
    //    else Mult(_Adag,in,out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void Mult (std::vector<CoarseMatrix> &A,const CoarseVector &in, CoarseVector &out)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    RealD tviews=0;    RealD ttot=0;    RealD tmult=0;   RealD texch=0;    RealD text=0; RealD ttemps=0; RealD tcopy=0;
 | 
					 | 
				
			||||||
    RealD tmult2=0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ttot=-usecond();
 | 
					 | 
				
			||||||
    conformable(CoarseGrid(),in.Grid());
 | 
					 | 
				
			||||||
    conformable(in.Grid(),out.Grid());
 | 
					 | 
				
			||||||
    out.Checkerboard() = in.Checkerboard();
 | 
					 | 
				
			||||||
    CoarseVector tin=in;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    texch-=usecond();
 | 
					 | 
				
			||||||
    CoarseVector pin = Cell.ExchangePeriodic(tin);
 | 
					 | 
				
			||||||
    texch+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    CoarseVector pout(pin.Grid());
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int npoint = geom.npoint;
 | 
					 | 
				
			||||||
    typedef LatticeView<Cobj> Aview;
 | 
					 | 
				
			||||||
    typedef LatticeView<Cvec> Vview;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    const int Nsimd = CComplex::Nsimd();
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    int64_t osites=pin.Grid()->oSites();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
 | 
					 | 
				
			||||||
    RealD bytes = 1.0*osites*sizeof(siteMatrix)*npoint
 | 
					 | 
				
			||||||
                + 2.0*osites*sizeof(siteVector)*npoint;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      tviews-=usecond();
 | 
					 | 
				
			||||||
      autoView( in_v , pin, AcceleratorRead);
 | 
					 | 
				
			||||||
      autoView( out_v , pout, AcceleratorWriteDiscard);
 | 
					 | 
				
			||||||
      autoView( Stencil_v  , Stencil, AcceleratorRead);
 | 
					 | 
				
			||||||
      tviews+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Static and prereserve to keep UVM region live and not resized across multiple calls
 | 
					 | 
				
			||||||
      ttemps-=usecond();
 | 
					 | 
				
			||||||
      MultTemporaries.resize(npoint,pin.Grid());       
 | 
					 | 
				
			||||||
      ttemps+=usecond();
 | 
					 | 
				
			||||||
      std::vector<Aview> AcceleratorViewContainer_h;
 | 
					 | 
				
			||||||
      std::vector<Vview> AcceleratorVecViewContainer_h; 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      tviews-=usecond();
 | 
					 | 
				
			||||||
      for(int p=0;p<npoint;p++) {
 | 
					 | 
				
			||||||
	AcceleratorViewContainer_h.push_back(      A[p].View(AcceleratorRead));
 | 
					 | 
				
			||||||
	AcceleratorVecViewContainer_h.push_back(MultTemporaries[p].View(AcceleratorWrite));
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      tviews+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      static deviceVector<Aview> AcceleratorViewContainer; AcceleratorViewContainer.resize(npoint);
 | 
					 | 
				
			||||||
      static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(npoint); 
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      auto Aview_p = &AcceleratorViewContainer[0];
 | 
					 | 
				
			||||||
      auto Vview_p = &AcceleratorVecViewContainer[0];
 | 
					 | 
				
			||||||
      tcopy-=usecond();
 | 
					 | 
				
			||||||
      acceleratorCopyToDevice(&AcceleratorViewContainer_h[0],&AcceleratorViewContainer[0],npoint *sizeof(Aview));
 | 
					 | 
				
			||||||
      acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],npoint *sizeof(Vview));
 | 
					 | 
				
			||||||
      tcopy+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      tmult-=usecond();
 | 
					 | 
				
			||||||
      accelerator_for(spb, osites*nbasis*npoint, Nsimd, {
 | 
					 | 
				
			||||||
	  typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
 | 
					 | 
				
			||||||
	  int32_t ss   = spb/(nbasis*npoint);
 | 
					 | 
				
			||||||
	  int32_t bp   = spb%(nbasis*npoint);
 | 
					 | 
				
			||||||
	  int32_t point= bp/nbasis;
 | 
					 | 
				
			||||||
	  int32_t b    = bp%nbasis;
 | 
					 | 
				
			||||||
	  auto SE  = Stencil_v.GetEntry(point,ss);
 | 
					 | 
				
			||||||
	  auto nbr = coalescedReadGeneralPermute(in_v[SE->_offset],SE->_permute,Nd);
 | 
					 | 
				
			||||||
	  auto res = coalescedRead(Aview_p[point][ss](0,b))*nbr(0);
 | 
					 | 
				
			||||||
	  for(int bb=1;bb<nbasis;bb++) {
 | 
					 | 
				
			||||||
	    res = res + coalescedRead(Aview_p[point][ss](bb,b))*nbr(bb);
 | 
					 | 
				
			||||||
	  }
 | 
					 | 
				
			||||||
	  coalescedWrite(Vview_p[point][ss](b),res);
 | 
					 | 
				
			||||||
      });
 | 
					 | 
				
			||||||
      tmult2-=usecond();
 | 
					 | 
				
			||||||
      accelerator_for(sb, osites*nbasis, Nsimd, {
 | 
					 | 
				
			||||||
	  int ss = sb/nbasis;
 | 
					 | 
				
			||||||
	  int b  = sb%nbasis;
 | 
					 | 
				
			||||||
	  auto res = coalescedRead(Vview_p[0][ss](b));
 | 
					 | 
				
			||||||
	  for(int point=1;point<npoint;point++){
 | 
					 | 
				
			||||||
	    res = res + coalescedRead(Vview_p[point][ss](b));
 | 
					 | 
				
			||||||
	  }
 | 
					 | 
				
			||||||
	  coalescedWrite(out_v[ss](b),res);
 | 
					 | 
				
			||||||
      });
 | 
					 | 
				
			||||||
      tmult2+=usecond();
 | 
					 | 
				
			||||||
      tmult+=usecond();
 | 
					 | 
				
			||||||
      for(int p=0;p<npoint;p++) {
 | 
					 | 
				
			||||||
	AcceleratorViewContainer_h[p].ViewClose();
 | 
					 | 
				
			||||||
	AcceleratorVecViewContainer_h[p].ViewClose();
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    text-=usecond();
 | 
					 | 
				
			||||||
    out = Cell.Extract(pout);
 | 
					 | 
				
			||||||
    text+=usecond();
 | 
					 | 
				
			||||||
    ttot+=usecond();
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse 1rhs Mult Aviews "<<tviews<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse Mult exch "<<texch<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse Mult mult "<<tmult<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<" of which mult2  "<<tmult2<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse Mult ext  "<<text<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse Mult temps "<<ttemps<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse Mult copy  "<<tcopy<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse Mult tot  "<<ttot<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    //    std::cout << GridLogPerformance<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse Kernel flops "<< flops<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse Kernel flop/s "<< flops/tmult<<" mflop/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse Kernel bytes/s "<< bytes/tmult<<" MB/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse overall flops/s "<< flops/ttot<<" mflop/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance<<"Coarse total bytes   "<< bytes/1e6<<" MB"<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  void PopulateAdag(void)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    for(int64_t bidx=0;bidx<CoarseGrid()->gSites() ;bidx++){
 | 
					 | 
				
			||||||
      Coordinate bcoor;
 | 
					 | 
				
			||||||
      CoarseGrid()->GlobalIndexToGlobalCoor(bidx,bcoor);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
	Coordinate scoor = bcoor;
 | 
					 | 
				
			||||||
	for(int mu=0;mu<bcoor.size();mu++){
 | 
					 | 
				
			||||||
	  int L = CoarseGrid()->GlobalDimensions()[mu];
 | 
					 | 
				
			||||||
	  scoor[mu] = (bcoor[mu] - geom.shifts[p][mu] + L) % L; // Modulo arithmetic
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	// Flip to poke/peekLocalSite and not too bad
 | 
					 | 
				
			||||||
	auto link = peekSite(_A[p],scoor);
 | 
					 | 
				
			||||||
	int pp = geom.Reverse(p);
 | 
					 | 
				
			||||||
	pokeSite(adj(link),_Adag[pp],bcoor);
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // 
 | 
					 | 
				
			||||||
  // A) Only reduced flops option is to use a padded cell of depth 4
 | 
					 | 
				
			||||||
  // and apply MpcDagMpc in the padded cell.
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Makes for ONE application of MpcDagMpc per vector instead of 30 or 80.
 | 
					 | 
				
			||||||
  // With the effective cell size around (B+8)^4 perhaps 12^4/4^4 ratio
 | 
					 | 
				
			||||||
  // Cost is 81x more, same as stencil size.
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // But: can eliminate comms and do as local dirichlet.
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Local exchange gauge field once.
 | 
					 | 
				
			||||||
  // Apply to all vectors, local only computation.
 | 
					 | 
				
			||||||
  // Must exchange ghost subcells in reverse process of PaddedCell to take inner products
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // B) Can reduce cost: pad by 1, apply Deo      (4^4+6^4+8^4+8^4 )/ (4x 4^4)
 | 
					 | 
				
			||||||
  //                     pad by 2, apply Doe
 | 
					 | 
				
			||||||
  //                     pad by 3, apply Deo
 | 
					 | 
				
			||||||
  //                     then break out 8x directions; cost is ~10x MpcDagMpc per vector
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // => almost factor of 10 in setup cost, excluding data rearrangement
 | 
					 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Intermediates -- ignore the corner terms, leave approximate and force Hermitian
 | 
					 | 
				
			||||||
  // Intermediates -- pad by 2 and apply 1+8+24 = 33 times.
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // BFM HDCG style approach: Solve a system of equations to get Aij
 | 
					 | 
				
			||||||
    //////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    /*
 | 
					 | 
				
			||||||
     *     Here, k,l index which possible shift within the 3^Nd "ball" connected by MdagM.
 | 
					 | 
				
			||||||
     *
 | 
					 | 
				
			||||||
     *     conj(phases[block]) proj[k][ block*Nvec+j ] =  \sum_ball  e^{i q_k . delta} < phi_{block,j} | MdagM | phi_{(block+delta),i} > 
 | 
					 | 
				
			||||||
     *                                                 =  \sum_ball e^{iqk.delta} A_ji
 | 
					 | 
				
			||||||
     *
 | 
					 | 
				
			||||||
     *     Must invert matrix M_k,l = e^[i q_k . delta_l]
 | 
					 | 
				
			||||||
     *
 | 
					 | 
				
			||||||
     *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
					 | 
				
			||||||
     */
 | 
					 | 
				
			||||||
#if 0
 | 
					 | 
				
			||||||
  void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
					 | 
				
			||||||
		       Aggregation<Fobj,CComplex,nbasis> & Subspace)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
 | 
					 | 
				
			||||||
    GridBase *grid = FineGrid();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD tproj=0.0;
 | 
					 | 
				
			||||||
    RealD teigen=0.0;
 | 
					 | 
				
			||||||
    RealD tmat=0.0;
 | 
					 | 
				
			||||||
    RealD tphase=0.0;
 | 
					 | 
				
			||||||
    RealD tinv=0.0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Orthogonalise the subblocks over the basis
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    CoarseScalar InnerProd(CoarseGrid()); 
 | 
					 | 
				
			||||||
    blockOrthogonalise(InnerProd,Subspace.subspace);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    const int npoint = geom.npoint;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    Coordinate clatt = CoarseGrid()->GlobalDimensions();
 | 
					 | 
				
			||||||
    int Nd = CoarseGrid()->Nd();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      /*
 | 
					 | 
				
			||||||
       *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
 | 
					 | 
				
			||||||
       *     Matrix index i is mapped to this shift via 
 | 
					 | 
				
			||||||
       *               geom.shifts[i]
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block] 
 | 
					 | 
				
			||||||
       *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} > 
 | 
					 | 
				
			||||||
       *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
 | 
					 | 
				
			||||||
       *       = M_{kl} A_ji^{b.b+l}
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
 | 
					 | 
				
			||||||
       *  
 | 
					 | 
				
			||||||
       *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
 | 
					 | 
				
			||||||
       */
 | 
					 | 
				
			||||||
    teigen-=usecond();
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
					 | 
				
			||||||
    ComplexD ci(0.0,1.0);
 | 
					 | 
				
			||||||
    for(int k=0;k<npoint;k++){ // Loop over momenta
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int l=0;l<npoint;l++){ // Loop over nbr relative
 | 
					 | 
				
			||||||
	ComplexD phase(0.0,0.0);
 | 
					 | 
				
			||||||
	for(int mu=0;mu<Nd;mu++){
 | 
					 | 
				
			||||||
	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
					 | 
				
			||||||
	  phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	phase=exp(phase*ci);
 | 
					 | 
				
			||||||
	Mkl(k,l) = phase;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    invMkl = Mkl.inverse();
 | 
					 | 
				
			||||||
    teigen+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ///////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Now compute the matrix elements of linop between the orthonormal
 | 
					 | 
				
			||||||
    // set of vectors.
 | 
					 | 
				
			||||||
    ///////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    FineField phaV(grid); // Phased block basis vector
 | 
					 | 
				
			||||||
    FineField MphaV(grid);// Matrix applied
 | 
					 | 
				
			||||||
    CoarseVector coarseInner(CoarseGrid());
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
 | 
					 | 
				
			||||||
    std::vector<CoarseVector>          FT(npoint,CoarseGrid());
 | 
					 | 
				
			||||||
    for(int i=0;i<nbasis;i++){// Loop over basis vectors
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
 | 
					 | 
				
			||||||
      for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
					 | 
				
			||||||
	/////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	// Stick a phase on every block
 | 
					 | 
				
			||||||
	/////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	tphase-=usecond();
 | 
					 | 
				
			||||||
	CoarseComplexField coor(CoarseGrid());
 | 
					 | 
				
			||||||
	CoarseComplexField pha(CoarseGrid());	pha=Zero();
 | 
					 | 
				
			||||||
	for(int mu=0;mu<Nd;mu++){
 | 
					 | 
				
			||||||
	  LatticeCoordinate(coor,mu);
 | 
					 | 
				
			||||||
	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
					 | 
				
			||||||
	  pha = pha + (TwoPiL * geom.shifts[p][mu]) * coor;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	pha  =exp(pha*ci);
 | 
					 | 
				
			||||||
	phaV=Zero();
 | 
					 | 
				
			||||||
	blockZAXPY(phaV,pha,Subspace.subspace[i],phaV);
 | 
					 | 
				
			||||||
	tphase+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	/////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	// Multiple phased subspace vector by matrix and project to subspace
 | 
					 | 
				
			||||||
	// Remove local bulk phase to leave relative phases
 | 
					 | 
				
			||||||
	/////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	tmat-=usecond();
 | 
					 | 
				
			||||||
	linop.Op(phaV,MphaV);
 | 
					 | 
				
			||||||
	tmat+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	tproj-=usecond();
 | 
					 | 
				
			||||||
	blockProject(coarseInner,MphaV,Subspace.subspace);
 | 
					 | 
				
			||||||
	coarseInner = conjugate(pha) * coarseInner;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	ComputeProj[p] = coarseInner;
 | 
					 | 
				
			||||||
	tproj+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      tinv-=usecond();
 | 
					 | 
				
			||||||
      for(int k=0;k<npoint;k++){
 | 
					 | 
				
			||||||
	FT[k] = Zero();
 | 
					 | 
				
			||||||
	for(int l=0;l<npoint;l++){
 | 
					 | 
				
			||||||
	  FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
	int osites=CoarseGrid()->oSites();
 | 
					 | 
				
			||||||
	autoView( A_v  , _A[k], AcceleratorWrite);
 | 
					 | 
				
			||||||
	autoView( FT_v  , FT[k], AcceleratorRead);
 | 
					 | 
				
			||||||
	accelerator_for(sss, osites, 1, {
 | 
					 | 
				
			||||||
	    for(int j=0;j<nbasis;j++){
 | 
					 | 
				
			||||||
	      A_v[sss](i,j) = FT_v[sss](j);
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
        });
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      tinv+=usecond();
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Only needed if nonhermitian
 | 
					 | 
				
			||||||
    if ( ! hermitian ) {
 | 
					 | 
				
			||||||
      //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl;
 | 
					 | 
				
			||||||
      //      PopulateAdag();
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Need to write something to populate Adag from A
 | 
					 | 
				
			||||||
    ExchangeCoarseLinks();
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator eigen  "<<teigen<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator phase  "<<tphase<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator mat    "<<tmat <<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator proj   "<<tproj<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // Galerkin projection of matrix
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
					 | 
				
			||||||
		       Aggregation<Fobj,CComplex,nbasis> & Subspace)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    CoarsenOperator(linop,Subspace,Subspace);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // Petrov - Galerkin projection of matrix
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
					 | 
				
			||||||
		       Aggregation<Fobj,CComplex,nbasis> & U,
 | 
					 | 
				
			||||||
		       Aggregation<Fobj,CComplex,nbasis> & V)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
 | 
					 | 
				
			||||||
    GridBase *grid = FineGrid();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD tproj=0.0;
 | 
					 | 
				
			||||||
    RealD teigen=0.0;
 | 
					 | 
				
			||||||
    RealD tmat=0.0;
 | 
					 | 
				
			||||||
    RealD tphase=0.0;
 | 
					 | 
				
			||||||
    RealD tphaseBZ=0.0;
 | 
					 | 
				
			||||||
    RealD tinv=0.0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Orthogonalise the subblocks over the basis
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    CoarseScalar InnerProd(CoarseGrid()); 
 | 
					 | 
				
			||||||
    blockOrthogonalise(InnerProd,V.subspace);
 | 
					 | 
				
			||||||
    blockOrthogonalise(InnerProd,U.subspace);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    const int npoint = geom.npoint;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    Coordinate clatt = CoarseGrid()->GlobalDimensions();
 | 
					 | 
				
			||||||
    int Nd = CoarseGrid()->Nd();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      /*
 | 
					 | 
				
			||||||
       *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
 | 
					 | 
				
			||||||
       *     Matrix index i is mapped to this shift via 
 | 
					 | 
				
			||||||
       *               geom.shifts[i]
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block] 
 | 
					 | 
				
			||||||
       *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} > 
 | 
					 | 
				
			||||||
       *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
 | 
					 | 
				
			||||||
       *       = M_{kl} A_ji^{b.b+l}
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
 | 
					 | 
				
			||||||
       *  
 | 
					 | 
				
			||||||
       *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
 | 
					 | 
				
			||||||
       */
 | 
					 | 
				
			||||||
    teigen-=usecond();
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
					 | 
				
			||||||
    ComplexD ci(0.0,1.0);
 | 
					 | 
				
			||||||
    for(int k=0;k<npoint;k++){ // Loop over momenta
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int l=0;l<npoint;l++){ // Loop over nbr relative
 | 
					 | 
				
			||||||
	ComplexD phase(0.0,0.0);
 | 
					 | 
				
			||||||
	for(int mu=0;mu<Nd;mu++){
 | 
					 | 
				
			||||||
	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
					 | 
				
			||||||
	  phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	phase=exp(phase*ci);
 | 
					 | 
				
			||||||
	Mkl(k,l) = phase;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    invMkl = Mkl.inverse();
 | 
					 | 
				
			||||||
    teigen+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ///////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Now compute the matrix elements of linop between the orthonormal
 | 
					 | 
				
			||||||
    // set of vectors.
 | 
					 | 
				
			||||||
    ///////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    FineField phaV(grid); // Phased block basis vector
 | 
					 | 
				
			||||||
    FineField MphaV(grid);// Matrix applied
 | 
					 | 
				
			||||||
    std::vector<FineComplexField> phaF(npoint,grid);
 | 
					 | 
				
			||||||
    std::vector<CoarseComplexField> pha(npoint,CoarseGrid());
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    CoarseVector coarseInner(CoarseGrid());
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    typedef typename CComplex::scalar_type SComplex;
 | 
					 | 
				
			||||||
    FineComplexField one(grid); one=SComplex(1.0);
 | 
					 | 
				
			||||||
    FineComplexField zz(grid); zz = Zero();
 | 
					 | 
				
			||||||
    tphase=-usecond();
 | 
					 | 
				
			||||||
    for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
					 | 
				
			||||||
      /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
      // Stick a phase on every block
 | 
					 | 
				
			||||||
      /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
      CoarseComplexField coor(CoarseGrid());
 | 
					 | 
				
			||||||
      pha[p]=Zero();
 | 
					 | 
				
			||||||
      for(int mu=0;mu<Nd;mu++){
 | 
					 | 
				
			||||||
	LatticeCoordinate(coor,mu);
 | 
					 | 
				
			||||||
	RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
					 | 
				
			||||||
	pha[p] = pha[p] + (TwoPiL * geom.shifts[p][mu]) * coor;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      pha[p]  =exp(pha[p]*ci);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      blockZAXPY(phaF[p],pha[p],one,zz);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    tphase+=usecond();
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
 | 
					 | 
				
			||||||
    std::vector<CoarseVector>          FT(npoint,CoarseGrid());
 | 
					 | 
				
			||||||
    for(int i=0;i<nbasis;i++){// Loop over basis vectors
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
 | 
					 | 
				
			||||||
      for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
					 | 
				
			||||||
	tphaseBZ-=usecond();
 | 
					 | 
				
			||||||
	phaV = phaF[p]*V.subspace[i];
 | 
					 | 
				
			||||||
	tphaseBZ+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	/////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	// Multiple phased subspace vector by matrix and project to subspace
 | 
					 | 
				
			||||||
	// Remove local bulk phase to leave relative phases
 | 
					 | 
				
			||||||
	/////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	tmat-=usecond();
 | 
					 | 
				
			||||||
	linop.Op(phaV,MphaV);
 | 
					 | 
				
			||||||
	tmat+=usecond();
 | 
					 | 
				
			||||||
	//	std::cout << i << " " <<p << " MphaV "<<norm2(MphaV)<<" "<<norm2(phaV)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	tproj-=usecond();
 | 
					 | 
				
			||||||
	blockProject(coarseInner,MphaV,U.subspace);
 | 
					 | 
				
			||||||
	coarseInner = conjugate(pha[p]) * coarseInner;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	ComputeProj[p] = coarseInner;
 | 
					 | 
				
			||||||
	tproj+=usecond();
 | 
					 | 
				
			||||||
	//	std::cout << i << " " <<p << " ComputeProj "<<norm2(ComputeProj[p])<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      tinv-=usecond();
 | 
					 | 
				
			||||||
      for(int k=0;k<npoint;k++){
 | 
					 | 
				
			||||||
	FT[k] = Zero();
 | 
					 | 
				
			||||||
	for(int l=0;l<npoint;l++){
 | 
					 | 
				
			||||||
	  FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
	int osites=CoarseGrid()->oSites();
 | 
					 | 
				
			||||||
	autoView( A_v  , _A[k], AcceleratorWrite);
 | 
					 | 
				
			||||||
	autoView( FT_v  , FT[k], AcceleratorRead);
 | 
					 | 
				
			||||||
	accelerator_for(sss, osites, 1, {
 | 
					 | 
				
			||||||
	    for(int j=0;j<nbasis;j++){
 | 
					 | 
				
			||||||
	      A_v[sss](i,j) = FT_v[sss](j);
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
        });
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      tinv+=usecond();
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Only needed if nonhermitian
 | 
					 | 
				
			||||||
    if ( ! hermitian ) {
 | 
					 | 
				
			||||||
      //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl;
 | 
					 | 
				
			||||||
      //      PopulateAdag();
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
      std::cout << " _A["<<p<<"] "<<norm2(_A[p])<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Need to write something to populate Adag from A
 | 
					 | 
				
			||||||
    ExchangeCoarseLinks();
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator eigen  "<<teigen<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator phase  "<<tphase<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator mat    "<<tmat <<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator proj   "<<tproj<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
#endif  
 | 
					 | 
				
			||||||
  void ExchangeCoarseLinks(void){
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
      _A[p] = Cell.ExchangePeriodic(_A[p]);
 | 
					 | 
				
			||||||
      //      _Adag[p]= Cell.ExchangePeriodic(_Adag[p]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  virtual  void Mdiag    (const Field &in, Field &out){ assert(0);};
 | 
					 | 
				
			||||||
  virtual  void Mdir     (const Field &in, Field &out,int dir, int disp){assert(0);};
 | 
					 | 
				
			||||||
  virtual  void MdirAll  (const Field &in, std::vector<Field> &out){assert(0);};
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
@@ -1,729 +0,0 @@
 | 
				
			|||||||
/*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: ./lib/algorithms/GeneralCoarsenedMatrixMultiRHS.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2015
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
*************************************************************************************/
 | 
					 | 
				
			||||||
/*  END LEGAL */
 | 
					 | 
				
			||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
// Fine Object == (per site) type of fine field
 | 
					 | 
				
			||||||
// nbasis      == number of deflation vectors
 | 
					 | 
				
			||||||
template<class Fobj,class CComplex,int nbasis>
 | 
					 | 
				
			||||||
class MultiGeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > >  {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  typedef typename CComplex::scalar_object SComplex;
 | 
					 | 
				
			||||||
  typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
 | 
					 | 
				
			||||||
  typedef MultiGeneralCoarsenedMatrix<Fobj,CComplex,nbasis> MultiGeneralCoarseOp;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  typedef iVector<CComplex,nbasis >           siteVector;
 | 
					 | 
				
			||||||
  typedef iMatrix<CComplex,nbasis >           siteMatrix;
 | 
					 | 
				
			||||||
  typedef iVector<SComplex,nbasis >           calcVector;
 | 
					 | 
				
			||||||
  typedef iMatrix<SComplex,nbasis >           calcMatrix;
 | 
					 | 
				
			||||||
  typedef Lattice<iScalar<CComplex> >         CoarseComplexField;
 | 
					 | 
				
			||||||
  typedef Lattice<siteVector>                 CoarseVector;
 | 
					 | 
				
			||||||
  typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
 | 
					 | 
				
			||||||
  typedef iMatrix<CComplex,nbasis >  Cobj;
 | 
					 | 
				
			||||||
  typedef iVector<CComplex,nbasis >  Cvec;
 | 
					 | 
				
			||||||
  typedef Lattice< CComplex >   CoarseScalar; // used for inner products on fine field
 | 
					 | 
				
			||||||
  typedef Lattice<Fobj >        FineField;
 | 
					 | 
				
			||||||
  typedef Lattice<CComplex >    FineComplexField;
 | 
					 | 
				
			||||||
  typedef CoarseVector Field;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ////////////////////
 | 
					 | 
				
			||||||
  // Data members
 | 
					 | 
				
			||||||
  ////////////////////
 | 
					 | 
				
			||||||
  GridCartesian *       _CoarseGridMulti; 
 | 
					 | 
				
			||||||
  NonLocalStencilGeometry geom;
 | 
					 | 
				
			||||||
  NonLocalStencilGeometry geom_srhs;
 | 
					 | 
				
			||||||
  PaddedCell Cell;
 | 
					 | 
				
			||||||
  GeneralLocalStencil Stencil;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  deviceVector<calcVector> BLAS_B;
 | 
					 | 
				
			||||||
  deviceVector<calcVector> BLAS_C;
 | 
					 | 
				
			||||||
  std::vector<deviceVector<calcMatrix> > BLAS_A;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  std::vector<deviceVector<ComplexD *> > BLAS_AP;
 | 
					 | 
				
			||||||
  std::vector<deviceVector<ComplexD *> > BLAS_BP;
 | 
					 | 
				
			||||||
  deviceVector<ComplexD *>               BLAS_CP;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ///////////////////////
 | 
					 | 
				
			||||||
  // Interface
 | 
					 | 
				
			||||||
  ///////////////////////
 | 
					 | 
				
			||||||
  GridBase      * Grid(void)           { return _CoarseGridMulti; };   // this is all the linalg routines need to know
 | 
					 | 
				
			||||||
  GridCartesian * CoarseGrid(void)     { return _CoarseGridMulti; };   // this is all the linalg routines need to know
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  // Can be used to do I/O on the operator matrices externally
 | 
					 | 
				
			||||||
  void SetMatrix (int p,CoarseMatrix & A)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    assert(A.size()==geom_srhs.npoint);
 | 
					 | 
				
			||||||
    GridtoBLAS(A[p],BLAS_A[p]);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void GetMatrix (int p,CoarseMatrix & A)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    assert(A.size()==geom_srhs.npoint);
 | 
					 | 
				
			||||||
    BLAStoGrid(A[p],BLAS_A[p]);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void CopyMatrix (GeneralCoarseOp &_Op)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
      auto Aup = _Op.Cell.Extract(_Op._A[p]);
 | 
					 | 
				
			||||||
      //Unpadded
 | 
					 | 
				
			||||||
      GridtoBLAS(Aup,BLAS_A[p]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
  void CheckMatrix (GeneralCoarseOp &_Op)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::cout <<"************* Checking the little direc operator mRHS"<<std::endl;
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
      //Unpadded
 | 
					 | 
				
			||||||
      auto Aup = _Op.Cell.Extract(_Op._A[p]);
 | 
					 | 
				
			||||||
      auto Ack = Aup;
 | 
					 | 
				
			||||||
      BLAStoGrid(Ack,BLAS_A[p]);
 | 
					 | 
				
			||||||
      std::cout << p<<" Ack "<<norm2(Ack)<<std::endl;
 | 
					 | 
				
			||||||
      std::cout << p<<" Aup "<<norm2(Aup)<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    std::cout <<"************* "<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  */
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  MultiGeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridCartesian *CoarseGridMulti) :
 | 
					 | 
				
			||||||
    _CoarseGridMulti(CoarseGridMulti),
 | 
					 | 
				
			||||||
    geom_srhs(_geom),
 | 
					 | 
				
			||||||
    geom(_CoarseGridMulti,_geom.hops,_geom.skip+1),
 | 
					 | 
				
			||||||
    Cell(geom.Depth(),_CoarseGridMulti),
 | 
					 | 
				
			||||||
    Stencil(Cell.grids.back(),geom.shifts) // padded cell stencil
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int32_t padded_sites   = Cell.grids.back()->lSites();
 | 
					 | 
				
			||||||
    int32_t unpadded_sites = CoarseGridMulti->lSites();
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    int32_t nrhs  = CoarseGridMulti->FullDimensions()[0];  // # RHS
 | 
					 | 
				
			||||||
    int32_t orhs  = nrhs/CComplex::Nsimd();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    padded_sites   = padded_sites/nrhs;
 | 
					 | 
				
			||||||
    unpadded_sites = unpadded_sites/nrhs;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Device data vector storage
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    BLAS_A.resize(geom.npoint);
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
      BLAS_A[p].resize (unpadded_sites); // no ghost zone, npoint elements
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    BLAS_B.resize(nrhs *padded_sites);   // includes ghost zone
 | 
					 | 
				
			||||||
    BLAS_C.resize(nrhs *unpadded_sites); // no ghost zone
 | 
					 | 
				
			||||||
    BLAS_AP.resize(geom.npoint);
 | 
					 | 
				
			||||||
    BLAS_BP.resize(geom.npoint);
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
      BLAS_AP[p].resize(unpadded_sites);
 | 
					 | 
				
			||||||
      BLAS_BP[p].resize(unpadded_sites);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    BLAS_CP.resize(unpadded_sites);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Pointers to data
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Site identity mapping for A
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
      for(int ss=0;ss<unpadded_sites;ss++){
 | 
					 | 
				
			||||||
	ComplexD *ptr = (ComplexD *)&BLAS_A[p][ss];
 | 
					 | 
				
			||||||
	acceleratorPut(BLAS_AP[p][ss],ptr);
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    // Site identity mapping for C
 | 
					 | 
				
			||||||
    for(int ss=0;ss<unpadded_sites;ss++){
 | 
					 | 
				
			||||||
      ComplexD *ptr = (ComplexD *)&BLAS_C[ss*nrhs];
 | 
					 | 
				
			||||||
      acceleratorPut(BLAS_CP[ss],ptr);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Neighbour table is more complicated
 | 
					 | 
				
			||||||
    int32_t j=0; // Interior point counter (unpadded)
 | 
					 | 
				
			||||||
    for(int32_t s=0;s<padded_sites;s++){ // 4 volume, padded
 | 
					 | 
				
			||||||
      int ghost_zone=0;
 | 
					 | 
				
			||||||
      for(int32_t point = 0 ; point < geom.npoint; point++){
 | 
					 | 
				
			||||||
	int i=s*orhs*geom.npoint+point;
 | 
					 | 
				
			||||||
	if( Stencil._entries[i]._wrap ) { // stencil is indexed by the oSite of the CoarseGridMulti, hence orhs factor
 | 
					 | 
				
			||||||
	  ghost_zone=1; // If general stencil wrapped in any direction, wrap=1
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      if( ghost_zone==0) {
 | 
					 | 
				
			||||||
	for(int32_t point = 0 ; point < geom.npoint; point++){
 | 
					 | 
				
			||||||
	  int i=s*orhs*geom.npoint+point;
 | 
					 | 
				
			||||||
 	  int32_t nbr = Stencil._entries[i]._offset*CComplex::Nsimd(); // oSite -> lSite
 | 
					 | 
				
			||||||
	  assert(nbr<BLAS_B.size());
 | 
					 | 
				
			||||||
	  ComplexD * ptr = (ComplexD *)&BLAS_B[nbr];
 | 
					 | 
				
			||||||
	  acceleratorPut(BLAS_BP[point][j],ptr); // neighbour indexing in ghost zone volume
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	j++;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    assert(j==unpadded_sites);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  template<class vobj> void GridtoBLAS(const Lattice<vobj> &from,deviceVector<typename vobj::scalar_object> &to)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  GridBase *Fg = from.Grid();
 | 
					 | 
				
			||||||
  assert(!Fg->_isCheckerBoarded);
 | 
					 | 
				
			||||||
  int nd = Fg->_ndimension;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  to.resize(Fg->lSites());
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  Coordinate LocalLatt = Fg->LocalDimensions();
 | 
					 | 
				
			||||||
  size_t nsite = 1;
 | 
					 | 
				
			||||||
  for(int i=0;i<nd;i++) nsite *= LocalLatt[i];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // do the index calc on the GPU
 | 
					 | 
				
			||||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  Coordinate f_ostride = Fg->_ostride;
 | 
					 | 
				
			||||||
  Coordinate f_istride = Fg->_istride;
 | 
					 | 
				
			||||||
  Coordinate f_rdimensions = Fg->_rdimensions;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  autoView(from_v,from,AcceleratorRead);
 | 
					 | 
				
			||||||
  auto to_v = &to[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  const int words=sizeof(vobj)/sizeof(vector_type);
 | 
					 | 
				
			||||||
  accelerator_for(idx,nsite,1,{
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      Coordinate from_coor, base;
 | 
					 | 
				
			||||||
      Lexicographic::CoorFromIndex(base,idx,LocalLatt);
 | 
					 | 
				
			||||||
      for(int i=0;i<nd;i++){
 | 
					 | 
				
			||||||
	from_coor[i] = base[i];
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      int from_oidx = 0; for(int d=0;d<nd;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
 | 
					 | 
				
			||||||
      int from_lane = 0; for(int d=0;d<nd;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      const vector_type* from = (const vector_type *)&from_v[from_oidx];
 | 
					 | 
				
			||||||
      scalar_type* to = (scalar_type *)&to_v[idx];
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      scalar_type stmp;
 | 
					 | 
				
			||||||
      for(int w=0;w<words;w++){
 | 
					 | 
				
			||||||
	stmp = getlane(from[w], from_lane);
 | 
					 | 
				
			||||||
	to[w] = stmp;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    });
 | 
					 | 
				
			||||||
  }    
 | 
					 | 
				
			||||||
  template<class vobj> void BLAStoGrid(Lattice<vobj> &grid,deviceVector<typename vobj::scalar_object> &in)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  GridBase *Tg = grid.Grid();
 | 
					 | 
				
			||||||
  assert(!Tg->_isCheckerBoarded);
 | 
					 | 
				
			||||||
  int nd = Tg->_ndimension;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  assert(in.size()==Tg->lSites());
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  Coordinate LocalLatt = Tg->LocalDimensions();
 | 
					 | 
				
			||||||
  size_t nsite = 1;
 | 
					 | 
				
			||||||
  for(int i=0;i<nd;i++) nsite *= LocalLatt[i];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // do the index calc on the GPU
 | 
					 | 
				
			||||||
  ////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  Coordinate t_ostride = Tg->_ostride;
 | 
					 | 
				
			||||||
  Coordinate t_istride = Tg->_istride;
 | 
					 | 
				
			||||||
  Coordinate t_rdimensions = Tg->_rdimensions;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  autoView(to_v,grid,AcceleratorWrite);
 | 
					 | 
				
			||||||
  auto from_v = &in[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  const int words=sizeof(vobj)/sizeof(vector_type);
 | 
					 | 
				
			||||||
  accelerator_for(idx,nsite,1,{
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      Coordinate to_coor, base;
 | 
					 | 
				
			||||||
      Lexicographic::CoorFromIndex(base,idx,LocalLatt);
 | 
					 | 
				
			||||||
      for(int i=0;i<nd;i++){
 | 
					 | 
				
			||||||
	to_coor[i] = base[i];
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      int to_oidx = 0; for(int d=0;d<nd;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
 | 
					 | 
				
			||||||
      int to_lane = 0; for(int d=0;d<nd;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      vector_type* to = (vector_type *)&to_v[to_oidx];
 | 
					 | 
				
			||||||
      scalar_type* from = (scalar_type *)&from_v[idx];
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      scalar_type stmp;
 | 
					 | 
				
			||||||
      for(int w=0;w<words;w++){
 | 
					 | 
				
			||||||
	stmp=from[w];
 | 
					 | 
				
			||||||
	putlane(to[w], stmp, to_lane);
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    });
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
 | 
					 | 
				
			||||||
		       Aggregation<Fobj,CComplex,nbasis> & Subspace,
 | 
					 | 
				
			||||||
		       GridBase *CoarseGrid)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
#if 0
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridBase *grid = Subspace.FineGrid;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Orthogonalise the subblocks over the basis
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    CoarseScalar InnerProd(CoarseGrid); 
 | 
					 | 
				
			||||||
    blockOrthogonalise(InnerProd,Subspace.subspace);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    const int npoint = geom_srhs.npoint;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Coordinate clatt = CoarseGrid->GlobalDimensions();
 | 
					 | 
				
			||||||
    int Nd = CoarseGrid->Nd();
 | 
					 | 
				
			||||||
      /*
 | 
					 | 
				
			||||||
       *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
 | 
					 | 
				
			||||||
       *     Matrix index i is mapped to this shift via 
 | 
					 | 
				
			||||||
       *               geom.shifts[i]
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block] 
 | 
					 | 
				
			||||||
       *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} > 
 | 
					 | 
				
			||||||
       *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
 | 
					 | 
				
			||||||
       *       = M_{kl} A_ji^{b.b+l}
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
 | 
					 | 
				
			||||||
       *  
 | 
					 | 
				
			||||||
       *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
 | 
					 | 
				
			||||||
       */
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
					 | 
				
			||||||
    ComplexD ci(0.0,1.0);
 | 
					 | 
				
			||||||
    for(int k=0;k<npoint;k++){ // Loop over momenta
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int l=0;l<npoint;l++){ // Loop over nbr relative
 | 
					 | 
				
			||||||
	ComplexD phase(0.0,0.0);
 | 
					 | 
				
			||||||
	for(int mu=0;mu<Nd;mu++){
 | 
					 | 
				
			||||||
	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
					 | 
				
			||||||
	  phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	phase=exp(phase*ci);
 | 
					 | 
				
			||||||
	Mkl(k,l) = phase;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    invMkl = Mkl.inverse();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ///////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Now compute the matrix elements of linop between the orthonormal
 | 
					 | 
				
			||||||
    // set of vectors.
 | 
					 | 
				
			||||||
    ///////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    FineField phaV(grid); // Phased block basis vector
 | 
					 | 
				
			||||||
    FineField MphaV(grid);// Matrix applied
 | 
					 | 
				
			||||||
    std::vector<FineComplexField> phaF(npoint,grid);
 | 
					 | 
				
			||||||
    std::vector<CoarseComplexField> pha(npoint,CoarseGrid);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    CoarseVector coarseInner(CoarseGrid);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    typedef typename CComplex::scalar_type SComplex;
 | 
					 | 
				
			||||||
    FineComplexField one(grid); one=SComplex(1.0);
 | 
					 | 
				
			||||||
    FineComplexField zz(grid); zz = Zero();
 | 
					 | 
				
			||||||
    for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
					 | 
				
			||||||
      /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
      // Stick a phase on every block
 | 
					 | 
				
			||||||
      /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
      CoarseComplexField coor(CoarseGrid);
 | 
					 | 
				
			||||||
      pha[p]=Zero();
 | 
					 | 
				
			||||||
      for(int mu=0;mu<Nd;mu++){
 | 
					 | 
				
			||||||
	LatticeCoordinate(coor,mu);
 | 
					 | 
				
			||||||
	RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
					 | 
				
			||||||
	pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      pha[p]  =exp(pha[p]*ci);	
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      blockZAXPY(phaF[p],pha[p],one,zz);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Could save on temporary storage here
 | 
					 | 
				
			||||||
    std::vector<CoarseMatrix> _A;
 | 
					 | 
				
			||||||
    _A.resize(geom_srhs.npoint,CoarseGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid);
 | 
					 | 
				
			||||||
    CoarseVector          FT(CoarseGrid);
 | 
					 | 
				
			||||||
    for(int i=0;i<nbasis;i++){// Loop over basis vectors
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
 | 
					 | 
				
			||||||
      for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	phaV = phaF[p]*Subspace.subspace[i];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	/////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	// Multiple phased subspace vector by matrix and project to subspace
 | 
					 | 
				
			||||||
	// Remove local bulk phase to leave relative phases
 | 
					 | 
				
			||||||
	/////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	linop.Op(phaV,MphaV);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	// Fixme, could use batched block projector here
 | 
					 | 
				
			||||||
	blockProject(coarseInner,MphaV,Subspace.subspace);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	coarseInner = conjugate(pha[p]) * coarseInner;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	ComputeProj[p] = coarseInner;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix.
 | 
					 | 
				
			||||||
      for(int k=0;k<npoint;k++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	FT = Zero();
 | 
					 | 
				
			||||||
	for(int l=0;l<npoint;l++){
 | 
					 | 
				
			||||||
	  FT= FT+ invMkl(l,k)*ComputeProj[l];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
	int osites=CoarseGrid->oSites();
 | 
					 | 
				
			||||||
	autoView( A_v  , _A[k], AcceleratorWrite);
 | 
					 | 
				
			||||||
	autoView( FT_v  , FT, AcceleratorRead);
 | 
					 | 
				
			||||||
	accelerator_for(sss, osites, 1, {
 | 
					 | 
				
			||||||
	    for(int j=0;j<nbasis;j++){
 | 
					 | 
				
			||||||
	      A_v[sss](i,j) = FT_v[sss](j);
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
        });
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Only needed if nonhermitian
 | 
					 | 
				
			||||||
    //    if ( ! hermitian ) {
 | 
					 | 
				
			||||||
    //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl;
 | 
					 | 
				
			||||||
    //      PopulateAdag();
 | 
					 | 
				
			||||||
    //    }
 | 
					 | 
				
			||||||
    // Need to write something to populate Adag from A
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int p=0;p<geom_srhs.npoint;p++){
 | 
					 | 
				
			||||||
      GridtoBLAS(_A[p],BLAS_A[p]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    /*
 | 
					 | 
				
			||||||
Grid : Message : 11698.730546 s : CoarsenOperator eigen  1334 us
 | 
					 | 
				
			||||||
Grid : Message : 11698.730563 s : CoarsenOperator phase  34729 us
 | 
					 | 
				
			||||||
Grid : Message : 11698.730565 s : CoarsenOperator phaseBZ 2423814 us
 | 
					 | 
				
			||||||
Grid : Message : 11698.730566 s : CoarsenOperator mat    127890998 us
 | 
					 | 
				
			||||||
Grid : Message : 11698.730567 s : CoarsenOperator proj   515840840 us
 | 
					 | 
				
			||||||
Grid : Message : 11698.730568 s : CoarsenOperator inv    103948313 us
 | 
					 | 
				
			||||||
Takes 600s to compute matrix elements, DOMINATED by the block project.
 | 
					 | 
				
			||||||
Easy to speed up with the batched block project.
 | 
					 | 
				
			||||||
Store npoint vectors, get npoint x Nbasis block projection, and 81 fold faster.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
// Block project below taks to 240s
 | 
					 | 
				
			||||||
Grid : Message : 328.193418 s : CoarsenOperator phase      38338 us
 | 
					 | 
				
			||||||
Grid : Message : 328.193434 s : CoarsenOperator phaseBZ  1711226 us
 | 
					 | 
				
			||||||
Grid : Message : 328.193436 s : CoarsenOperator mat    122213270 us
 | 
					 | 
				
			||||||
//Grid : Message : 328.193438 s : CoarsenOperator proj   1181154 us <-- this is mistimed
 | 
					 | 
				
			||||||
//Grid : Message : 11698.730568 s : CoarsenOperator inv  103948313 us <-- Cut this ~10x if lucky by loop fusion
 | 
					 | 
				
			||||||
     */
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
    RealD tproj=0.0;
 | 
					 | 
				
			||||||
    RealD tmat=0.0;
 | 
					 | 
				
			||||||
    RealD tphase=0.0;
 | 
					 | 
				
			||||||
    RealD tphaseBZ=0.0;
 | 
					 | 
				
			||||||
    RealD tinv=0.0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridBase *grid = Subspace.FineGrid;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Orthogonalise the subblocks over the basis
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    CoarseScalar InnerProd(CoarseGrid); 
 | 
					 | 
				
			||||||
    blockOrthogonalise(InnerProd,Subspace.subspace);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    MultiRHSBlockProject<Lattice<Fobj> >    Projector;
 | 
					 | 
				
			||||||
    Projector.Allocate(nbasis,grid,CoarseGrid);
 | 
					 | 
				
			||||||
    Projector.ImportBasis(Subspace.subspace);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    const int npoint = geom_srhs.npoint;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Coordinate clatt = CoarseGrid->GlobalDimensions();
 | 
					 | 
				
			||||||
    int Nd = CoarseGrid->Nd();
 | 
					 | 
				
			||||||
      /*
 | 
					 | 
				
			||||||
       *     Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
 | 
					 | 
				
			||||||
       *     Matrix index i is mapped to this shift via 
 | 
					 | 
				
			||||||
       *               geom.shifts[i]
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block] 
 | 
					 | 
				
			||||||
       *       =  \sum_{l in ball}  e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} > 
 | 
					 | 
				
			||||||
       *       =  \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
 | 
					 | 
				
			||||||
       *       = M_{kl} A_ji^{b.b+l}
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
 | 
					 | 
				
			||||||
       *  
 | 
					 | 
				
			||||||
       *     Where q_k = delta_k . (2*M_PI/global_nb[mu])
 | 
					 | 
				
			||||||
       *
 | 
					 | 
				
			||||||
       *     Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
 | 
					 | 
				
			||||||
       */
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd Mkl    = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
 | 
					 | 
				
			||||||
    ComplexD ci(0.0,1.0);
 | 
					 | 
				
			||||||
    for(int k=0;k<npoint;k++){ // Loop over momenta
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      for(int l=0;l<npoint;l++){ // Loop over nbr relative
 | 
					 | 
				
			||||||
	ComplexD phase(0.0,0.0);
 | 
					 | 
				
			||||||
	for(int mu=0;mu<Nd;mu++){
 | 
					 | 
				
			||||||
	  RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
					 | 
				
			||||||
	  phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	phase=exp(phase*ci);
 | 
					 | 
				
			||||||
	Mkl(k,l) = phase;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    invMkl = Mkl.inverse();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ///////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Now compute the matrix elements of linop between the orthonormal
 | 
					 | 
				
			||||||
    // set of vectors.
 | 
					 | 
				
			||||||
    ///////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    FineField phaV(grid); // Phased block basis vector
 | 
					 | 
				
			||||||
    FineField MphaV(grid);// Matrix applied
 | 
					 | 
				
			||||||
    std::vector<FineComplexField> phaF(npoint,grid);
 | 
					 | 
				
			||||||
    std::vector<CoarseComplexField> pha(npoint,CoarseGrid);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    CoarseVector coarseInner(CoarseGrid);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    tphase=-usecond();
 | 
					 | 
				
			||||||
    typedef typename CComplex::scalar_type SComplex;
 | 
					 | 
				
			||||||
    FineComplexField one(grid); one=SComplex(1.0);
 | 
					 | 
				
			||||||
    FineComplexField zz(grid); zz = Zero();
 | 
					 | 
				
			||||||
    for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
 | 
					 | 
				
			||||||
      /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
      // Stick a phase on every block
 | 
					 | 
				
			||||||
      /////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
      CoarseComplexField coor(CoarseGrid);
 | 
					 | 
				
			||||||
      pha[p]=Zero();
 | 
					 | 
				
			||||||
      for(int mu=0;mu<Nd;mu++){
 | 
					 | 
				
			||||||
	LatticeCoordinate(coor,mu);
 | 
					 | 
				
			||||||
	RealD TwoPiL =  M_PI * 2.0/ clatt[mu];
 | 
					 | 
				
			||||||
	pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      pha[p]  =exp(pha[p]*ci);	
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      blockZAXPY(phaF[p],pha[p],one,zz);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    tphase+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Could save on temporary storage here
 | 
					 | 
				
			||||||
    std::vector<CoarseMatrix> _A;
 | 
					 | 
				
			||||||
    _A.resize(geom_srhs.npoint,CoarseGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Count use small chunks than npoint == 81 and save memory
 | 
					 | 
				
			||||||
    int batch = 9;
 | 
					 | 
				
			||||||
    std::vector<FineField>    _MphaV(batch,grid);
 | 
					 | 
				
			||||||
    std::vector<CoarseVector> TmpProj(batch,CoarseGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid);
 | 
					 | 
				
			||||||
    CoarseVector          FT(CoarseGrid);
 | 
					 | 
				
			||||||
    for(int i=0;i<nbasis;i++){// Loop over basis vectors
 | 
					 | 
				
			||||||
      std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      //      std::cout << GridLogMessage << " phasing the fine vector "<<std::endl;
 | 
					 | 
				
			||||||
      // Fixme : do this in batches
 | 
					 | 
				
			||||||
      for(int p=0;p<npoint;p+=batch){ // Loop over momenta in npoint
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	for(int b=0;b<MIN(batch,npoint-p);b++){
 | 
					 | 
				
			||||||
	  tphaseBZ-=usecond();
 | 
					 | 
				
			||||||
	  phaV = phaF[p+b]*Subspace.subspace[i];
 | 
					 | 
				
			||||||
	  tphaseBZ+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  /////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	  // Multiple phased subspace vector by matrix and project to subspace
 | 
					 | 
				
			||||||
	  // Remove local bulk phase to leave relative phases
 | 
					 | 
				
			||||||
	  /////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	  // Memory footprint was an issue
 | 
					 | 
				
			||||||
	  tmat-=usecond();
 | 
					 | 
				
			||||||
	  linop.Op(phaV,MphaV);
 | 
					 | 
				
			||||||
	  _MphaV[b] = MphaV;
 | 
					 | 
				
			||||||
	  tmat+=usecond();
 | 
					 | 
				
			||||||
	}      
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	//	std::cout << GridLogMessage << " Calling block project "<<std::endl;
 | 
					 | 
				
			||||||
	tproj-=usecond();
 | 
					 | 
				
			||||||
	Projector.blockProject(_MphaV,TmpProj);
 | 
					 | 
				
			||||||
	tproj+=usecond();
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	//	std::cout << GridLogMessage << " conj phasing the coarse vectors "<<std::endl;
 | 
					 | 
				
			||||||
	for(int b=0;b<MIN(batch,npoint-p);b++){
 | 
					 | 
				
			||||||
	  ComputeProj[p+b] = conjugate(pha[p+b])*TmpProj[b];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix.
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      // std::cout << GridLogMessage << " Starting FT inv "<<std::endl;
 | 
					 | 
				
			||||||
      tinv-=usecond();
 | 
					 | 
				
			||||||
      for(int k=0;k<npoint;k++){
 | 
					 | 
				
			||||||
	FT = Zero();
 | 
					 | 
				
			||||||
	// 81 kernel calls as many ComputeProj vectors
 | 
					 | 
				
			||||||
	// Could fuse with a vector of views, but ugly
 | 
					 | 
				
			||||||
	// Could unroll the expression and run fewer kernels -- much more attractive
 | 
					 | 
				
			||||||
	// Could also do non blocking.
 | 
					 | 
				
			||||||
#if 0	
 | 
					 | 
				
			||||||
	for(int l=0;l<npoint;l++){
 | 
					 | 
				
			||||||
	  FT= FT+ invMkl(l,k)*ComputeProj[l];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
	const int radix = 9;
 | 
					 | 
				
			||||||
	int ll;
 | 
					 | 
				
			||||||
	for(ll=0;ll+radix-1<npoint;ll+=radix){
 | 
					 | 
				
			||||||
	  // When ll = npoint-radix, ll+radix-1 = npoint-1, and we do it all.
 | 
					 | 
				
			||||||
	  FT = FT 
 | 
					 | 
				
			||||||
	    + invMkl(ll+0,k)*ComputeProj[ll+0]
 | 
					 | 
				
			||||||
	    + invMkl(ll+1,k)*ComputeProj[ll+1]
 | 
					 | 
				
			||||||
	    + invMkl(ll+2,k)*ComputeProj[ll+2]
 | 
					 | 
				
			||||||
	    + invMkl(ll+3,k)*ComputeProj[ll+3]
 | 
					 | 
				
			||||||
	    + invMkl(ll+4,k)*ComputeProj[ll+4]
 | 
					 | 
				
			||||||
	    + invMkl(ll+5,k)*ComputeProj[ll+5]
 | 
					 | 
				
			||||||
	    + invMkl(ll+6,k)*ComputeProj[ll+6]
 | 
					 | 
				
			||||||
	    + invMkl(ll+7,k)*ComputeProj[ll+7]
 | 
					 | 
				
			||||||
	    + invMkl(ll+8,k)*ComputeProj[ll+8];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	for(int l=ll;l<npoint;l++){
 | 
					 | 
				
			||||||
	  FT= FT+ invMkl(l,k)*ComputeProj[l];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
	// 1 kernel call -- must be cheaper
 | 
					 | 
				
			||||||
	int osites=CoarseGrid->oSites();
 | 
					 | 
				
			||||||
	autoView( A_v  , _A[k], AcceleratorWrite);
 | 
					 | 
				
			||||||
	autoView( FT_v  , FT, AcceleratorRead);
 | 
					 | 
				
			||||||
	accelerator_for(sss, osites, 1, {
 | 
					 | 
				
			||||||
	    for(int j=0;j<nbasis;j++){
 | 
					 | 
				
			||||||
	      A_v[sss](i,j) = FT_v[sss](j);
 | 
					 | 
				
			||||||
	    }
 | 
					 | 
				
			||||||
        });
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      tinv+=usecond();
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Only needed if nonhermitian
 | 
					 | 
				
			||||||
    //    if ( ! hermitian ) {
 | 
					 | 
				
			||||||
    //      std::cout << GridLogMessage<<"PopulateAdag  "<<std::endl;
 | 
					 | 
				
			||||||
    //      PopulateAdag();
 | 
					 | 
				
			||||||
    //    }
 | 
					 | 
				
			||||||
    // Need to write something to populate Adag from A
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage << " Calling GridtoBLAS "<<std::endl;
 | 
					 | 
				
			||||||
    for(int p=0;p<geom_srhs.npoint;p++){
 | 
					 | 
				
			||||||
      GridtoBLAS(_A[p],BLAS_A[p]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator phase  "<<tphase<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator mat    "<<tmat <<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator proj   "<<tproj<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"CoarsenOperator inv    "<<tinv<<" us"<<std::endl;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void Mdag(const CoarseVector &in, CoarseVector &out)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    this->M(in,out);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void M (const CoarseVector &in, CoarseVector &out)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage << "New Mrhs coarse"<<std::endl;
 | 
					 | 
				
			||||||
    conformable(CoarseGrid(),in.Grid());
 | 
					 | 
				
			||||||
    conformable(in.Grid(),out.Grid());
 | 
					 | 
				
			||||||
    out.Checkerboard() = in.Checkerboard();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t_tot;
 | 
					 | 
				
			||||||
    RealD t_exch;
 | 
					 | 
				
			||||||
    RealD t_GtoB;
 | 
					 | 
				
			||||||
    RealD t_BtoG;
 | 
					 | 
				
			||||||
    RealD t_mult;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    t_tot=-usecond();
 | 
					 | 
				
			||||||
    CoarseVector tin=in;
 | 
					 | 
				
			||||||
    t_exch=-usecond();
 | 
					 | 
				
			||||||
    CoarseVector pin = Cell.ExchangePeriodic(tin); //padded input
 | 
					 | 
				
			||||||
    t_exch+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    CoarseVector pout(pin.Grid());
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int npoint = geom.npoint;
 | 
					 | 
				
			||||||
    typedef calcMatrix* Aview;
 | 
					 | 
				
			||||||
    typedef LatticeView<Cvec> Vview;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    const int Nsimd = CComplex::Nsimd();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int64_t nrhs  =pin.Grid()->GlobalDimensions()[0];
 | 
					 | 
				
			||||||
    assert(nrhs>=1);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD flops,bytes;
 | 
					 | 
				
			||||||
    int64_t osites=in.Grid()->oSites(); // unpadded
 | 
					 | 
				
			||||||
    int64_t unpadded_vol = CoarseGrid()->lSites()/nrhs;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
 | 
					 | 
				
			||||||
    bytes = 1.0*osites*sizeof(siteMatrix)*npoint/pin.Grid()->GlobalDimensions()[0]
 | 
					 | 
				
			||||||
          + 2.0*osites*sizeof(siteVector)*npoint;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    t_GtoB=-usecond();
 | 
					 | 
				
			||||||
    GridtoBLAS(pin,BLAS_B);
 | 
					 | 
				
			||||||
    t_GtoB+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    GridBLAS BLAS;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    t_mult=-usecond();
 | 
					 | 
				
			||||||
    for(int p=0;p<geom.npoint;p++){
 | 
					 | 
				
			||||||
      RealD c = 1.0;
 | 
					 | 
				
			||||||
      if (p==0) c = 0.0;
 | 
					 | 
				
			||||||
      ComplexD beta(c);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      BLAS.gemmBatched(nbasis,nrhs,nbasis,
 | 
					 | 
				
			||||||
		       ComplexD(1.0),
 | 
					 | 
				
			||||||
		       BLAS_AP[p], 
 | 
					 | 
				
			||||||
		       BLAS_BP[p], 
 | 
					 | 
				
			||||||
		       ComplexD(c), 
 | 
					 | 
				
			||||||
		       BLAS_CP);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    BLAS.synchronise();
 | 
					 | 
				
			||||||
    t_mult+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    t_BtoG=-usecond();
 | 
					 | 
				
			||||||
    BLAStoGrid(out,BLAS_C);
 | 
					 | 
				
			||||||
    t_BtoG+=usecond();
 | 
					 | 
				
			||||||
    t_tot+=usecond();
 | 
					 | 
				
			||||||
    /*
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "New Mrhs coarse DONE "<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"Coarse Mult exch "<<t_exch<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"Coarse Mult mult "<<t_mult<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"Coarse Mult GtoB  "<<t_GtoB<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"Coarse Mult BtoG  "<<t_BtoG<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage<<"Coarse Mult tot  "<<t_tot<<" us"<<std::endl;
 | 
					 | 
				
			||||||
    */
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage<<std::endl;
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage<<"Coarse Kernel flops "<< flops<<std::endl;
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage<<"Coarse Kernel flop/s "<< flops/t_mult<<" mflop/s"<<std::endl;
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage<<"Coarse Kernel bytes/s "<< bytes/t_mult/1000<<" GB/s"<<std::endl;
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage<<"Coarse overall flops/s "<< flops/t_tot<<" mflop/s"<<std::endl;
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage<<"Coarse total bytes   "<< bytes/1e6<<" MB"<<std::endl;
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  virtual  void Mdiag    (const Field &in, Field &out){ assert(0);};
 | 
					 | 
				
			||||||
  virtual  void Mdir     (const Field &in, Field &out,int dir, int disp){assert(0);};
 | 
					 | 
				
			||||||
  virtual  void MdirAll  (const Field &in, std::vector<Field> &out){assert(0);};
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
@@ -1,238 +0,0 @@
 | 
				
			|||||||
/*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2015
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
*************************************************************************************/
 | 
					 | 
				
			||||||
/*  END LEGAL */
 | 
					 | 
				
			||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
// Geometry class in cartesian case
 | 
					 | 
				
			||||||
/////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
class Geometry {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  int npoint;
 | 
					 | 
				
			||||||
  int base;
 | 
					 | 
				
			||||||
  std::vector<int> directions   ;
 | 
					 | 
				
			||||||
  std::vector<int> displacements;
 | 
					 | 
				
			||||||
  std::vector<int> points_dagger;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  Geometry(int _d)  {
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    base = (_d==5) ? 1:0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // make coarse grid stencil for 4d , not 5d
 | 
					 | 
				
			||||||
    if ( _d==5 ) _d=4;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    npoint = 2*_d+1;
 | 
					 | 
				
			||||||
    directions.resize(npoint);
 | 
					 | 
				
			||||||
    displacements.resize(npoint);
 | 
					 | 
				
			||||||
    points_dagger.resize(npoint);
 | 
					 | 
				
			||||||
    for(int d=0;d<_d;d++){
 | 
					 | 
				
			||||||
      directions[d   ] = d+base;
 | 
					 | 
				
			||||||
      directions[d+_d] = d+base;
 | 
					 | 
				
			||||||
      displacements[d  ] = +1;
 | 
					 | 
				
			||||||
      displacements[d+_d]= -1;
 | 
					 | 
				
			||||||
      points_dagger[d   ] = d+_d;
 | 
					 | 
				
			||||||
      points_dagger[d+_d] = d;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    directions   [2*_d]=0;
 | 
					 | 
				
			||||||
    displacements[2*_d]=0;
 | 
					 | 
				
			||||||
    points_dagger[2*_d]=2*_d;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int point(int dir, int disp) {
 | 
					 | 
				
			||||||
    assert(disp == -1 || disp == 0 || disp == 1);
 | 
					 | 
				
			||||||
    assert(base+0 <= dir && dir < base+4);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // directions faster index = new indexing
 | 
					 | 
				
			||||||
    // 4d (base = 0):
 | 
					 | 
				
			||||||
    // point 0  1  2  3  4  5  6  7  8
 | 
					 | 
				
			||||||
    // dir   0  1  2  3  0  1  2  3  0
 | 
					 | 
				
			||||||
    // disp +1 +1 +1 +1 -1 -1 -1 -1  0
 | 
					 | 
				
			||||||
    // 5d (base = 1):
 | 
					 | 
				
			||||||
    // point 0  1  2  3  4  5  6  7  8
 | 
					 | 
				
			||||||
    // dir   1  2  3  4  1  2  3  4  0
 | 
					 | 
				
			||||||
    // disp +1 +1 +1 +1 -1 -1 -1 -1  0
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // displacements faster index = old indexing
 | 
					 | 
				
			||||||
    // 4d (base = 0):
 | 
					 | 
				
			||||||
    // point 0  1  2  3  4  5  6  7  8
 | 
					 | 
				
			||||||
    // dir   0  0  1  1  2  2  3  3  0
 | 
					 | 
				
			||||||
    // disp +1 -1 +1 -1 +1 -1 +1 -1  0
 | 
					 | 
				
			||||||
    // 5d (base = 1):
 | 
					 | 
				
			||||||
    // point 0  1  2  3  4  5  6  7  8
 | 
					 | 
				
			||||||
    // dir   1  1  2  2  3  3  4  4  0
 | 
					 | 
				
			||||||
    // disp +1 -1 +1 -1 +1 -1 +1 -1  0
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if(dir == 0 and disp == 0)
 | 
					 | 
				
			||||||
      return 8;
 | 
					 | 
				
			||||||
    else // New indexing
 | 
					 | 
				
			||||||
      return (1 - disp) / 2 * 4 + dir - base;
 | 
					 | 
				
			||||||
    // else // Old indexing
 | 
					 | 
				
			||||||
    //   return (4 * (dir - base) + 1 - disp) / 2;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
// Less local equivalent of Geometry class in cartesian case
 | 
					 | 
				
			||||||
/////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
class NonLocalStencilGeometry {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  //  int depth;
 | 
					 | 
				
			||||||
  int skip;
 | 
					 | 
				
			||||||
  int hops;
 | 
					 | 
				
			||||||
  int npoint;
 | 
					 | 
				
			||||||
  std::vector<Coordinate> shifts;
 | 
					 | 
				
			||||||
  Coordinate stencil_size;
 | 
					 | 
				
			||||||
  Coordinate stencil_lo;
 | 
					 | 
				
			||||||
  Coordinate stencil_hi;
 | 
					 | 
				
			||||||
  GridCartesian *grid;
 | 
					 | 
				
			||||||
  GridCartesian *Grid() {return grid;};
 | 
					 | 
				
			||||||
  int Depth(void){return 1;};   // Ghost zone depth
 | 
					 | 
				
			||||||
  int Hops(void){return hops;}; // # of hops=> level of corner fill in in stencil
 | 
					 | 
				
			||||||
  int DimSkip(void){return skip;};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  virtual ~NonLocalStencilGeometry() {};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int  Reverse(int point)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int Nd = Grid()->Nd();
 | 
					 | 
				
			||||||
    Coordinate shft = shifts[point];
 | 
					 | 
				
			||||||
    Coordinate rev(Nd);
 | 
					 | 
				
			||||||
    for(int mu=0;mu<Nd;mu++) rev[mu]= -shft[mu];
 | 
					 | 
				
			||||||
    for(int p=0;p<npoint;p++){
 | 
					 | 
				
			||||||
      if(rev==shifts[p]){
 | 
					 | 
				
			||||||
	return p;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    assert(0);
 | 
					 | 
				
			||||||
    return -1;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void BuildShifts(void)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    this->shifts.resize(0);
 | 
					 | 
				
			||||||
    int Nd = this->grid->Nd();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int dd = this->DimSkip();
 | 
					 | 
				
			||||||
    for(int s0=this->stencil_lo[dd+0];s0<=this->stencil_hi[dd+0];s0++){
 | 
					 | 
				
			||||||
    for(int s1=this->stencil_lo[dd+1];s1<=this->stencil_hi[dd+1];s1++){
 | 
					 | 
				
			||||||
    for(int s2=this->stencil_lo[dd+2];s2<=this->stencil_hi[dd+2];s2++){
 | 
					 | 
				
			||||||
    for(int s3=this->stencil_lo[dd+3];s3<=this->stencil_hi[dd+3];s3++){
 | 
					 | 
				
			||||||
      Coordinate sft(Nd,0);
 | 
					 | 
				
			||||||
      sft[dd+0] = s0;
 | 
					 | 
				
			||||||
      sft[dd+1] = s1;
 | 
					 | 
				
			||||||
      sft[dd+2] = s2;
 | 
					 | 
				
			||||||
      sft[dd+3] = s3;
 | 
					 | 
				
			||||||
      int nhops = abs(s0)+abs(s1)+abs(s2)+abs(s3);
 | 
					 | 
				
			||||||
      if(nhops<=this->hops) this->shifts.push_back(sft);
 | 
					 | 
				
			||||||
    }}}}
 | 
					 | 
				
			||||||
    this->npoint = this->shifts.size();
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "NonLocalStencilGeometry has "<< this->npoint << " terms in stencil "<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  NonLocalStencilGeometry(GridCartesian *_coarse_grid,int _hops,int _skip) : grid(_coarse_grid), hops(_hops), skip(_skip)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    Coordinate latt = grid->GlobalDimensions();
 | 
					 | 
				
			||||||
    stencil_size.resize(grid->Nd());
 | 
					 | 
				
			||||||
    stencil_lo.resize(grid->Nd());
 | 
					 | 
				
			||||||
    stencil_hi.resize(grid->Nd());
 | 
					 | 
				
			||||||
    for(int d=0;d<grid->Nd();d++){
 | 
					 | 
				
			||||||
     if ( latt[d] == 1 ) {
 | 
					 | 
				
			||||||
      stencil_lo[d] = 0;
 | 
					 | 
				
			||||||
      stencil_hi[d] = 0;
 | 
					 | 
				
			||||||
      stencil_size[d]= 1;
 | 
					 | 
				
			||||||
     } else if ( latt[d] == 2 ) {
 | 
					 | 
				
			||||||
      stencil_lo[d] = -1;
 | 
					 | 
				
			||||||
      stencil_hi[d] = 0;
 | 
					 | 
				
			||||||
      stencil_size[d]= 2;
 | 
					 | 
				
			||||||
     } else if ( latt[d] > 2 ) {
 | 
					 | 
				
			||||||
       stencil_lo[d] = -1;
 | 
					 | 
				
			||||||
       stencil_hi[d] =  1;
 | 
					 | 
				
			||||||
       stencil_size[d]= 3;
 | 
					 | 
				
			||||||
     }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    this->BuildShifts();
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
// Need to worry about red-black now
 | 
					 | 
				
			||||||
class NonLocalStencilGeometry4D : public NonLocalStencilGeometry {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  virtual int DerivedDimSkip(void) { return 0;};
 | 
					 | 
				
			||||||
  NonLocalStencilGeometry4D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,0) { };
 | 
					 | 
				
			||||||
  virtual ~NonLocalStencilGeometry4D() {};
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
class NonLocalStencilGeometry5D : public NonLocalStencilGeometry {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  virtual int DerivedDimSkip(void) { return 1; }; 
 | 
					 | 
				
			||||||
  NonLocalStencilGeometry5D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,1)  { };
 | 
					 | 
				
			||||||
  virtual ~NonLocalStencilGeometry5D() {};
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
/*
 | 
					 | 
				
			||||||
 * Bunch of different options classes
 | 
					 | 
				
			||||||
 */
 | 
					 | 
				
			||||||
class NextToNextToNextToNearestStencilGeometry4D : public NonLocalStencilGeometry4D {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  NextToNextToNextToNearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,4)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
class NextToNextToNextToNearestStencilGeometry5D : public  NonLocalStencilGeometry5D {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  NextToNextToNextToNearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,4)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
class NextToNearestStencilGeometry4D : public  NonLocalStencilGeometry4D {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  NextToNearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,2)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
class NextToNearestStencilGeometry5D : public  NonLocalStencilGeometry5D {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  NextToNearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,2)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
class NearestStencilGeometry4D : public  NonLocalStencilGeometry4D {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  NearestStencilGeometry4D(GridCartesian *Coarse) :  NonLocalStencilGeometry4D(Coarse,1)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
class NearestStencilGeometry5D : public  NonLocalStencilGeometry5D {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  NearestStencilGeometry5D(GridCartesian *Coarse) :  NonLocalStencilGeometry5D(Coarse,1)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
@@ -1,34 +0,0 @@
 | 
				
			|||||||
    /*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: Grid/algorithms/multigrid/MultiGrid.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2023
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Peter Boyle <pboyle@bnl.gov>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
    *************************************************************************************/
 | 
					 | 
				
			||||||
    /*  END LEGAL */
 | 
					 | 
				
			||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#include <Grid/algorithms/multigrid/Aggregates.h>
 | 
					 | 
				
			||||||
#include <Grid/algorithms/multigrid/Geometry.h>
 | 
					 | 
				
			||||||
#include <Grid/algorithms/multigrid/CoarsenedMatrix.h>
 | 
					 | 
				
			||||||
#include <Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h>
 | 
					 | 
				
			||||||
#include <Grid/algorithms/multigrid/GeneralCoarsenedMatrixMultiRHS.h>
 | 
					 | 
				
			||||||
@@ -54,9 +54,6 @@ public:
 | 
				
			|||||||
    size_type bytes = __n*sizeof(_Tp);
 | 
					    size_type bytes = __n*sizeof(_Tp);
 | 
				
			||||||
    profilerAllocate(bytes);
 | 
					    profilerAllocate(bytes);
 | 
				
			||||||
    _Tp *ptr = (_Tp*) MemoryManager::CpuAllocate(bytes);
 | 
					    _Tp *ptr = (_Tp*) MemoryManager::CpuAllocate(bytes);
 | 
				
			||||||
    if ( (_Tp*)ptr == (_Tp *) NULL ) {
 | 
					 | 
				
			||||||
      printf("Grid CPU Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
 | 
					    assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
 | 
				
			||||||
    return ptr;
 | 
					    return ptr;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -69,7 +66,7 @@ public:
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // FIXME: hack for the copy constructor: it must be avoided to avoid single thread loop
 | 
					  // FIXME: hack for the copy constructor: it must be avoided to avoid single thread loop
 | 
				
			||||||
  void construct(pointer __p, const _Tp& __val) { };
 | 
					  void construct(pointer __p, const _Tp& __val) { assert(0);};
 | 
				
			||||||
  void construct(pointer __p) { };
 | 
					  void construct(pointer __p) { };
 | 
				
			||||||
  void destroy(pointer __p) { };
 | 
					  void destroy(pointer __p) { };
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
@@ -103,9 +100,6 @@ public:
 | 
				
			|||||||
    size_type bytes = __n*sizeof(_Tp);
 | 
					    size_type bytes = __n*sizeof(_Tp);
 | 
				
			||||||
    profilerAllocate(bytes);
 | 
					    profilerAllocate(bytes);
 | 
				
			||||||
    _Tp *ptr = (_Tp*) MemoryManager::SharedAllocate(bytes);
 | 
					    _Tp *ptr = (_Tp*) MemoryManager::SharedAllocate(bytes);
 | 
				
			||||||
    if ( (_Tp*)ptr == (_Tp *) NULL ) {
 | 
					 | 
				
			||||||
      printf("Grid Shared Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
 | 
					    assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
 | 
				
			||||||
    return ptr;
 | 
					    return ptr;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -151,9 +145,6 @@ public:
 | 
				
			|||||||
    size_type bytes = __n*sizeof(_Tp);
 | 
					    size_type bytes = __n*sizeof(_Tp);
 | 
				
			||||||
    profilerAllocate(bytes);
 | 
					    profilerAllocate(bytes);
 | 
				
			||||||
    _Tp *ptr = (_Tp*) MemoryManager::AcceleratorAllocate(bytes);
 | 
					    _Tp *ptr = (_Tp*) MemoryManager::AcceleratorAllocate(bytes);
 | 
				
			||||||
    if ( (_Tp*)ptr == (_Tp *) NULL ) {
 | 
					 | 
				
			||||||
      printf("Grid Device Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
 | 
					    assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
 | 
				
			||||||
    return ptr;
 | 
					    return ptr;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -174,48 +165,18 @@ template<typename _Tp>  inline bool operator!=(const devAllocator<_Tp>&, const d
 | 
				
			|||||||
////////////////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
// Template typedefs
 | 
					// Template typedefs
 | 
				
			||||||
////////////////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
template<class T> using hostVector          = std::vector<T,alignedAllocator<T> >;           // Needs autoview
 | 
					#ifdef ACCELERATOR_CSHIFT
 | 
				
			||||||
template<class T> using Vector              = std::vector<T,uvmAllocator<T> >;               // Really want to deprecate
 | 
					// Cshift on device
 | 
				
			||||||
template<class T> using uvmVector           = std::vector<T,uvmAllocator<T> >;               // auto migrating page
 | 
					template<class T> using cshiftAllocator = devAllocator<T>;
 | 
				
			||||||
template<class T> using deviceVector        = std::vector<T,devAllocator<T> >;               // device vector
 | 
					#else
 | 
				
			||||||
 | 
					// Cshift on host
 | 
				
			||||||
 | 
					template<class T> using cshiftAllocator = std::allocator<T>;
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
/*
 | 
					template<class T> using Vector        = std::vector<T,uvmAllocator<T> >;           
 | 
				
			||||||
template<class T> class vecView
 | 
					template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;           
 | 
				
			||||||
{
 | 
					template<class T> using commVector = std::vector<T,devAllocator<T> >;
 | 
				
			||||||
 protected:
 | 
					template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >;
 | 
				
			||||||
  T * data;
 | 
					 | 
				
			||||||
  uint64_t size;
 | 
					 | 
				
			||||||
  ViewMode mode;
 | 
					 | 
				
			||||||
  void * cpu_ptr;
 | 
					 | 
				
			||||||
 public:
 | 
					 | 
				
			||||||
  // Rvalue accessor
 | 
					 | 
				
			||||||
  accelerator_inline T & operator[](size_t i) const { return this->data[i]; };
 | 
					 | 
				
			||||||
  vecView(Vector<T> &refer_to_me,ViewMode _mode)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    cpu_ptr = &refer_to_me[0];
 | 
					 | 
				
			||||||
    size = refer_to_me.size();
 | 
					 | 
				
			||||||
    mode = _mode;
 | 
					 | 
				
			||||||
    data =(T *) MemoryManager::ViewOpen(cpu_ptr,
 | 
					 | 
				
			||||||
					size*sizeof(T),
 | 
					 | 
				
			||||||
					mode,
 | 
					 | 
				
			||||||
					AdviseDefault);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void ViewClose(void)
 | 
					 | 
				
			||||||
  { // Inform the manager
 | 
					 | 
				
			||||||
    MemoryManager::ViewClose(this->cpu_ptr,this->mode);    
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class T> vecView<T> VectorView(Vector<T> &vec,ViewMode _mode)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  vecView<T> ret(vec,_mode); // does the open
 | 
					 | 
				
			||||||
  return ret;                // must be closed
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#define autoVecView(v_v,v,mode)					\
 | 
					 | 
				
			||||||
  auto v_v = VectorView(v,mode);				\
 | 
					 | 
				
			||||||
  ViewCloser<decltype(v_v)> _autoView##v_v(v_v);
 | 
					 | 
				
			||||||
*/
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -4,194 +4,108 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
/*Allocation types, saying which pointer cache should be used*/
 | 
					/*Allocation types, saying which pointer cache should be used*/
 | 
				
			||||||
#define Cpu      (0)
 | 
					#define Cpu      (0)
 | 
				
			||||||
#define CpuHuge  (1)
 | 
					#define CpuSmall (1)
 | 
				
			||||||
#define CpuSmall (2)
 | 
					#define Acc      (2)
 | 
				
			||||||
#define Acc      (3)
 | 
					#define AccSmall (3)
 | 
				
			||||||
#define AccHuge  (4)
 | 
					#define Shared   (4)
 | 
				
			||||||
#define AccSmall (5)
 | 
					#define SharedSmall (5)
 | 
				
			||||||
#define Shared   (6)
 | 
					 | 
				
			||||||
#define SharedHuge  (7)
 | 
					 | 
				
			||||||
#define SharedSmall (8)
 | 
					 | 
				
			||||||
#undef GRID_MM_VERBOSE 
 | 
					 | 
				
			||||||
uint64_t total_shared;
 | 
					uint64_t total_shared;
 | 
				
			||||||
uint64_t total_device;
 | 
					uint64_t total_device;
 | 
				
			||||||
uint64_t total_host;;
 | 
					uint64_t total_host;;
 | 
				
			||||||
 | 
					 | 
				
			||||||
#if defined(__has_feature)
 | 
					 | 
				
			||||||
#if __has_feature(leak_sanitizer)
 | 
					 | 
				
			||||||
#define ASAN_LEAK_CHECK
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#ifdef ASAN_LEAK_CHECK
 | 
					 | 
				
			||||||
#include <sanitizer/asan_interface.h>
 | 
					 | 
				
			||||||
#include <sanitizer/common_interface_defs.h>
 | 
					 | 
				
			||||||
#include <sanitizer/lsan_interface.h>
 | 
					 | 
				
			||||||
#define LEAK_CHECK(A) { __lsan_do_recoverable_leak_check(); }
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
#define LEAK_CHECK(A) { }
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
void MemoryManager::DisplayMallinfo(void)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
#ifdef __linux__
 | 
					 | 
				
			||||||
  struct mallinfo mi; // really want mallinfo2, but glibc version isn't uniform
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  mi = mallinfo();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  std::cout << "MemoryManager: Total non-mmapped bytes (arena):       "<< (size_t)mi.arena<<std::endl;
 | 
					 | 
				
			||||||
  std::cout << "MemoryManager: # of free chunks (ordblks):            "<< (size_t)mi.ordblks<<std::endl;
 | 
					 | 
				
			||||||
  std::cout << "MemoryManager: # of free fastbin blocks (smblks):     "<< (size_t)mi.smblks<<std::endl;
 | 
					 | 
				
			||||||
  std::cout << "MemoryManager: # of mapped regions (hblks):           "<< (size_t)mi.hblks<<std::endl;
 | 
					 | 
				
			||||||
  std::cout << "MemoryManager: Bytes in mapped regions (hblkhd):      "<< (size_t)mi.hblkhd<<std::endl;
 | 
					 | 
				
			||||||
  std::cout << "MemoryManager: Max. total allocated space (usmblks):  "<< (size_t)mi.usmblks<<std::endl;
 | 
					 | 
				
			||||||
  std::cout << "MemoryManager: Free bytes held in fastbins (fsmblks): "<< (size_t)mi.fsmblks<<std::endl;
 | 
					 | 
				
			||||||
  std::cout << "MemoryManager: Total allocated space (uordblks):      "<< (size_t)mi.uordblks<<std::endl;
 | 
					 | 
				
			||||||
  std::cout << "MemoryManager: Total free space (fordblks):           "<< (size_t)mi.fordblks<<std::endl;
 | 
					 | 
				
			||||||
  std::cout << "MemoryManager: Topmost releasable block (keepcost):   "<< (size_t)mi.keepcost<<std::endl;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  LEAK_CHECK();
 | 
					 | 
				
			||||||
 
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
void MemoryManager::PrintBytes(void)
 | 
					void MemoryManager::PrintBytes(void)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  std::cout << " MemoryManager : ------------------------------------ "<<std::endl;
 | 
					  std::cout << " MemoryManager : "<<total_shared<<" shared      bytes "<<std::endl;
 | 
				
			||||||
  std::cout << " MemoryManager : PrintBytes "<<std::endl;
 | 
					  std::cout << " MemoryManager : "<<total_device<<" accelerator bytes "<<std::endl;
 | 
				
			||||||
  std::cout << " MemoryManager : ------------------------------------ "<<std::endl;
 | 
					  std::cout << " MemoryManager : "<<total_host  <<" cpu         bytes "<<std::endl;
 | 
				
			||||||
  std::cout << " MemoryManager : "<<(total_shared>>20)<<" shared      Mbytes "<<std::endl;
 | 
					 | 
				
			||||||
  std::cout << " MemoryManager : "<<(total_device>>20)<<" accelerator Mbytes "<<std::endl;
 | 
					 | 
				
			||||||
  std::cout << " MemoryManager : "<<(total_host>>20)  <<" cpu         Mbytes "<<std::endl;
 | 
					 | 
				
			||||||
  uint64_t cacheBytes;
 | 
					 | 
				
			||||||
  cacheBytes = CacheBytes[Cpu];
 | 
					 | 
				
			||||||
  std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" cpu cache Mbytes "<<std::endl;
 | 
					 | 
				
			||||||
  cacheBytes = CacheBytes[Acc];
 | 
					 | 
				
			||||||
  std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" acc cache Mbytes "<<std::endl;
 | 
					 | 
				
			||||||
  cacheBytes = CacheBytes[Shared];
 | 
					 | 
				
			||||||
  std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" shared cache Mbytes "<<std::endl;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
#ifdef GRID_CUDA
 | 
					 | 
				
			||||||
  cuda_mem();
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  DisplayMallinfo();
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
uint64_t MemoryManager::DeviceCacheBytes() { return CacheBytes[Acc] + CacheBytes[AccHuge] + CacheBytes[AccSmall]; }
 | 
					 | 
				
			||||||
uint64_t MemoryManager::HostCacheBytes()   { return CacheBytes[Cpu] + CacheBytes[CpuHuge] + CacheBytes[CpuSmall]; }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
//////////////////////////////////////////////////////////////////////
 | 
					//////////////////////////////////////////////////////////////////////
 | 
				
			||||||
// Data tables for recently freed pooiniter caches
 | 
					// Data tables for recently freed pooiniter caches
 | 
				
			||||||
//////////////////////////////////////////////////////////////////////
 | 
					//////////////////////////////////////////////////////////////////////
 | 
				
			||||||
MemoryManager::AllocationCacheEntry MemoryManager::Entries[MemoryManager::NallocType][MemoryManager::NallocCacheMax];
 | 
					MemoryManager::AllocationCacheEntry MemoryManager::Entries[MemoryManager::NallocType][MemoryManager::NallocCacheMax];
 | 
				
			||||||
int MemoryManager::Victim[MemoryManager::NallocType];
 | 
					int MemoryManager::Victim[MemoryManager::NallocType];
 | 
				
			||||||
int MemoryManager::Ncache[MemoryManager::NallocType] = { 2, 0, 8, 8, 0, 16, 8, 0, 16 };
 | 
					int MemoryManager::Ncache[MemoryManager::NallocType] = { 8, 32, 8, 32, 8, 32 };
 | 
				
			||||||
uint64_t MemoryManager::CacheBytes[MemoryManager::NallocType];
 | 
					
 | 
				
			||||||
//////////////////////////////////////////////////////////////////////
 | 
					//////////////////////////////////////////////////////////////////////
 | 
				
			||||||
// Actual allocation and deallocation utils
 | 
					// Actual allocation and deallocation utils
 | 
				
			||||||
//////////////////////////////////////////////////////////////////////
 | 
					//////////////////////////////////////////////////////////////////////
 | 
				
			||||||
void *MemoryManager::AcceleratorAllocate(size_t bytes)
 | 
					void *MemoryManager::AcceleratorAllocate(size_t bytes)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  total_device+=bytes;
 | 
					 | 
				
			||||||
  void *ptr = (void *) Lookup(bytes,Acc);
 | 
					  void *ptr = (void *) Lookup(bytes,Acc);
 | 
				
			||||||
  if ( ptr == (void *) NULL ) {
 | 
					  if ( ptr == (void *) NULL ) {
 | 
				
			||||||
    ptr = (void *) acceleratorAllocDevice(bytes);
 | 
					    ptr = (void *) acceleratorAllocDevice(bytes);
 | 
				
			||||||
 | 
					    total_device+=bytes;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
#ifdef GRID_MM_VERBOSE
 | 
					 | 
				
			||||||
  std::cout <<"AcceleratorAllocate "<<std::endl;
 | 
					 | 
				
			||||||
  PrintBytes();
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  return ptr;
 | 
					  return ptr;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void  MemoryManager::AcceleratorFree    (void *ptr,size_t bytes)
 | 
					void  MemoryManager::AcceleratorFree    (void *ptr,size_t bytes)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  total_device-=bytes;
 | 
					 | 
				
			||||||
  void *__freeme = Insert(ptr,bytes,Acc);
 | 
					  void *__freeme = Insert(ptr,bytes,Acc);
 | 
				
			||||||
  if ( __freeme ) {
 | 
					  if ( __freeme ) {
 | 
				
			||||||
    acceleratorFreeDevice(__freeme);
 | 
					    acceleratorFreeDevice(__freeme);
 | 
				
			||||||
 | 
					    total_device-=bytes;
 | 
				
			||||||
 | 
					//       PrintBytes();
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
#ifdef GRID_MM_VERBOSE
 | 
					 | 
				
			||||||
  std::cout <<"AcceleratorFree "<<std::endl;
 | 
					 | 
				
			||||||
  PrintBytes();
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void *MemoryManager::SharedAllocate(size_t bytes)
 | 
					void *MemoryManager::SharedAllocate(size_t bytes)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  total_shared+=bytes;
 | 
					 | 
				
			||||||
  void *ptr = (void *) Lookup(bytes,Shared);
 | 
					  void *ptr = (void *) Lookup(bytes,Shared);
 | 
				
			||||||
  if ( ptr == (void *) NULL ) {
 | 
					  if ( ptr == (void *) NULL ) {
 | 
				
			||||||
    ptr = (void *) acceleratorAllocShared(bytes);
 | 
					    ptr = (void *) acceleratorAllocShared(bytes);
 | 
				
			||||||
 | 
					    total_shared+=bytes;
 | 
				
			||||||
 | 
					        std::cout <<GridLogMessage<<"AcceleratorAllocate: allocated Shared pointer "<<std::hex<<ptr<<std::dec<<std::endl;
 | 
				
			||||||
 | 
					//        PrintBytes();
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
#ifdef GRID_MM_VERBOSE
 | 
					 | 
				
			||||||
  std::cout <<"SharedAllocate "<<std::endl;
 | 
					 | 
				
			||||||
  PrintBytes();
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  return ptr;
 | 
					  return ptr;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void  MemoryManager::SharedFree    (void *ptr,size_t bytes)
 | 
					void  MemoryManager::SharedFree    (void *ptr,size_t bytes)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  total_shared-=bytes;
 | 
					 | 
				
			||||||
  void *__freeme = Insert(ptr,bytes,Shared);
 | 
					  void *__freeme = Insert(ptr,bytes,Shared);
 | 
				
			||||||
  if ( __freeme ) {
 | 
					  if ( __freeme ) {
 | 
				
			||||||
    acceleratorFreeShared(__freeme);
 | 
					    acceleratorFreeShared(__freeme);
 | 
				
			||||||
 | 
					    total_shared-=bytes;
 | 
				
			||||||
 | 
					    //    PrintBytes();
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
#ifdef GRID_MM_VERBOSE
 | 
					 | 
				
			||||||
  std::cout <<"SharedFree "<<std::endl;
 | 
					 | 
				
			||||||
  PrintBytes();
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
#ifdef GRID_UVM
 | 
					#ifdef GRID_UVM
 | 
				
			||||||
void *MemoryManager::CpuAllocate(size_t bytes)
 | 
					void *MemoryManager::CpuAllocate(size_t bytes)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  total_host+=bytes;
 | 
					 | 
				
			||||||
  void *ptr = (void *) Lookup(bytes,Cpu);
 | 
					  void *ptr = (void *) Lookup(bytes,Cpu);
 | 
				
			||||||
  if ( ptr == (void *) NULL ) {
 | 
					  if ( ptr == (void *) NULL ) {
 | 
				
			||||||
    ptr = (void *) acceleratorAllocShared(bytes);
 | 
					    ptr = (void *) acceleratorAllocShared(bytes);
 | 
				
			||||||
 | 
					    total_host+=bytes;
 | 
				
			||||||
 | 
					//    std::cout << GridLogMessage<< "MemoryManager:: CpuAllocate  total_host= "<<total_host<<" "<< ptr << std::endl;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
#ifdef GRID_MM_VERBOSE
 | 
					 | 
				
			||||||
  std::cout <<"CpuAllocate "<<std::endl;
 | 
					 | 
				
			||||||
  PrintBytes();
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  return ptr;
 | 
					  return ptr;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void  MemoryManager::CpuFree    (void *_ptr,size_t bytes)
 | 
					void  MemoryManager::CpuFree    (void *_ptr,size_t bytes)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  total_host-=bytes;
 | 
					 | 
				
			||||||
  NotifyDeletion(_ptr);
 | 
					  NotifyDeletion(_ptr);
 | 
				
			||||||
  void *__freeme = Insert(_ptr,bytes,Cpu);
 | 
					  void *__freeme = Insert(_ptr,bytes,Cpu);
 | 
				
			||||||
  if ( __freeme ) { 
 | 
					  if ( __freeme ) { 
 | 
				
			||||||
    acceleratorFreeShared(__freeme);
 | 
					    acceleratorFreeShared(__freeme);
 | 
				
			||||||
 | 
					//    std::cout << GridLogMessage<< "MemoryManager:: CpuFree  total_host= "<<total_host<<" "<< __freeme << std::endl;
 | 
				
			||||||
 | 
					    total_host-=bytes;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
#ifdef GRID_MM_VERBOSE
 | 
					 | 
				
			||||||
  std::cout <<"CpuFree "<<std::endl;
 | 
					 | 
				
			||||||
  PrintBytes();
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
#else
 | 
					#else
 | 
				
			||||||
void *MemoryManager::CpuAllocate(size_t bytes)
 | 
					void *MemoryManager::CpuAllocate(size_t bytes)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  total_host+=bytes;
 | 
					 | 
				
			||||||
  void *ptr = (void *) Lookup(bytes,Cpu);
 | 
					  void *ptr = (void *) Lookup(bytes,Cpu);
 | 
				
			||||||
  if ( ptr == (void *) NULL ) {
 | 
					  if ( ptr == (void *) NULL ) {
 | 
				
			||||||
    ptr = (void *) acceleratorAllocCpu(bytes);
 | 
					    ptr = (void *) acceleratorAllocCpu(bytes);
 | 
				
			||||||
 | 
					    total_host+=bytes;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
#ifdef GRID_MM_VERBOSE
 | 
					 | 
				
			||||||
  std::cout <<"CpuAllocate "<<std::endl;
 | 
					 | 
				
			||||||
  PrintBytes();
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  return ptr;
 | 
					  return ptr;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void  MemoryManager::CpuFree    (void *_ptr,size_t bytes)
 | 
					void  MemoryManager::CpuFree    (void *_ptr,size_t bytes)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  total_host-=bytes;
 | 
					 | 
				
			||||||
  NotifyDeletion(_ptr);
 | 
					  NotifyDeletion(_ptr);
 | 
				
			||||||
  void *__freeme = Insert(_ptr,bytes,Cpu);
 | 
					  void *__freeme = Insert(_ptr,bytes,Cpu);
 | 
				
			||||||
  if ( __freeme ) { 
 | 
					  if ( __freeme ) { 
 | 
				
			||||||
    acceleratorFreeCpu(__freeme);
 | 
					    acceleratorFreeCpu(__freeme);
 | 
				
			||||||
 | 
					    total_host-=bytes;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
#ifdef GRID_MM_VERBOSE
 | 
					 | 
				
			||||||
  std::cout <<"CpuFree "<<std::endl;
 | 
					 | 
				
			||||||
  PrintBytes();
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -203,6 +117,7 @@ void MemoryManager::Init(void)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  char * str;
 | 
					  char * str;
 | 
				
			||||||
  int Nc;
 | 
					  int Nc;
 | 
				
			||||||
 | 
					  int NcS;
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  str= getenv("GRID_ALLOC_NCACHE_LARGE");
 | 
					  str= getenv("GRID_ALLOC_NCACHE_LARGE");
 | 
				
			||||||
  if ( str ) {
 | 
					  if ( str ) {
 | 
				
			||||||
@@ -214,16 +129,6 @@ void MemoryManager::Init(void)
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  str= getenv("GRID_ALLOC_NCACHE_HUGE");
 | 
					 | 
				
			||||||
  if ( str ) {
 | 
					 | 
				
			||||||
    Nc = atoi(str);
 | 
					 | 
				
			||||||
    if ( (Nc>=0) && (Nc < NallocCacheMax)) {
 | 
					 | 
				
			||||||
      Ncache[CpuHuge]=Nc;
 | 
					 | 
				
			||||||
      Ncache[AccHuge]=Nc;
 | 
					 | 
				
			||||||
      Ncache[SharedHuge]=Nc;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  str= getenv("GRID_ALLOC_NCACHE_SMALL");
 | 
					  str= getenv("GRID_ALLOC_NCACHE_SMALL");
 | 
				
			||||||
  if ( str ) {
 | 
					  if ( str ) {
 | 
				
			||||||
    Nc = atoi(str);
 | 
					    Nc = atoi(str);
 | 
				
			||||||
@@ -244,9 +149,7 @@ void MemoryManager::InitMessage(void) {
 | 
				
			|||||||
  
 | 
					  
 | 
				
			||||||
  std::cout << GridLogMessage<< "MemoryManager::Init() setting up"<<std::endl;
 | 
					  std::cout << GridLogMessage<< "MemoryManager::Init() setting up"<<std::endl;
 | 
				
			||||||
#ifdef ALLOCATION_CACHE
 | 
					#ifdef ALLOCATION_CACHE
 | 
				
			||||||
  std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent host   allocations: SMALL "<<Ncache[CpuSmall]<<" LARGE "<<Ncache[Cpu]<<" HUGE "<<Ncache[CpuHuge]<<std::endl;
 | 
					  std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent allocations: SMALL "<<Ncache[CpuSmall]<<" LARGE "<<Ncache[Cpu]<<std::endl;
 | 
				
			||||||
  std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent device allocations: SMALL "<<Ncache[AccSmall]<<" LARGE "<<Ncache[Acc]<<" Huge "<<Ncache[AccHuge]<<std::endl;
 | 
					 | 
				
			||||||
  std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent shared allocations: SMALL "<<Ncache[SharedSmall]<<" LARGE "<<Ncache[Shared]<<" Huge "<<Ncache[SharedHuge]<<std::endl;
 | 
					 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
#ifdef GRID_UVM
 | 
					#ifdef GRID_UVM
 | 
				
			||||||
@@ -278,25 +181,21 @@ void MemoryManager::InitMessage(void) {
 | 
				
			|||||||
void *MemoryManager::Insert(void *ptr,size_t bytes,int type) 
 | 
					void *MemoryManager::Insert(void *ptr,size_t bytes,int type) 
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
#ifdef ALLOCATION_CACHE
 | 
					#ifdef ALLOCATION_CACHE
 | 
				
			||||||
  int cache;
 | 
					  bool small = (bytes < GRID_ALLOC_SMALL_LIMIT);
 | 
				
			||||||
  if      (bytes < GRID_ALLOC_SMALL_LIMIT) cache = type + 2;
 | 
					  int cache = type + small;
 | 
				
			||||||
  else if (bytes >= GRID_ALLOC_HUGE_LIMIT) cache = type + 1;
 | 
					  return Insert(ptr,bytes,Entries[cache],Ncache[cache],Victim[cache]);  
 | 
				
			||||||
  else                                     cache = type;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  return Insert(ptr,bytes,Entries[cache],Ncache[cache],Victim[cache],CacheBytes[cache]);  
 | 
					 | 
				
			||||||
#else
 | 
					#else
 | 
				
			||||||
  return ptr;
 | 
					  return ptr;
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim, uint64_t &cacheBytes) 
 | 
					void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim) 
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
 | 
					  assert(ncache>0);
 | 
				
			||||||
#ifdef GRID_OMP
 | 
					#ifdef GRID_OMP
 | 
				
			||||||
  assert(omp_in_parallel()==0);
 | 
					  assert(omp_in_parallel()==0);
 | 
				
			||||||
#endif 
 | 
					#endif 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  if (ncache == 0) return ptr;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void * ret = NULL;
 | 
					  void * ret = NULL;
 | 
				
			||||||
  int v = -1;
 | 
					  int v = -1;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -314,7 +213,6 @@ void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  if ( entries[v].valid ) {
 | 
					  if ( entries[v].valid ) {
 | 
				
			||||||
    ret = entries[v].address;
 | 
					    ret = entries[v].address;
 | 
				
			||||||
    cacheBytes -= entries[v].bytes;
 | 
					 | 
				
			||||||
    entries[v].valid = 0;
 | 
					    entries[v].valid = 0;
 | 
				
			||||||
    entries[v].address = NULL;
 | 
					    entries[v].address = NULL;
 | 
				
			||||||
    entries[v].bytes = 0;
 | 
					    entries[v].bytes = 0;
 | 
				
			||||||
@@ -323,7 +221,6 @@ void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries
 | 
				
			|||||||
  entries[v].address=ptr;
 | 
					  entries[v].address=ptr;
 | 
				
			||||||
  entries[v].bytes  =bytes;
 | 
					  entries[v].bytes  =bytes;
 | 
				
			||||||
  entries[v].valid  =1;
 | 
					  entries[v].valid  =1;
 | 
				
			||||||
  cacheBytes += bytes;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  return ret;
 | 
					  return ret;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
@@ -331,26 +228,23 @@ void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries
 | 
				
			|||||||
void *MemoryManager::Lookup(size_t bytes,int type)
 | 
					void *MemoryManager::Lookup(size_t bytes,int type)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
#ifdef ALLOCATION_CACHE
 | 
					#ifdef ALLOCATION_CACHE
 | 
				
			||||||
  int cache;
 | 
					  bool small = (bytes < GRID_ALLOC_SMALL_LIMIT);
 | 
				
			||||||
  if      (bytes < GRID_ALLOC_SMALL_LIMIT) cache = type + 2;
 | 
					  int cache = type+small;
 | 
				
			||||||
  else if (bytes >= GRID_ALLOC_HUGE_LIMIT) cache = type + 1;
 | 
					  return Lookup(bytes,Entries[cache],Ncache[cache]);
 | 
				
			||||||
  else                                     cache = type;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  return Lookup(bytes,Entries[cache],Ncache[cache],CacheBytes[cache]);
 | 
					 | 
				
			||||||
#else
 | 
					#else
 | 
				
			||||||
  return NULL;
 | 
					  return NULL;
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
void *MemoryManager::Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t & cacheBytes) 
 | 
					void *MemoryManager::Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache) 
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
 | 
					  assert(ncache>0);
 | 
				
			||||||
#ifdef GRID_OMP
 | 
					#ifdef GRID_OMP
 | 
				
			||||||
  assert(omp_in_parallel()==0);
 | 
					  assert(omp_in_parallel()==0);
 | 
				
			||||||
#endif 
 | 
					#endif 
 | 
				
			||||||
  for(int e=0;e<ncache;e++){
 | 
					  for(int e=0;e<ncache;e++){
 | 
				
			||||||
    if ( entries[e].valid && ( entries[e].bytes == bytes ) ) {
 | 
					    if ( entries[e].valid && ( entries[e].bytes == bytes ) ) {
 | 
				
			||||||
      entries[e].valid = 0;
 | 
					      entries[e].valid = 0;
 | 
				
			||||||
      cacheBytes -= entries[e].bytes;
 | 
					 | 
				
			||||||
      return entries[e].address;
 | 
					      return entries[e].address;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -35,12 +35,6 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
// Move control to configure.ac and Config.h?
 | 
					// Move control to configure.ac and Config.h?
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#define GRID_ALLOC_SMALL_LIMIT (4096)
 | 
					#define GRID_ALLOC_SMALL_LIMIT (4096)
 | 
				
			||||||
#define GRID_ALLOC_HUGE_LIMIT  (2147483648)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#define STRINGIFY(x) #x
 | 
					 | 
				
			||||||
#define TOSTRING(x) STRINGIFY(x)
 | 
					 | 
				
			||||||
#define FILE_LINE __FILE__ ":" TOSTRING(__LINE__)
 | 
					 | 
				
			||||||
#define AUDIT(a) MemoryManager::Audit(FILE_LINE)
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
/*Pinning pages is costly*/
 | 
					/*Pinning pages is costly*/
 | 
				
			||||||
////////////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -71,21 +65,6 @@ enum ViewMode {
 | 
				
			|||||||
  CpuWriteDiscard = 0x10 // same for now
 | 
					  CpuWriteDiscard = 0x10 // same for now
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
struct MemoryStatus {
 | 
					 | 
				
			||||||
  uint64_t     DeviceBytes;
 | 
					 | 
				
			||||||
  uint64_t     DeviceLRUBytes;
 | 
					 | 
				
			||||||
  uint64_t     DeviceMaxBytes;
 | 
					 | 
				
			||||||
  uint64_t     HostToDeviceBytes;
 | 
					 | 
				
			||||||
  uint64_t     DeviceToHostBytes;
 | 
					 | 
				
			||||||
  uint64_t     HostToDeviceXfer;
 | 
					 | 
				
			||||||
  uint64_t     DeviceToHostXfer;
 | 
					 | 
				
			||||||
  uint64_t     DeviceEvictions;
 | 
					 | 
				
			||||||
  uint64_t     DeviceDestroy;
 | 
					 | 
				
			||||||
  uint64_t     DeviceAllocCacheBytes;
 | 
					 | 
				
			||||||
  uint64_t     HostAllocCacheBytes;
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
class MemoryManager {
 | 
					class MemoryManager {
 | 
				
			||||||
private:
 | 
					private:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -99,23 +78,21 @@ private:
 | 
				
			|||||||
  } AllocationCacheEntry;
 | 
					  } AllocationCacheEntry;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  static const int NallocCacheMax=128; 
 | 
					  static const int NallocCacheMax=128; 
 | 
				
			||||||
  static const int NallocType=9;
 | 
					  static const int NallocType=6;
 | 
				
			||||||
  static AllocationCacheEntry Entries[NallocType][NallocCacheMax];
 | 
					  static AllocationCacheEntry Entries[NallocType][NallocCacheMax];
 | 
				
			||||||
  static int Victim[NallocType];
 | 
					  static int Victim[NallocType];
 | 
				
			||||||
  static int Ncache[NallocType];
 | 
					  static int Ncache[NallocType];
 | 
				
			||||||
  static uint64_t CacheBytes[NallocType];
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  /////////////////////////////////////////////////
 | 
					  /////////////////////////////////////////////////
 | 
				
			||||||
  // Free pool
 | 
					  // Free pool
 | 
				
			||||||
  /////////////////////////////////////////////////
 | 
					  /////////////////////////////////////////////////
 | 
				
			||||||
  static void *Insert(void *ptr,size_t bytes,int type) ;
 | 
					  static void *Insert(void *ptr,size_t bytes,int type) ;
 | 
				
			||||||
  static void *Lookup(size_t bytes,int type) ;
 | 
					  static void *Lookup(size_t bytes,int type) ;
 | 
				
			||||||
  static void *Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim,uint64_t &cbytes) ;
 | 
					  static void *Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim) ;
 | 
				
			||||||
  static void *Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t &cbytes) ;
 | 
					  static void *Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache) ;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 public:
 | 
					 | 
				
			||||||
  static void PrintBytes(void);
 | 
					  static void PrintBytes(void);
 | 
				
			||||||
  static void Audit(std::string s);
 | 
					 public:
 | 
				
			||||||
  static void Init(void);
 | 
					  static void Init(void);
 | 
				
			||||||
  static void InitMessage(void);
 | 
					  static void InitMessage(void);
 | 
				
			||||||
  static void *AcceleratorAllocate(size_t bytes);
 | 
					  static void *AcceleratorAllocate(size_t bytes);
 | 
				
			||||||
@@ -135,27 +112,6 @@ private:
 | 
				
			|||||||
  static uint64_t     DeviceToHostBytes;
 | 
					  static uint64_t     DeviceToHostBytes;
 | 
				
			||||||
  static uint64_t     HostToDeviceXfer;
 | 
					  static uint64_t     HostToDeviceXfer;
 | 
				
			||||||
  static uint64_t     DeviceToHostXfer;
 | 
					  static uint64_t     DeviceToHostXfer;
 | 
				
			||||||
  static uint64_t     DeviceEvictions;
 | 
					 | 
				
			||||||
  static uint64_t     DeviceDestroy;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  static uint64_t     DeviceCacheBytes();
 | 
					 | 
				
			||||||
  static uint64_t     HostCacheBytes();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  static MemoryStatus GetFootprint(void) {
 | 
					 | 
				
			||||||
    MemoryStatus stat;
 | 
					 | 
				
			||||||
    stat.DeviceBytes       = DeviceBytes;
 | 
					 | 
				
			||||||
    stat.DeviceLRUBytes    = DeviceLRUBytes;
 | 
					 | 
				
			||||||
    stat.DeviceMaxBytes    = DeviceMaxBytes;
 | 
					 | 
				
			||||||
    stat.HostToDeviceBytes = HostToDeviceBytes;
 | 
					 | 
				
			||||||
    stat.DeviceToHostBytes = DeviceToHostBytes;
 | 
					 | 
				
			||||||
    stat.HostToDeviceXfer  = HostToDeviceXfer;
 | 
					 | 
				
			||||||
    stat.DeviceToHostXfer  = DeviceToHostXfer;
 | 
					 | 
				
			||||||
    stat.DeviceEvictions   = DeviceEvictions;
 | 
					 | 
				
			||||||
    stat.DeviceDestroy     = DeviceDestroy;
 | 
					 | 
				
			||||||
    stat.DeviceAllocCacheBytes = DeviceCacheBytes();
 | 
					 | 
				
			||||||
    stat.HostAllocCacheBytes   = HostCacheBytes();
 | 
					 | 
				
			||||||
    return stat;
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 
 | 
					 
 | 
				
			||||||
 private:
 | 
					 private:
 | 
				
			||||||
#ifndef GRID_UVM
 | 
					#ifndef GRID_UVM
 | 
				
			||||||
@@ -209,13 +165,10 @@ private:
 | 
				
			|||||||
  static void     CpuViewClose(uint64_t Ptr);
 | 
					  static void     CpuViewClose(uint64_t Ptr);
 | 
				
			||||||
  static uint64_t CpuViewOpen(uint64_t  CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
 | 
					  static uint64_t CpuViewOpen(uint64_t  CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 | 
					  static void NotifyDeletion(void * CpuPtr);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 public:
 | 
					 public:
 | 
				
			||||||
  static void DisplayMallinfo(void);
 | 
					 | 
				
			||||||
  static void NotifyDeletion(void * CpuPtr);
 | 
					 | 
				
			||||||
  static void Print(void);
 | 
					  static void Print(void);
 | 
				
			||||||
  static void PrintAll(void);
 | 
					 | 
				
			||||||
  static void PrintState( void* CpuPtr);
 | 
					 | 
				
			||||||
  static int   isOpen   (void* CpuPtr);
 | 
					  static int   isOpen   (void* CpuPtr);
 | 
				
			||||||
  static void  ViewClose(void* CpuPtr,ViewMode mode);
 | 
					  static void  ViewClose(void* CpuPtr,ViewMode mode);
 | 
				
			||||||
  static void *ViewOpen (void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
 | 
					  static void *ViewOpen (void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1,15 +1,11 @@
 | 
				
			|||||||
#include <Grid/GridCore.h>
 | 
					#include <Grid/GridCore.h>
 | 
				
			||||||
#ifndef GRID_UVM
 | 
					#ifndef GRID_UVM
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#warning "Using explicit device memory copies"
 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					NAMESPACE_BEGIN(Grid);
 | 
				
			||||||
 | 
					//define dprintf(...) printf ( __VA_ARGS__ ); fflush(stdout);
 | 
				
			||||||
 | 
					#define dprintf(...)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#define MAXLINE 512
 | 
					 | 
				
			||||||
static char print_buffer [ MAXLINE ];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer << std::endl;
 | 
					 | 
				
			||||||
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug  << print_buffer << std::endl;
 | 
					 | 
				
			||||||
//#define dprintf(...) 
 | 
					 | 
				
			||||||
//#define mprintf(...) 
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////
 | 
				
			||||||
// For caching copies of data on device
 | 
					// For caching copies of data on device
 | 
				
			||||||
@@ -27,8 +23,6 @@ uint64_t  MemoryManager::HostToDeviceBytes;
 | 
				
			|||||||
uint64_t  MemoryManager::DeviceToHostBytes;
 | 
					uint64_t  MemoryManager::DeviceToHostBytes;
 | 
				
			||||||
uint64_t  MemoryManager::HostToDeviceXfer;
 | 
					uint64_t  MemoryManager::HostToDeviceXfer;
 | 
				
			||||||
uint64_t  MemoryManager::DeviceToHostXfer;
 | 
					uint64_t  MemoryManager::DeviceToHostXfer;
 | 
				
			||||||
uint64_t  MemoryManager::DeviceEvictions;
 | 
					 | 
				
			||||||
uint64_t  MemoryManager::DeviceDestroy;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
////////////////////////////////////
 | 
					////////////////////////////////////
 | 
				
			||||||
// Priority ordering for unlocked entries
 | 
					// Priority ordering for unlocked entries
 | 
				
			||||||
@@ -110,17 +104,15 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
 | 
				
			|||||||
  ///////////////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////////////
 | 
				
			||||||
  assert(AccCache.state!=Empty);
 | 
					  assert(AccCache.state!=Empty);
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  dprintf("MemoryManager: Discard(%lx) %lx",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr); 
 | 
					   dprintf("MemoryManager: Discard(%llx) %llx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr); 
 | 
				
			||||||
  assert(AccCache.accLock==0);
 | 
					  assert(AccCache.accLock==0);
 | 
				
			||||||
  assert(AccCache.cpuLock==0);
 | 
					  assert(AccCache.cpuLock==0);
 | 
				
			||||||
  assert(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
					  assert(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
				
			||||||
  if(AccCache.AccPtr) {
 | 
					  if(AccCache.AccPtr) {
 | 
				
			||||||
    AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
 | 
					    AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
 | 
				
			||||||
    DeviceDestroy++;
 | 
					 | 
				
			||||||
    DeviceBytes   -=AccCache.bytes;
 | 
					    DeviceBytes   -=AccCache.bytes;
 | 
				
			||||||
    LRUremove(AccCache);
 | 
					    LRUremove(AccCache);
 | 
				
			||||||
    AccCache.AccPtr=(uint64_t) NULL;
 | 
					    dprintf("MemoryManager: Free(%llx) LRU %lld Total %lld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);  
 | 
				
			||||||
    dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);  
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  uint64_t CpuPtr = AccCache.CpuPtr;
 | 
					  uint64_t CpuPtr = AccCache.CpuPtr;
 | 
				
			||||||
  EntryErase(CpuPtr);
 | 
					  EntryErase(CpuPtr);
 | 
				
			||||||
@@ -129,36 +121,26 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
 | 
				
			|||||||
void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
 | 
					void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  ///////////////////////////////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Make CPU consistent, remove from Accelerator, remove from LRU, LEAVE CPU only entry
 | 
					  // Make CPU consistent, remove from Accelerator, remove entry
 | 
				
			||||||
  // Cannot be acclocked. If allocated must be in LRU pool.
 | 
					  // Cannot be locked. If allocated must be in LRU pool.
 | 
				
			||||||
  //
 | 
					 | 
				
			||||||
  // Nov 2022... Felix issue: Allocating two CpuPtrs, can have an entry in LRU-q with CPUlock.
 | 
					 | 
				
			||||||
  //                          and require to evict the AccPtr copy. Eviction was a mistake in CpuViewOpen
 | 
					 | 
				
			||||||
  //                          but there is a weakness where CpuLock entries are attempted for erase
 | 
					 | 
				
			||||||
  //                          Take these OUT LRU queue when CPU locked?
 | 
					 | 
				
			||||||
  //                          Cannot take out the table as cpuLock data is important.
 | 
					 | 
				
			||||||
  ///////////////////////////////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
  assert(AccCache.state!=Empty);
 | 
					  assert(AccCache.state!=Empty);
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld",
 | 
					  dprintf("MemoryManager: Evict(%llx) %llx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr); 
 | 
				
			||||||
	  (uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr,
 | 
					  assert(AccCache.accLock==0);
 | 
				
			||||||
	  (uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock); 
 | 
					  assert(AccCache.cpuLock==0);
 | 
				
			||||||
  if (AccCache.accLock!=0) return;
 | 
					 | 
				
			||||||
  if (AccCache.cpuLock!=0) return;
 | 
					 | 
				
			||||||
  if(AccCache.state==AccDirty) {
 | 
					  if(AccCache.state==AccDirty) {
 | 
				
			||||||
    Flush(AccCache);
 | 
					    Flush(AccCache);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					  assert(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
				
			||||||
  if(AccCache.AccPtr) {
 | 
					  if(AccCache.AccPtr) {
 | 
				
			||||||
    AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
 | 
					    AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
 | 
				
			||||||
    LRUremove(AccCache);
 | 
					 | 
				
			||||||
    AccCache.AccPtr=(uint64_t)NULL;
 | 
					 | 
				
			||||||
    AccCache.state=CpuDirty; // CPU primary now
 | 
					 | 
				
			||||||
    DeviceBytes   -=AccCache.bytes;
 | 
					    DeviceBytes   -=AccCache.bytes;
 | 
				
			||||||
    dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld ",(uint64_t)AccCache.AccPtr,DeviceBytes);  
 | 
					    LRUremove(AccCache);
 | 
				
			||||||
 | 
					    dprintf("MemoryManager: Free(%llx) footprint now %lld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);  
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  //  uint64_t CpuPtr = AccCache.CpuPtr;
 | 
					  uint64_t CpuPtr = AccCache.CpuPtr;
 | 
				
			||||||
  DeviceEvictions++;
 | 
					  EntryErase(CpuPtr);
 | 
				
			||||||
  //  EntryErase(CpuPtr);
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
 | 
					void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
@@ -168,7 +150,7 @@ void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
 | 
				
			|||||||
  assert(AccCache.AccPtr!=(uint64_t)NULL);
 | 
					  assert(AccCache.AccPtr!=(uint64_t)NULL);
 | 
				
			||||||
  assert(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
					  assert(AccCache.CpuPtr!=(uint64_t)NULL);
 | 
				
			||||||
  acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
 | 
					  acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
 | 
				
			||||||
  mprintf("MemoryManager: acceleratorCopyFromDevice Flush size %ld AccPtr %lx -> CpuPtr %lx",(uint64_t)AccCache.bytes,(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
 | 
					  dprintf("MemoryManager: Flush  %llx -> %llx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
 | 
				
			||||||
  DeviceToHostBytes+=AccCache.bytes;
 | 
					  DeviceToHostBytes+=AccCache.bytes;
 | 
				
			||||||
  DeviceToHostXfer++;
 | 
					  DeviceToHostXfer++;
 | 
				
			||||||
  AccCache.state=Consistent;
 | 
					  AccCache.state=Consistent;
 | 
				
			||||||
@@ -183,9 +165,7 @@ void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
 | 
				
			|||||||
    AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
 | 
					    AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
 | 
				
			||||||
    DeviceBytes+=AccCache.bytes;
 | 
					    DeviceBytes+=AccCache.bytes;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  mprintf("MemoryManager: acceleratorCopyToDevice   Clone size %ld AccPtr %lx <- CpuPtr %lx",
 | 
					  dprintf("MemoryManager: Clone %llx <- %llx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
 | 
				
			||||||
	  (uint64_t)AccCache.bytes,
 | 
					 | 
				
			||||||
	  (uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
 | 
					 | 
				
			||||||
  acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
 | 
					  acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
 | 
				
			||||||
  HostToDeviceBytes+=AccCache.bytes;
 | 
					  HostToDeviceBytes+=AccCache.bytes;
 | 
				
			||||||
  HostToDeviceXfer++;
 | 
					  HostToDeviceXfer++;
 | 
				
			||||||
@@ -211,7 +191,6 @@ void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache)
 | 
				
			|||||||
void MemoryManager::ViewClose(void* Ptr,ViewMode mode)
 | 
					void MemoryManager::ViewClose(void* Ptr,ViewMode mode)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
 | 
					  if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
 | 
				
			||||||
    dprintf("AcceleratorViewClose %lx",(uint64_t)Ptr);
 | 
					 | 
				
			||||||
    AcceleratorViewClose((uint64_t)Ptr);
 | 
					    AcceleratorViewClose((uint64_t)Ptr);
 | 
				
			||||||
  } else if( (mode==CpuRead)||(mode==CpuWrite)){
 | 
					  } else if( (mode==CpuRead)||(mode==CpuWrite)){
 | 
				
			||||||
    CpuViewClose((uint64_t)Ptr);
 | 
					    CpuViewClose((uint64_t)Ptr);
 | 
				
			||||||
@@ -223,7 +202,6 @@ void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvis
 | 
				
			|||||||
{
 | 
					{
 | 
				
			||||||
  uint64_t CpuPtr = (uint64_t)_CpuPtr;
 | 
					  uint64_t CpuPtr = (uint64_t)_CpuPtr;
 | 
				
			||||||
  if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
 | 
					  if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
 | 
				
			||||||
    dprintf("AcceleratorViewOpen %lx",(uint64_t)CpuPtr);
 | 
					 | 
				
			||||||
    return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint);
 | 
					    return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint);
 | 
				
			||||||
  } else if( (mode==CpuRead)||(mode==CpuWrite)){
 | 
					  } else if( (mode==CpuRead)||(mode==CpuWrite)){
 | 
				
			||||||
    return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint);
 | 
					    return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint);
 | 
				
			||||||
@@ -234,19 +212,13 @@ void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvis
 | 
				
			|||||||
}
 | 
					}
 | 
				
			||||||
void  MemoryManager::EvictVictims(uint64_t bytes)
 | 
					void  MemoryManager::EvictVictims(uint64_t bytes)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  if(bytes>=DeviceMaxBytes) {
 | 
					 | 
				
			||||||
    printf("EvictVictims bytes %ld DeviceMaxBytes %ld\n",bytes,DeviceMaxBytes);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  assert(bytes<DeviceMaxBytes);
 | 
					 | 
				
			||||||
  while(bytes+DeviceLRUBytes > DeviceMaxBytes){
 | 
					  while(bytes+DeviceLRUBytes > DeviceMaxBytes){
 | 
				
			||||||
    if ( DeviceLRUBytes > 0){
 | 
					    if ( DeviceLRUBytes > 0){
 | 
				
			||||||
      assert(LRU.size()>0);
 | 
					      assert(LRU.size()>0);
 | 
				
			||||||
      uint64_t victim = LRU.back(); // From the LRU
 | 
					      uint64_t victim = LRU.back();
 | 
				
			||||||
      auto AccCacheIterator = EntryLookup(victim);
 | 
					      auto AccCacheIterator = EntryLookup(victim);
 | 
				
			||||||
      auto & AccCache = AccCacheIterator->second;
 | 
					      auto & AccCache = AccCacheIterator->second;
 | 
				
			||||||
      Evict(AccCache);
 | 
					      Evict(AccCache);
 | 
				
			||||||
    } else {
 | 
					 | 
				
			||||||
      return;
 | 
					 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
@@ -269,12 +241,11 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
 | 
				
			|||||||
  assert(AccCache.cpuLock==0);  // Programming error
 | 
					  assert(AccCache.cpuLock==0);  // Programming error
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  if(AccCache.state!=Empty) {
 | 
					  if(AccCache.state!=Empty) {
 | 
				
			||||||
    dprintf("ViewOpen found entry %lx %lx : sizes %ld %ld accLock %ld",
 | 
					    dprintf("ViewOpen found entry %llx %llx : %lld %lld\n",
 | 
				
			||||||
		    (uint64_t)AccCache.CpuPtr,
 | 
							    (uint64_t)AccCache.CpuPtr,
 | 
				
			||||||
		    (uint64_t)CpuPtr,
 | 
							    (uint64_t)CpuPtr,
 | 
				
			||||||
		    (uint64_t)AccCache.bytes,
 | 
							    (uint64_t)AccCache.bytes,
 | 
				
			||||||
	            (uint64_t)bytes,
 | 
							    (uint64_t)bytes);
 | 
				
			||||||
		    (uint64_t)AccCache.accLock);
 | 
					 | 
				
			||||||
    assert(AccCache.CpuPtr == CpuPtr);
 | 
					    assert(AccCache.CpuPtr == CpuPtr);
 | 
				
			||||||
    assert(AccCache.bytes  ==bytes);
 | 
					    assert(AccCache.bytes  ==bytes);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -309,7 +280,6 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
 | 
				
			|||||||
      AccCache.state  = Consistent; // Empty + AccRead => Consistent
 | 
					      AccCache.state  = Consistent; // Empty + AccRead => Consistent
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    AccCache.accLock= 1;
 | 
					    AccCache.accLock= 1;
 | 
				
			||||||
    dprintf("Copied Empty entry into device accLock= %d",AccCache.accLock);
 | 
					 | 
				
			||||||
  } else if(AccCache.state==CpuDirty ){
 | 
					  } else if(AccCache.state==CpuDirty ){
 | 
				
			||||||
    if(mode==AcceleratorWriteDiscard) {
 | 
					    if(mode==AcceleratorWriteDiscard) {
 | 
				
			||||||
      CpuDiscard(AccCache);
 | 
					      CpuDiscard(AccCache);
 | 
				
			||||||
@@ -322,30 +292,28 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
 | 
				
			|||||||
      AccCache.state  = Consistent; // CpuDirty + AccRead => Consistent
 | 
					      AccCache.state  = Consistent; // CpuDirty + AccRead => Consistent
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    AccCache.accLock++;
 | 
					    AccCache.accLock++;
 | 
				
			||||||
    dprintf("CpuDirty entry into device ++accLock= %d",AccCache.accLock);
 | 
					    dprintf("Copied CpuDirty entry into device accLock %d\n",AccCache.accLock);
 | 
				
			||||||
  } else if(AccCache.state==Consistent) {
 | 
					  } else if(AccCache.state==Consistent) {
 | 
				
			||||||
    if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
 | 
					    if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
 | 
				
			||||||
      AccCache.state  = AccDirty;   // Consistent + AcceleratorWrite=> AccDirty
 | 
					      AccCache.state  = AccDirty;   // Consistent + AcceleratorWrite=> AccDirty
 | 
				
			||||||
    else
 | 
					    else
 | 
				
			||||||
      AccCache.state  = Consistent; // Consistent + AccRead => Consistent
 | 
					      AccCache.state  = Consistent; // Consistent + AccRead => Consistent
 | 
				
			||||||
    AccCache.accLock++;
 | 
					    AccCache.accLock++;
 | 
				
			||||||
    dprintf("Consistent entry into device ++accLock= %d",AccCache.accLock);
 | 
					    dprintf("Consistent entry into device accLock %d\n",AccCache.accLock);
 | 
				
			||||||
  } else if(AccCache.state==AccDirty) {
 | 
					  } else if(AccCache.state==AccDirty) {
 | 
				
			||||||
    if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
 | 
					    if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
 | 
				
			||||||
      AccCache.state  = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty
 | 
					      AccCache.state  = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty
 | 
				
			||||||
    else
 | 
					    else
 | 
				
			||||||
      AccCache.state  = AccDirty; // AccDirty + AccRead => AccDirty
 | 
					      AccCache.state  = AccDirty; // AccDirty + AccRead => AccDirty
 | 
				
			||||||
    AccCache.accLock++;
 | 
					    AccCache.accLock++;
 | 
				
			||||||
    dprintf("AccDirty entry ++accLock= %d",AccCache.accLock);
 | 
					    dprintf("AccDirty entry into device accLock %d\n",AccCache.accLock);
 | 
				
			||||||
  } else {
 | 
					  } else {
 | 
				
			||||||
    assert(0);
 | 
					    assert(0);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  assert(AccCache.accLock>0);
 | 
					  // If view is opened on device remove from LRU
 | 
				
			||||||
  // If view is opened on device must remove from LRU
 | 
					 | 
				
			||||||
  if(AccCache.LRU_valid==1){
 | 
					  if(AccCache.LRU_valid==1){
 | 
				
			||||||
    // must possibly remove from LRU as now locked on GPU
 | 
					    // must possibly remove from LRU as now locked on GPU
 | 
				
			||||||
    dprintf("AccCache entry removed from LRU ");
 | 
					 | 
				
			||||||
    LRUremove(AccCache);
 | 
					    LRUremove(AccCache);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -366,12 +334,10 @@ void MemoryManager::AcceleratorViewClose(uint64_t CpuPtr)
 | 
				
			|||||||
  assert(AccCache.accLock>0);
 | 
					  assert(AccCache.accLock>0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  AccCache.accLock--;
 | 
					  AccCache.accLock--;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Move to LRU queue if not locked and close on device
 | 
					  // Move to LRU queue if not locked and close on device
 | 
				
			||||||
  if(AccCache.accLock==0) {
 | 
					  if(AccCache.accLock==0) {
 | 
				
			||||||
    dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
 | 
					 | 
				
			||||||
    LRUinsert(AccCache);
 | 
					    LRUinsert(AccCache);
 | 
				
			||||||
  } else {
 | 
					 | 
				
			||||||
    dprintf("AccleratorViewClose %lx AccLock decremented to %ld",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void MemoryManager::CpuViewClose(uint64_t CpuPtr)
 | 
					void MemoryManager::CpuViewClose(uint64_t CpuPtr)
 | 
				
			||||||
@@ -408,10 +374,9 @@ uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,V
 | 
				
			|||||||
  auto AccCacheIterator = EntryLookup(CpuPtr);
 | 
					  auto AccCacheIterator = EntryLookup(CpuPtr);
 | 
				
			||||||
  auto & AccCache = AccCacheIterator->second;
 | 
					  auto & AccCache = AccCacheIterator->second;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // CPU doesn't need to free space
 | 
					  if (!AccCache.AccPtr) {
 | 
				
			||||||
  //  if (!AccCache.AccPtr) {
 | 
					     EvictVictims(bytes);
 | 
				
			||||||
  //    EvictVictims(bytes);
 | 
					  }
 | 
				
			||||||
  //  }
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  assert((mode==CpuRead)||(mode==CpuWrite));
 | 
					  assert((mode==CpuRead)||(mode==CpuWrite));
 | 
				
			||||||
  assert(AccCache.accLock==0);  // Programming error
 | 
					  assert(AccCache.accLock==0);  // Programming error
 | 
				
			||||||
@@ -464,30 +429,20 @@ void  MemoryManager::NotifyDeletion(void *_ptr)
 | 
				
			|||||||
}
 | 
					}
 | 
				
			||||||
void  MemoryManager::Print(void)
 | 
					void  MemoryManager::Print(void)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  PrintBytes();
 | 
					  std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
 | 
				
			||||||
  std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
 | 
					  std::cout << GridLogDebug << "Memory Manager                             " << std::endl;
 | 
				
			||||||
  std::cout << GridLogMessage << "Memory Manager                             " << std::endl;
 | 
					  std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
 | 
				
			||||||
  std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
 | 
					  std::cout << GridLogDebug << DeviceBytes   << " bytes allocated on device " << std::endl;
 | 
				
			||||||
  std::cout << GridLogMessage << DeviceBytes   << " bytes allocated on device " << std::endl;
 | 
					  std::cout << GridLogDebug << DeviceLRUBytes<< " bytes evictable on device " << std::endl;
 | 
				
			||||||
  std::cout << GridLogMessage << DeviceLRUBytes<< " bytes evictable on device " << std::endl;
 | 
					  std::cout << GridLogDebug << DeviceMaxBytes<< " bytes max on device       " << std::endl;
 | 
				
			||||||
  std::cout << GridLogMessage << DeviceMaxBytes<< " bytes max on device       " << std::endl;
 | 
					  std::cout << GridLogDebug << HostToDeviceXfer << " transfers        to   device " << std::endl;
 | 
				
			||||||
  std::cout << GridLogMessage << HostToDeviceXfer << " transfers        to   device " << std::endl;
 | 
					  std::cout << GridLogDebug << DeviceToHostXfer << " transfers        from device " << std::endl;
 | 
				
			||||||
  std::cout << GridLogMessage << DeviceToHostXfer << " transfers        from device " << std::endl;
 | 
					  std::cout << GridLogDebug << HostToDeviceBytes<< " bytes transfered to   device " << std::endl;
 | 
				
			||||||
  std::cout << GridLogMessage << HostToDeviceBytes<< " bytes transfered to   device " << std::endl;
 | 
					  std::cout << GridLogDebug << DeviceToHostBytes<< " bytes transfered from device " << std::endl;
 | 
				
			||||||
  std::cout << GridLogMessage << DeviceToHostBytes<< " bytes transfered from device " << std::endl;
 | 
					  std::cout << GridLogDebug << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl;
 | 
				
			||||||
  std::cout << GridLogMessage << DeviceEvictions  << " Evictions from device " << std::endl;
 | 
					  std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
 | 
				
			||||||
  std::cout << GridLogMessage << DeviceDestroy    << " Destroyed vectors on device " << std::endl;
 | 
					  std::cout << GridLogDebug << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl;
 | 
				
			||||||
  std::cout << GridLogMessage << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl;
 | 
					  std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
 | 
				
			||||||
  acceleratorMem();
 | 
					 | 
				
			||||||
  std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
void  MemoryManager::PrintAll(void)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  Print();
 | 
					 | 
				
			||||||
  std::cout << GridLogMessage << std::endl;
 | 
					 | 
				
			||||||
  std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
 | 
					 | 
				
			||||||
  std::cout << GridLogMessage << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl;
 | 
					 | 
				
			||||||
  std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
 | 
					 | 
				
			||||||
  for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){
 | 
					  for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){
 | 
				
			||||||
    auto &AccCache = it->second;
 | 
					    auto &AccCache = it->second;
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
@@ -497,13 +452,13 @@ void  MemoryManager::PrintAll(void)
 | 
				
			|||||||
    if ( AccCache.state==AccDirty ) str = std::string("AccDirty");
 | 
					    if ( AccCache.state==AccDirty ) str = std::string("AccDirty");
 | 
				
			||||||
    if ( AccCache.state==Consistent)str = std::string("Consistent");
 | 
					    if ( AccCache.state==Consistent)str = std::string("Consistent");
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    std::cout << GridLogMessage << "0x"<<std::hex<<AccCache.CpuPtr<<std::dec
 | 
					    std::cout << GridLogDebug << "0x"<<std::hex<<AccCache.CpuPtr<<std::dec
 | 
				
			||||||
	      << "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
 | 
						      << "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
 | 
				
			||||||
	      << "\t" << AccCache.cpuLock
 | 
						      << "\t" << AccCache.cpuLock
 | 
				
			||||||
	      << "\t" << AccCache.accLock
 | 
						      << "\t" << AccCache.accLock
 | 
				
			||||||
	      << "\t" << AccCache.LRU_valid<<std::endl;
 | 
						      << "\t" << AccCache.LRU_valid<<std::endl;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
 | 
					  std::cout << GridLogDebug << "--------------------------------------------" << std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
int   MemoryManager::isOpen   (void* _CpuPtr) 
 | 
					int   MemoryManager::isOpen   (void* _CpuPtr) 
 | 
				
			||||||
@@ -517,89 +472,6 @@ int   MemoryManager::isOpen   (void* _CpuPtr)
 | 
				
			|||||||
    return 0;
 | 
					    return 0;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void MemoryManager::Audit(std::string s)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  uint64_t CpuBytes=0;
 | 
					 | 
				
			||||||
  uint64_t AccBytes=0;
 | 
					 | 
				
			||||||
  uint64_t LruBytes1=0;
 | 
					 | 
				
			||||||
  uint64_t LruBytes2=0;
 | 
					 | 
				
			||||||
  uint64_t LruCnt=0;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  std::cout << " Memory Manager::Audit() from "<<s<<std::endl;
 | 
					 | 
				
			||||||
  for(auto it=LRU.begin();it!=LRU.end();it++){
 | 
					 | 
				
			||||||
    uint64_t cpuPtr = *it;
 | 
					 | 
				
			||||||
    assert(EntryPresent(cpuPtr));
 | 
					 | 
				
			||||||
    auto AccCacheIterator = EntryLookup(cpuPtr);
 | 
					 | 
				
			||||||
    auto & AccCache = AccCacheIterator->second;
 | 
					 | 
				
			||||||
    LruBytes2+=AccCache.bytes;
 | 
					 | 
				
			||||||
    assert(AccCache.LRU_valid==1);
 | 
					 | 
				
			||||||
    assert(AccCache.LRU_entry==it);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  std::cout << " Memory Manager::Audit() LRU queue matches table entries "<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){
 | 
					 | 
				
			||||||
    auto &AccCache = it->second;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    std::string str;
 | 
					 | 
				
			||||||
    if ( AccCache.state==Empty    ) str = std::string("Empty");
 | 
					 | 
				
			||||||
    if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty");
 | 
					 | 
				
			||||||
    if ( AccCache.state==AccDirty ) str = std::string("AccDirty");
 | 
					 | 
				
			||||||
    if ( AccCache.state==Consistent)str = std::string("Consistent");
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    CpuBytes+=AccCache.bytes;
 | 
					 | 
				
			||||||
    if( AccCache.AccPtr )    AccBytes+=AccCache.bytes;
 | 
					 | 
				
			||||||
    if( AccCache.LRU_valid ) LruBytes1+=AccCache.bytes;
 | 
					 | 
				
			||||||
    if( AccCache.LRU_valid ) LruCnt++;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    if ( AccCache.cpuLock || AccCache.accLock ) {
 | 
					 | 
				
			||||||
      assert(AccCache.LRU_valid==0);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      std::cout << GridLogError << s<< "\n\t 0x"<<std::hex<<AccCache.CpuPtr<<std::dec
 | 
					 | 
				
			||||||
		<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
 | 
					 | 
				
			||||||
		<< "\t cpuLock  " << AccCache.cpuLock
 | 
					 | 
				
			||||||
		<< "\t accLock  " << AccCache.accLock
 | 
					 | 
				
			||||||
		<< "\t LRUvalid " << AccCache.LRU_valid<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    assert( AccCache.cpuLock== 0 ) ;
 | 
					 | 
				
			||||||
    assert( AccCache.accLock== 0 ) ;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  std::cout << " Memory Manager::Audit() no locked table entries "<<std::endl;
 | 
					 | 
				
			||||||
  assert(LruBytes1==LruBytes2);
 | 
					 | 
				
			||||||
  assert(LruBytes1==DeviceLRUBytes);
 | 
					 | 
				
			||||||
  std::cout << " Memory Manager::Audit() evictable bytes matches sum over table "<<std::endl;
 | 
					 | 
				
			||||||
  assert(AccBytes==DeviceBytes);
 | 
					 | 
				
			||||||
  std::cout << " Memory Manager::Audit() device bytes matches sum over table "<<std::endl;
 | 
					 | 
				
			||||||
  assert(LruCnt == LRU.size());
 | 
					 | 
				
			||||||
  std::cout << " Memory Manager::Audit() LRU entry count matches "<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
void MemoryManager::PrintState(void* _CpuPtr)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  uint64_t CpuPtr = (uint64_t)_CpuPtr;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  if ( EntryPresent(CpuPtr) ){
 | 
					 | 
				
			||||||
    auto AccCacheIterator = EntryLookup(CpuPtr);
 | 
					 | 
				
			||||||
    auto & AccCache = AccCacheIterator->second;
 | 
					 | 
				
			||||||
    std::string str;
 | 
					 | 
				
			||||||
    if ( AccCache.state==Empty    ) str = std::string("Empty");
 | 
					 | 
				
			||||||
    if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty");
 | 
					 | 
				
			||||||
    if ( AccCache.state==AccDirty ) str = std::string("AccDirty");
 | 
					 | 
				
			||||||
    if ( AccCache.state==Consistent)str = std::string("Consistent");
 | 
					 | 
				
			||||||
    if ( AccCache.state==EvictNext) str = std::string("EvictNext");
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "\tx"<<std::hex<<AccCache.CpuPtr<<std::dec
 | 
					 | 
				
			||||||
    << "\tx"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
 | 
					 | 
				
			||||||
    << "\t" << AccCache.cpuLock
 | 
					 | 
				
			||||||
    << "\t" << AccCache.accLock
 | 
					 | 
				
			||||||
    << "\t" << AccCache.LRU_valid<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  } else {
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << "No Entry in AccCache table." << std::endl; 
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -12,19 +12,11 @@ uint64_t  MemoryManager::HostToDeviceBytes;
 | 
				
			|||||||
uint64_t  MemoryManager::DeviceToHostBytes;
 | 
					uint64_t  MemoryManager::DeviceToHostBytes;
 | 
				
			||||||
uint64_t  MemoryManager::HostToDeviceXfer;
 | 
					uint64_t  MemoryManager::HostToDeviceXfer;
 | 
				
			||||||
uint64_t  MemoryManager::DeviceToHostXfer;
 | 
					uint64_t  MemoryManager::DeviceToHostXfer;
 | 
				
			||||||
uint64_t  MemoryManager::DeviceEvictions;
 | 
					 | 
				
			||||||
uint64_t  MemoryManager::DeviceDestroy;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
void  MemoryManager::Audit(std::string s){};
 | 
					 | 
				
			||||||
void  MemoryManager::ViewClose(void* AccPtr,ViewMode mode){};
 | 
					void  MemoryManager::ViewClose(void* AccPtr,ViewMode mode){};
 | 
				
			||||||
void *MemoryManager::ViewOpen(void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint){ return CpuPtr; };
 | 
					void *MemoryManager::ViewOpen(void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint){ return CpuPtr; };
 | 
				
			||||||
int   MemoryManager::isOpen   (void* CpuPtr) { return 0;}
 | 
					int   MemoryManager::isOpen   (void* CpuPtr) { return 0;}
 | 
				
			||||||
void  MemoryManager::PrintState(void* CpuPtr)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
std::cout << GridLogMessage << "Host<->Device memory movement not currently managed by Grid." << std::endl;
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
void  MemoryManager::Print(void){};
 | 
					void  MemoryManager::Print(void){};
 | 
				
			||||||
void  MemoryManager::PrintAll(void){};
 | 
					 | 
				
			||||||
void  MemoryManager::NotifyDeletion(void *ptr){};
 | 
					void  MemoryManager::NotifyDeletion(void *ptr){};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -15,10 +15,10 @@ void check_huge_pages(void *Buf,uint64_t BYTES)
 | 
				
			|||||||
  uint64_t virt_pfn = (uint64_t)Buf / page_size;
 | 
					  uint64_t virt_pfn = (uint64_t)Buf / page_size;
 | 
				
			||||||
  off_t offset = sizeof(uint64_t) * virt_pfn;
 | 
					  off_t offset = sizeof(uint64_t) * virt_pfn;
 | 
				
			||||||
  uint64_t npages = (BYTES + page_size-1) / page_size;
 | 
					  uint64_t npages = (BYTES + page_size-1) / page_size;
 | 
				
			||||||
  std::vector<uint64_t> pagedata(npages);
 | 
					  uint64_t pagedata[npages];
 | 
				
			||||||
  uint64_t ret = lseek(fd, offset, SEEK_SET);
 | 
					  uint64_t ret = lseek(fd, offset, SEEK_SET);
 | 
				
			||||||
  assert(ret == offset);
 | 
					  assert(ret == offset);
 | 
				
			||||||
  ret = ::read(fd, &pagedata[0], sizeof(uint64_t)*npages);
 | 
					  ret = ::read(fd, pagedata, sizeof(uint64_t)*npages);
 | 
				
			||||||
  assert(ret == sizeof(uint64_t) * npages);
 | 
					  assert(ret == sizeof(uint64_t) * npages);
 | 
				
			||||||
  int nhugepages = npages / 512;
 | 
					  int nhugepages = npages / 512;
 | 
				
			||||||
  int n4ktotal, nnothuge;
 | 
					  int n4ktotal, nnothuge;
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -70,8 +70,8 @@ public:
 | 
				
			|||||||
  Coordinate _istride;    // Inner stride i.e. within simd lane
 | 
					  Coordinate _istride;    // Inner stride i.e. within simd lane
 | 
				
			||||||
  int _osites;                  // _isites*_osites = product(dimensions).
 | 
					  int _osites;                  // _isites*_osites = product(dimensions).
 | 
				
			||||||
  int _isites;
 | 
					  int _isites;
 | 
				
			||||||
  int64_t _fsites;                  // _isites*_osites = product(dimensions).
 | 
					  int _fsites;                  // _isites*_osites = product(dimensions).
 | 
				
			||||||
  int64_t _gsites;
 | 
					  int _gsites;
 | 
				
			||||||
  Coordinate _slice_block;// subslice information
 | 
					  Coordinate _slice_block;// subslice information
 | 
				
			||||||
  Coordinate _slice_stride;
 | 
					  Coordinate _slice_stride;
 | 
				
			||||||
  Coordinate _slice_nblock;
 | 
					  Coordinate _slice_nblock;
 | 
				
			||||||
@@ -82,7 +82,6 @@ public:
 | 
				
			|||||||
  bool _isCheckerBoarded; 
 | 
					  bool _isCheckerBoarded; 
 | 
				
			||||||
  int        LocallyPeriodic;
 | 
					  int        LocallyPeriodic;
 | 
				
			||||||
  Coordinate _checker_dim_mask;
 | 
					  Coordinate _checker_dim_mask;
 | 
				
			||||||
  int              _checker_dim;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -90,7 +89,7 @@ public:
 | 
				
			|||||||
  // Checkerboarding interface is virtual and overridden by 
 | 
					  // Checkerboarding interface is virtual and overridden by 
 | 
				
			||||||
  // GridCartesian / GridRedBlackCartesian
 | 
					  // GridCartesian / GridRedBlackCartesian
 | 
				
			||||||
  ////////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////////
 | 
				
			||||||
  virtual int CheckerBoarded(int dim) =0;
 | 
					  virtual int CheckerBoarded(int dim)=0;
 | 
				
			||||||
  virtual int CheckerBoard(const Coordinate &site)=0;
 | 
					  virtual int CheckerBoard(const Coordinate &site)=0;
 | 
				
			||||||
  virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0;
 | 
					  virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0;
 | 
				
			||||||
  virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0;
 | 
					  virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0;
 | 
				
			||||||
@@ -184,7 +183,7 @@ public:
 | 
				
			|||||||
  inline int Nsimd(void)  const { return _isites; };// Synonymous with iSites
 | 
					  inline int Nsimd(void)  const { return _isites; };// Synonymous with iSites
 | 
				
			||||||
  inline int oSites(void) const { return _osites; };
 | 
					  inline int oSites(void) const { return _osites; };
 | 
				
			||||||
  inline int lSites(void) const { return _isites*_osites; }; 
 | 
					  inline int lSites(void) const { return _isites*_osites; }; 
 | 
				
			||||||
  inline int64_t gSites(void) const { return (int64_t)_isites*(int64_t)_osites*(int64_t)_Nprocessors; }; 
 | 
					  inline int gSites(void) const { return _isites*_osites*_Nprocessors; }; 
 | 
				
			||||||
  inline int Nd    (void) const { return _ndimension;};
 | 
					  inline int Nd    (void) const { return _ndimension;};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  inline const Coordinate LocalStarts(void)             { return _lstart;    };
 | 
					  inline const Coordinate LocalStarts(void)             { return _lstart;    };
 | 
				
			||||||
@@ -215,7 +214,7 @@ public:
 | 
				
			|||||||
  ////////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Global addressing
 | 
					  // Global addressing
 | 
				
			||||||
  ////////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////////
 | 
				
			||||||
  void GlobalIndexToGlobalCoor(int64_t gidx,Coordinate &gcoor){
 | 
					  void GlobalIndexToGlobalCoor(int gidx,Coordinate &gcoor){
 | 
				
			||||||
    assert(gidx< gSites());
 | 
					    assert(gidx< gSites());
 | 
				
			||||||
    Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
 | 
					    Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -223,7 +222,7 @@ public:
 | 
				
			|||||||
    assert(lidx<lSites());
 | 
					    assert(lidx<lSites());
 | 
				
			||||||
    Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
 | 
					    Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int64_t & gidx){
 | 
					  void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int & gidx){
 | 
				
			||||||
    gidx=0;
 | 
					    gidx=0;
 | 
				
			||||||
    int mult=1;
 | 
					    int mult=1;
 | 
				
			||||||
    for(int mu=0;mu<_ndimension;mu++) {
 | 
					    for(int mu=0;mu<_ndimension;mu++) {
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -38,7 +38,7 @@ class GridCartesian: public GridBase {
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
  int dummy;
 | 
					  int dummy;
 | 
				
			||||||
  //  Coordinate _checker_dim_mask;
 | 
					  Coordinate _checker_dim_mask;
 | 
				
			||||||
  virtual int  CheckerBoardFromOindexTable (int Oindex) {
 | 
					  virtual int  CheckerBoardFromOindexTable (int Oindex) {
 | 
				
			||||||
    return 0;
 | 
					    return 0;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -46,7 +46,7 @@ public:
 | 
				
			|||||||
  {
 | 
					  {
 | 
				
			||||||
    return 0;
 | 
					    return 0;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  virtual int CheckerBoarded(int dim) {
 | 
					  virtual int CheckerBoarded(int dim){
 | 
				
			||||||
    return 0;
 | 
					    return 0;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  virtual int CheckerBoard(const Coordinate &site){
 | 
					  virtual int CheckerBoard(const Coordinate &site){
 | 
				
			||||||
@@ -106,7 +106,6 @@ public:
 | 
				
			|||||||
    _rdimensions.resize(_ndimension);
 | 
					    _rdimensions.resize(_ndimension);
 | 
				
			||||||
    _simd_layout.resize(_ndimension);
 | 
					    _simd_layout.resize(_ndimension);
 | 
				
			||||||
    _checker_dim_mask.resize(_ndimension);;
 | 
					    _checker_dim_mask.resize(_ndimension);;
 | 
				
			||||||
    _checker_dim = -1;
 | 
					 | 
				
			||||||
    _lstart.resize(_ndimension);
 | 
					    _lstart.resize(_ndimension);
 | 
				
			||||||
    _lend.resize(_ndimension);
 | 
					    _lend.resize(_ndimension);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -57,10 +57,9 @@ class GridRedBlackCartesian : public GridBase
 | 
				
			|||||||
{
 | 
					{
 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
  //  Coordinate _checker_dim_mask;
 | 
					  //  Coordinate _checker_dim_mask;
 | 
				
			||||||
  //  int              _checker_dim;
 | 
					  int              _checker_dim;
 | 
				
			||||||
  std::vector<int> _checker_board;
 | 
					  std::vector<int> _checker_board;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  virtual int isCheckerBoarded(void) const { return 1; };
 | 
					 | 
				
			||||||
  virtual int CheckerBoarded(int dim){
 | 
					  virtual int CheckerBoarded(int dim){
 | 
				
			||||||
    if( dim==_checker_dim) return 1;
 | 
					    if( dim==_checker_dim) return 1;
 | 
				
			||||||
    else return 0;
 | 
					    else return 0;
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -33,8 +33,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					NAMESPACE_BEGIN(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
bool Stencil_force_mpi = true;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
///////////////////////////////////////////////////////////////
 | 
					///////////////////////////////////////////////////////////////
 | 
				
			||||||
// Info that is setup once and indept of cartesian layout
 | 
					// Info that is setup once and indept of cartesian layout
 | 
				
			||||||
///////////////////////////////////////////////////////////////
 | 
					///////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -57,29 +55,18 @@ int                      CartesianCommunicator::ProcessorCount(void)    { return
 | 
				
			|||||||
// very VERY rarely (Log, serial RNG) we need world without a grid
 | 
					// very VERY rarely (Log, serial RNG) we need world without a grid
 | 
				
			||||||
////////////////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#ifdef USE_GRID_REDUCTION
 | 
					 | 
				
			||||||
void CartesianCommunicator::GlobalSum(ComplexF &c)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  GlobalSumP2P(c);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
void CartesianCommunicator::GlobalSum(ComplexD &c)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  GlobalSumP2P(c);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
void CartesianCommunicator::GlobalSum(ComplexF &c)
 | 
					void CartesianCommunicator::GlobalSum(ComplexF &c)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GlobalSumVector((float *)&c,2);
 | 
					  GlobalSumVector((float *)&c,2);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void CartesianCommunicator::GlobalSum(ComplexD &c)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  GlobalSumVector((double *)&c,2);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
void CartesianCommunicator::GlobalSumVector(ComplexF *c,int N)
 | 
					void CartesianCommunicator::GlobalSumVector(ComplexF *c,int N)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GlobalSumVector((float *)c,2*N);
 | 
					  GlobalSumVector((float *)c,2*N);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					void CartesianCommunicator::GlobalSum(ComplexD &c)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  GlobalSumVector((double *)&c,2);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N)
 | 
					void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GlobalSumVector((double *)c,2*N);
 | 
					  GlobalSumVector((double *)c,2*N);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -33,12 +33,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
///////////////////////////////////
 | 
					///////////////////////////////////
 | 
				
			||||||
#include <Grid/communicator/SharedMemory.h>
 | 
					#include <Grid/communicator/SharedMemory.h>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#define NVLINK_GET
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					NAMESPACE_BEGIN(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
extern bool Stencil_force_mpi ;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
class CartesianCommunicator : public SharedMemory {
 | 
					class CartesianCommunicator : public SharedMemory {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
public:    
 | 
					public:    
 | 
				
			||||||
@@ -55,11 +51,10 @@ public:
 | 
				
			|||||||
  // Communicator should know nothing of the physics grid, only processor grid.
 | 
					  // Communicator should know nothing of the physics grid, only processor grid.
 | 
				
			||||||
  ////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////
 | 
				
			||||||
  int              _Nprocessors;     // How many in all
 | 
					  int              _Nprocessors;     // How many in all
 | 
				
			||||||
  int              _processor;       // linear processor rank
 | 
					 | 
				
			||||||
  unsigned long    _ndimension;
 | 
					 | 
				
			||||||
  Coordinate _shm_processors;  // Which dimensions get relayed out over processors lanes.
 | 
					 | 
				
			||||||
  Coordinate _processors;      // Which dimensions get relayed out over processors lanes.
 | 
					  Coordinate _processors;      // Which dimensions get relayed out over processors lanes.
 | 
				
			||||||
 | 
					  int              _processor;       // linear processor rank
 | 
				
			||||||
  Coordinate _processor_coor;  // linear processor coordinate
 | 
					  Coordinate _processor_coor;  // linear processor coordinate
 | 
				
			||||||
 | 
					  unsigned long    _ndimension;
 | 
				
			||||||
  static Grid_MPI_Comm      communicator_world;
 | 
					  static Grid_MPI_Comm      communicator_world;
 | 
				
			||||||
  Grid_MPI_Comm             communicator;
 | 
					  Grid_MPI_Comm             communicator;
 | 
				
			||||||
  std::vector<Grid_MPI_Comm> communicator_halo;
 | 
					  std::vector<Grid_MPI_Comm> communicator_halo;
 | 
				
			||||||
@@ -100,7 +95,6 @@ public:
 | 
				
			|||||||
  int                      BossRank(void)          ;
 | 
					  int                      BossRank(void)          ;
 | 
				
			||||||
  int                      ThisRank(void)          ;
 | 
					  int                      ThisRank(void)          ;
 | 
				
			||||||
  const Coordinate & ThisProcessorCoor(void) ;
 | 
					  const Coordinate & ThisProcessorCoor(void) ;
 | 
				
			||||||
  const Coordinate & ShmGrid(void)  { return _shm_processors; }  ;
 | 
					 | 
				
			||||||
  const Coordinate & ProcessorGrid(void)     ;
 | 
					  const Coordinate & ProcessorGrid(void)     ;
 | 
				
			||||||
  int                      ProcessorCount(void)    ;
 | 
					  int                      ProcessorCount(void)    ;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -109,7 +103,6 @@ public:
 | 
				
			|||||||
  ////////////////////////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
  static int  RankWorld(void) ;
 | 
					  static int  RankWorld(void) ;
 | 
				
			||||||
  static void BroadcastWorld(int root,void* data, int bytes);
 | 
					  static void BroadcastWorld(int root,void* data, int bytes);
 | 
				
			||||||
  static void BarrierWorld(void);
 | 
					 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  ////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Reduction
 | 
					  // Reduction
 | 
				
			||||||
@@ -130,53 +123,16 @@ public:
 | 
				
			|||||||
  void GlobalXOR(uint32_t &);
 | 
					  void GlobalXOR(uint32_t &);
 | 
				
			||||||
  void GlobalXOR(uint64_t &);
 | 
					  void GlobalXOR(uint64_t &);
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  template<class obj> void GlobalSumP2P(obj &o)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    std::vector<obj> column;
 | 
					 | 
				
			||||||
    obj accum = o;
 | 
					 | 
				
			||||||
    int source,dest;
 | 
					 | 
				
			||||||
    for(int d=0;d<_ndimension;d++){
 | 
					 | 
				
			||||||
      column.resize(_processors[d]);
 | 
					 | 
				
			||||||
      column[0] = accum;
 | 
					 | 
				
			||||||
      std::vector<MpiCommsRequest_t> list;
 | 
					 | 
				
			||||||
      for(int p=1;p<_processors[d];p++){
 | 
					 | 
				
			||||||
	ShiftedRanks(d,p,source,dest);
 | 
					 | 
				
			||||||
	SendToRecvFromBegin(list,
 | 
					 | 
				
			||||||
			    &column[0],
 | 
					 | 
				
			||||||
			    dest,
 | 
					 | 
				
			||||||
			    &column[p],
 | 
					 | 
				
			||||||
			    source,
 | 
					 | 
				
			||||||
			    sizeof(obj),d*100+p);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      if (!list.empty()) // avoid triggering assert in comms == none
 | 
					 | 
				
			||||||
	CommsComplete(list);
 | 
					 | 
				
			||||||
      for(int p=1;p<_processors[d];p++){
 | 
					 | 
				
			||||||
	accum = accum + column[p];
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    Broadcast(0,accum);
 | 
					 | 
				
			||||||
    o=accum;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  template<class obj> void GlobalSum(obj &o){
 | 
					  template<class obj> void GlobalSum(obj &o){
 | 
				
			||||||
    typedef typename obj::scalar_type scalar_type;
 | 
					    typedef typename obj::scalar_type scalar_type;
 | 
				
			||||||
    int words = sizeof(obj)/sizeof(scalar_type);
 | 
					    int words = sizeof(obj)/sizeof(scalar_type);
 | 
				
			||||||
    scalar_type * ptr = (scalar_type *)& o; // Safe alias 
 | 
					    scalar_type * ptr = (scalar_type *)& o;
 | 
				
			||||||
    GlobalSumVector(ptr,words);
 | 
					    GlobalSumVector(ptr,words);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  ////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Face exchange, buffer swap in translational invariant way
 | 
					  // Face exchange, buffer swap in translational invariant way
 | 
				
			||||||
  ////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////
 | 
				
			||||||
  void CommsComplete(std::vector<MpiCommsRequest_t> &list);
 | 
					 | 
				
			||||||
  void SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list,
 | 
					 | 
				
			||||||
			   void *xmit,
 | 
					 | 
				
			||||||
			   int dest,
 | 
					 | 
				
			||||||
			   void *recv,
 | 
					 | 
				
			||||||
			   int from,
 | 
					 | 
				
			||||||
			   int bytes,int dir);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  void SendToRecvFrom(void *xmit,
 | 
					  void SendToRecvFrom(void *xmit,
 | 
				
			||||||
		      int xmit_to_rank,
 | 
							      int xmit_to_rank,
 | 
				
			||||||
		      void *recv,
 | 
							      void *recv,
 | 
				
			||||||
@@ -184,28 +140,17 @@ public:
 | 
				
			|||||||
		      int bytes);
 | 
							      int bytes);
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  double StencilSendToRecvFrom(void *xmit,
 | 
					  double StencilSendToRecvFrom(void *xmit,
 | 
				
			||||||
			       int xmit_to_rank,int do_xmit,
 | 
								       int xmit_to_rank,
 | 
				
			||||||
			       void *recv,
 | 
								       void *recv,
 | 
				
			||||||
			       int recv_from_rank,int do_recv,
 | 
								       int recv_from_rank,
 | 
				
			||||||
			       int bytes,int dir);
 | 
								       int bytes,int dir);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  double StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
 | 
					 | 
				
			||||||
				      void *xmit,
 | 
					 | 
				
			||||||
				      int xmit_to_rank,int do_xmit,
 | 
					 | 
				
			||||||
				      void *recv,
 | 
					 | 
				
			||||||
				      int recv_from_rank,int do_recv,
 | 
					 | 
				
			||||||
				      int xbytes,int rbytes,int dir);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  // Could do a PollHtoD and have a CommsMerge dependence
 | 
					 | 
				
			||||||
  void StencilSendToRecvFromPollDtoH (std::vector<CommsRequest_t> &list);
 | 
					 | 
				
			||||||
  void StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
					  double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
				
			||||||
				    void *xmit,
 | 
									    void *xmit,
 | 
				
			||||||
				    int xmit_to_rank,int do_xmit,
 | 
									    int xmit_to_rank,
 | 
				
			||||||
				    void *recv,
 | 
									    void *recv,
 | 
				
			||||||
				    int recv_from_rank,int do_recv,
 | 
									    int recv_from_rank,
 | 
				
			||||||
				    int xbytes,int rbytes,int dir);
 | 
									    int bytes,int dir);
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  void StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int i);
 | 
					  void StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int i);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -30,7 +30,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					NAMESPACE_BEGIN(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
Grid_MPI_Comm       CartesianCommunicator::communicator_world;
 | 
					Grid_MPI_Comm       CartesianCommunicator::communicator_world;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
////////////////////////////////////////////
 | 
					////////////////////////////////////////////
 | 
				
			||||||
@@ -107,7 +106,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
 | 
				
			|||||||
  // Remap using the shared memory optimising routine
 | 
					  // Remap using the shared memory optimising routine
 | 
				
			||||||
  // The remap creates a comm which must be freed
 | 
					  // The remap creates a comm which must be freed
 | 
				
			||||||
  ////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////
 | 
				
			||||||
  GlobalSharedMemory::OptimalCommunicator    (processors,optimal_comm,_shm_processors);
 | 
					  GlobalSharedMemory::OptimalCommunicator    (processors,optimal_comm);
 | 
				
			||||||
  InitFromMPICommunicator(processors,optimal_comm);
 | 
					  InitFromMPICommunicator(processors,optimal_comm);
 | 
				
			||||||
  SetCommunicator(optimal_comm);
 | 
					  SetCommunicator(optimal_comm);
 | 
				
			||||||
  ///////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////
 | 
				
			||||||
@@ -125,13 +124,12 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
 | 
				
			|||||||
  int parent_ndimension = parent._ndimension; assert(_ndimension >= parent._ndimension);
 | 
					  int parent_ndimension = parent._ndimension; assert(_ndimension >= parent._ndimension);
 | 
				
			||||||
  Coordinate parent_processor_coor(_ndimension,0);
 | 
					  Coordinate parent_processor_coor(_ndimension,0);
 | 
				
			||||||
  Coordinate parent_processors    (_ndimension,1);
 | 
					  Coordinate parent_processors    (_ndimension,1);
 | 
				
			||||||
  Coordinate shm_processors       (_ndimension,1);
 | 
					
 | 
				
			||||||
  // Can make 5d grid from 4d etc...
 | 
					  // Can make 5d grid from 4d etc...
 | 
				
			||||||
  int pad = _ndimension-parent_ndimension;
 | 
					  int pad = _ndimension-parent_ndimension;
 | 
				
			||||||
  for(int d=0;d<parent_ndimension;d++){
 | 
					  for(int d=0;d<parent_ndimension;d++){
 | 
				
			||||||
    parent_processor_coor[pad+d]=parent._processor_coor[d];
 | 
					    parent_processor_coor[pad+d]=parent._processor_coor[d];
 | 
				
			||||||
    parent_processors    [pad+d]=parent._processors[d];
 | 
					    parent_processors    [pad+d]=parent._processors[d];
 | 
				
			||||||
    shm_processors       [pad+d]=parent._shm_processors[d];
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -156,7 +154,6 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
 | 
				
			|||||||
    ccoor[d] = parent_processor_coor[d] % processors[d];
 | 
					    ccoor[d] = parent_processor_coor[d] % processors[d];
 | 
				
			||||||
    scoor[d] = parent_processor_coor[d] / processors[d];
 | 
					    scoor[d] = parent_processor_coor[d] / processors[d];
 | 
				
			||||||
    ssize[d] = parent_processors[d]     / processors[d];
 | 
					    ssize[d] = parent_processors[d]     / processors[d];
 | 
				
			||||||
    if ( processors[d] < shm_processors[d] ) shm_processors[d] = processors[d]; // subnode splitting.
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // rank within subcomm ; srank is rank of subcomm within blocks of subcomms
 | 
					  // rank within subcomm ; srank is rank of subcomm within blocks of subcomms
 | 
				
			||||||
@@ -258,25 +255,6 @@ CartesianCommunicator::~CartesianCommunicator()
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
#ifdef USE_GRID_REDUCTION
 | 
					 | 
				
			||||||
void CartesianCommunicator::GlobalSum(float &f){
 | 
					 | 
				
			||||||
  CartesianCommunicator::GlobalSumP2P(f);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
void CartesianCommunicator::GlobalSum(double &d)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  CartesianCommunicator::GlobalSumP2P(d);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
void CartesianCommunicator::GlobalSum(float &f){
 | 
					 | 
				
			||||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
 | 
					 | 
				
			||||||
  assert(ierr==0);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
void CartesianCommunicator::GlobalSum(double &d)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
 | 
					 | 
				
			||||||
  assert(ierr==0);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
void CartesianCommunicator::GlobalSum(uint32_t &u){
 | 
					void CartesianCommunicator::GlobalSum(uint32_t &u){
 | 
				
			||||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
 | 
					  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
 | 
				
			||||||
  assert(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
@@ -307,54 +285,25 @@ void CartesianCommunicator::GlobalMax(double &d)
 | 
				
			|||||||
  int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator);
 | 
					  int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator);
 | 
				
			||||||
  assert(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					void CartesianCommunicator::GlobalSum(float &f){
 | 
				
			||||||
 | 
					  int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
 | 
				
			||||||
 | 
					  assert(ierr==0);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
void CartesianCommunicator::GlobalSumVector(float *f,int N)
 | 
					void CartesianCommunicator::GlobalSumVector(float *f,int N)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator);
 | 
					  int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator);
 | 
				
			||||||
  assert(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					void CartesianCommunicator::GlobalSum(double &d)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
 | 
				
			||||||
 | 
					  assert(ierr==0);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
void CartesianCommunicator::GlobalSumVector(double *d,int N)
 | 
					void CartesianCommunicator::GlobalSumVector(double *d,int N)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
 | 
					  int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
 | 
				
			||||||
  assert(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					 | 
				
			||||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<MpiCommsRequest_t> &list,
 | 
					 | 
				
			||||||
						void *xmit,
 | 
					 | 
				
			||||||
						int dest,
 | 
					 | 
				
			||||||
						void *recv,
 | 
					 | 
				
			||||||
						int from,
 | 
					 | 
				
			||||||
						int bytes,int dir)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  MPI_Request xrq;
 | 
					 | 
				
			||||||
  MPI_Request rrq;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  assert(dest != _processor);
 | 
					 | 
				
			||||||
  assert(from != _processor);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int tag;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  tag= dir+from*32;
 | 
					 | 
				
			||||||
  int ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator,&rrq);
 | 
					 | 
				
			||||||
  assert(ierr==0);
 | 
					 | 
				
			||||||
  list.push_back(rrq);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  tag= dir+_processor*32;
 | 
					 | 
				
			||||||
  ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator,&xrq);
 | 
					 | 
				
			||||||
  assert(ierr==0);
 | 
					 | 
				
			||||||
  list.push_back(xrq);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
void CartesianCommunicator::CommsComplete(std::vector<MpiCommsRequest_t> &list)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  int nreq=list.size();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  if (nreq==0) return;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  std::vector<MPI_Status> status(nreq);
 | 
					 | 
				
			||||||
  int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
 | 
					 | 
				
			||||||
  assert(ierr==0);
 | 
					 | 
				
			||||||
  list.resize(0);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
// Basic Halo comms primitive
 | 
					// Basic Halo comms primitive
 | 
				
			||||||
void CartesianCommunicator::SendToRecvFrom(void *xmit,
 | 
					void CartesianCommunicator::SendToRecvFrom(void *xmit,
 | 
				
			||||||
					   int dest,
 | 
										   int dest,
 | 
				
			||||||
@@ -362,7 +311,9 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
 | 
				
			|||||||
					   int from,
 | 
										   int from,
 | 
				
			||||||
					   int bytes)
 | 
										   int bytes)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  std::vector<MpiCommsRequest_t> reqs(0);
 | 
					  std::vector<CommsRequest_t> reqs(0);
 | 
				
			||||||
 | 
					  unsigned long  xcrc = crc32(0L, Z_NULL, 0);
 | 
				
			||||||
 | 
					  unsigned long  rcrc = crc32(0L, Z_NULL, 0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  int myrank = _processor;
 | 
					  int myrank = _processor;
 | 
				
			||||||
  int ierr;
 | 
					  int ierr;
 | 
				
			||||||
@@ -378,40 +329,29 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
 | 
				
			|||||||
		    communicator,MPI_STATUS_IGNORE);
 | 
							    communicator,MPI_STATUS_IGNORE);
 | 
				
			||||||
  assert(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  //  xcrc = crc32(xcrc,(unsigned char *)xmit,bytes);
 | 
				
			||||||
 | 
					  //  rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
 | 
				
			||||||
 | 
					  //  printf("proc %d SendToRecvFrom %d bytes xcrc %lx rcrc %lx\n",_processor,bytes,xcrc,rcrc); fflush
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
// Basic Halo comms primitive
 | 
					// Basic Halo comms primitive
 | 
				
			||||||
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
 | 
					double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
 | 
				
			||||||
						     int dest, int dox,
 | 
											     int dest,
 | 
				
			||||||
						     void *recv,
 | 
											     void *recv,
 | 
				
			||||||
						     int from, int dor,
 | 
											     int from,
 | 
				
			||||||
						     int bytes,int dir)
 | 
											     int bytes,int dir)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  std::vector<CommsRequest_t> list;
 | 
					  std::vector<CommsRequest_t> list;
 | 
				
			||||||
  double offbytes = StencilSendToRecvFromPrepare(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
 | 
					  double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,recv,from,bytes,dir);
 | 
				
			||||||
  offbytes       += StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
 | 
					 | 
				
			||||||
  StencilSendToRecvFromComplete(list,dir);
 | 
					  StencilSendToRecvFromComplete(list,dir);
 | 
				
			||||||
  return offbytes;
 | 
					  return offbytes;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {};
 | 
					 | 
				
			||||||
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {};
 | 
					 | 
				
			||||||
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
 | 
					 | 
				
			||||||
							   void *xmit,
 | 
					 | 
				
			||||||
							   int dest,int dox,
 | 
					 | 
				
			||||||
							   void *recv,
 | 
					 | 
				
			||||||
							   int from,int dor,
 | 
					 | 
				
			||||||
							   int xbytes,int rbytes,int dir)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  return 0.0; // Do nothing -- no preparation required
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
					double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
				
			||||||
							 void *xmit,
 | 
												 void *xmit,
 | 
				
			||||||
							 int dest,int dox,
 | 
												 int dest,
 | 
				
			||||||
							 void *recv,
 | 
												 void *recv,
 | 
				
			||||||
							 int from,int dor,
 | 
												 int from,
 | 
				
			||||||
							 int xbytes,int rbytes,int dir)
 | 
												 int bytes,int dir)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  int ncomm  =communicator_halo.size();
 | 
					  int ncomm  =communicator_halo.size();
 | 
				
			||||||
  int commdir=dir%ncomm;
 | 
					  int commdir=dir%ncomm;
 | 
				
			||||||
@@ -430,368 +370,39 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
 | 
				
			|||||||
  double off_node_bytes=0.0;
 | 
					  double off_node_bytes=0.0;
 | 
				
			||||||
  int tag;
 | 
					  int tag;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  if ( dor ) {
 | 
					  if ( gfrom ==MPI_UNDEFINED) {
 | 
				
			||||||
    if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
					 | 
				
			||||||
    tag= dir+from*32;
 | 
					    tag= dir+from*32;
 | 
				
			||||||
      ierr=MPI_Irecv(recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
 | 
					    ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
 | 
				
			||||||
    assert(ierr==0);
 | 
					    assert(ierr==0);
 | 
				
			||||||
    list.push_back(rrq);
 | 
					    list.push_back(rrq);
 | 
				
			||||||
      off_node_bytes+=rbytes;
 | 
					    off_node_bytes+=bytes;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
#ifdef NVLINK_GET
 | 
					
 | 
				
			||||||
    else { 
 | 
					  if ( gdest == MPI_UNDEFINED ) {
 | 
				
			||||||
      void *shm = (void *) this->ShmBufferTranslate(from,xmit);
 | 
					 | 
				
			||||||
      assert(shm!=NULL);
 | 
					 | 
				
			||||||
      acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  // This is a NVLINK PUT  
 | 
					 | 
				
			||||||
  if (dox) {
 | 
					 | 
				
			||||||
    if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
					 | 
				
			||||||
    tag= dir+_processor*32;
 | 
					    tag= dir+_processor*32;
 | 
				
			||||||
      ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
 | 
					    ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
 | 
				
			||||||
    assert(ierr==0);
 | 
					    assert(ierr==0);
 | 
				
			||||||
    list.push_back(xrq);
 | 
					    list.push_back(xrq);
 | 
				
			||||||
      off_node_bytes+=xbytes;
 | 
					    off_node_bytes+=bytes;
 | 
				
			||||||
    } else {
 | 
					 | 
				
			||||||
#ifndef NVLINK_GET
 | 
					 | 
				
			||||||
      void *shm = (void *) this->ShmBufferTranslate(dest,recv);
 | 
					 | 
				
			||||||
      assert(shm!=NULL);
 | 
					 | 
				
			||||||
      acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  if ( CommunicatorPolicy == CommunicatorPolicySequential ) {
 | 
				
			||||||
 | 
					    this->StencilSendToRecvFromComplete(list,dir);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  return off_node_bytes;
 | 
					  return off_node_bytes;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					 | 
				
			||||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
 | 
					void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  int nreq=list.size();
 | 
					  int nreq=list.size();
 | 
				
			||||||
  /*finishes Get/Put*/
 | 
					 | 
				
			||||||
  acceleratorCopySynchronise();
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  if (nreq==0) return;
 | 
					  if (nreq==0) return;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  std::vector<MPI_Status> status(nreq);
 | 
					  std::vector<MPI_Status> status(nreq);
 | 
				
			||||||
  int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
 | 
					  int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
 | 
				
			||||||
  assert(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
  list.resize(0);
 | 
					  list.resize(0);
 | 
				
			||||||
  this->StencilBarrier(); 
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					 | 
				
			||||||
#else /* NOT     ... ACCELERATOR_AWARE_MPI */
 | 
					 | 
				
			||||||
///////////////////////////////////////////
 | 
					 | 
				
			||||||
// Pipeline mode through host memory
 | 
					 | 
				
			||||||
///////////////////////////////////////////
 | 
					 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
   * In prepare (phase 1):
 | 
					 | 
				
			||||||
   * PHASE 1: (prepare)
 | 
					 | 
				
			||||||
   * - post MPI receive buffers asynch
 | 
					 | 
				
			||||||
   * - post device - host send buffer transfer asynch
 | 
					 | 
				
			||||||
   * PHASE 2: (Begin)
 | 
					 | 
				
			||||||
   * - complete all copies
 | 
					 | 
				
			||||||
   * - post MPI send asynch
 | 
					 | 
				
			||||||
   * - post device - device transfers
 | 
					 | 
				
			||||||
   * PHASE 3: (Complete)
 | 
					 | 
				
			||||||
   * - MPI_waitall
 | 
					 | 
				
			||||||
   * - host-device transfers
 | 
					 | 
				
			||||||
   *
 | 
					 | 
				
			||||||
   *********************************
 | 
					 | 
				
			||||||
   * NB could split this further:
 | 
					 | 
				
			||||||
   *--------------------------------
 | 
					 | 
				
			||||||
   * PHASE 1: (Prepare)
 | 
					 | 
				
			||||||
   * - post MPI receive buffers asynch
 | 
					 | 
				
			||||||
   * - post device - host send buffer transfer asynch
 | 
					 | 
				
			||||||
   * PHASE 2: (BeginInterNode)
 | 
					 | 
				
			||||||
   * - complete all copies 
 | 
					 | 
				
			||||||
   * - post MPI send asynch
 | 
					 | 
				
			||||||
   * PHASE 3: (BeginIntraNode)
 | 
					 | 
				
			||||||
   * - post device - device transfers
 | 
					 | 
				
			||||||
   * PHASE 4: (Complete)
 | 
					 | 
				
			||||||
   * - MPI_waitall
 | 
					 | 
				
			||||||
   * - host-device transfers asynch
 | 
					 | 
				
			||||||
   * - (complete all copies) 
 | 
					 | 
				
			||||||
   */
 | 
					 | 
				
			||||||
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
 | 
					 | 
				
			||||||
							   void *xmit,
 | 
					 | 
				
			||||||
							   int dest,int dox,
 | 
					 | 
				
			||||||
							   void *recv,
 | 
					 | 
				
			||||||
							   int from,int dor,
 | 
					 | 
				
			||||||
							   int xbytes,int rbytes,int dir)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
/*
 | 
					 | 
				
			||||||
 * Bring sequence from Stencil.h down to lower level.
 | 
					 | 
				
			||||||
 * Assume using XeLink is ok
 | 
					 | 
				
			||||||
 */  
 | 
					 | 
				
			||||||
  int ncomm  =communicator_halo.size();
 | 
					 | 
				
			||||||
  int commdir=dir%ncomm;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  MPI_Request xrq;
 | 
					 | 
				
			||||||
  MPI_Request rrq;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int ierr;
 | 
					 | 
				
			||||||
  int gdest = ShmRanks[dest];
 | 
					 | 
				
			||||||
  int gfrom = ShmRanks[from];
 | 
					 | 
				
			||||||
  int gme   = ShmRanks[_processor];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  assert(dest != _processor);
 | 
					 | 
				
			||||||
  assert(from != _processor);
 | 
					 | 
				
			||||||
  assert(gme  == ShmRank);
 | 
					 | 
				
			||||||
  double off_node_bytes=0.0;
 | 
					 | 
				
			||||||
  int tag;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void * host_recv = NULL;
 | 
					 | 
				
			||||||
  void * host_xmit = NULL;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /*
 | 
					 | 
				
			||||||
   * PHASE 1: (Prepare)
 | 
					 | 
				
			||||||
   * - post MPI receive buffers asynch
 | 
					 | 
				
			||||||
   * - post device - host send buffer transfer asynch
 | 
					 | 
				
			||||||
   */
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  if ( dor ) {
 | 
					 | 
				
			||||||
    if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
					 | 
				
			||||||
      tag= dir+from*32;
 | 
					 | 
				
			||||||
      host_recv = this->HostBufferMalloc(rbytes);
 | 
					 | 
				
			||||||
      ierr=MPI_Irecv(host_recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
 | 
					 | 
				
			||||||
      assert(ierr==0);
 | 
					 | 
				
			||||||
      CommsRequest_t srq;
 | 
					 | 
				
			||||||
      srq.PacketType = InterNodeRecv;
 | 
					 | 
				
			||||||
      srq.bytes      = rbytes;
 | 
					 | 
				
			||||||
      srq.req        = rrq;
 | 
					 | 
				
			||||||
      srq.host_buf   = host_recv;
 | 
					 | 
				
			||||||
      srq.device_buf = recv;
 | 
					 | 
				
			||||||
      list.push_back(srq);
 | 
					 | 
				
			||||||
      off_node_bytes+=rbytes;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  if (dox) {
 | 
					 | 
				
			||||||
    if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      tag= dir+_processor*32;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      host_xmit = this->HostBufferMalloc(xbytes);
 | 
					 | 
				
			||||||
      CommsRequest_t srq;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      srq.ev = acceleratorCopyFromDeviceAsynch(xmit, host_xmit,xbytes); // Make this Asynch
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      //      ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
 | 
					 | 
				
			||||||
      //      assert(ierr==0);
 | 
					 | 
				
			||||||
      //      off_node_bytes+=xbytes;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      srq.PacketType = InterNodeXmit;
 | 
					 | 
				
			||||||
      srq.bytes      = xbytes;
 | 
					 | 
				
			||||||
      //      srq.req        = xrq;
 | 
					 | 
				
			||||||
      srq.host_buf   = host_xmit;
 | 
					 | 
				
			||||||
      srq.device_buf = xmit;
 | 
					 | 
				
			||||||
      srq.tag        = tag;
 | 
					 | 
				
			||||||
      srq.dest       = dest;
 | 
					 | 
				
			||||||
      srq.commdir    = commdir;
 | 
					 | 
				
			||||||
      list.push_back(srq);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  return off_node_bytes;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
/*
 | 
					 | 
				
			||||||
 * In the interest of better pipelining, poll for completion on each DtoH and 
 | 
					 | 
				
			||||||
 * start MPI_ISend in the meantime
 | 
					 | 
				
			||||||
 */
 | 
					 | 
				
			||||||
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  int pending = 0;
 | 
					 | 
				
			||||||
  do {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    pending = 0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int idx = 0; idx<list.size();idx++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      if ( list[idx].PacketType==InterNodeRecv ) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	int flag = 0;
 | 
					 | 
				
			||||||
	MPI_Status status;
 | 
					 | 
				
			||||||
	int ierr = MPI_Test(&list[idx].req,&flag,&status);
 | 
					 | 
				
			||||||
	assert(ierr==0);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	if ( flag ) {
 | 
					 | 
				
			||||||
	  //	  std::cout << " PollIrecv "<<idx<<" flag "<<flag<<std::endl;
 | 
					 | 
				
			||||||
	  acceleratorCopyToDeviceAsynch(list[idx].host_buf,list[idx].device_buf,list[idx].bytes);
 | 
					 | 
				
			||||||
	  list[idx].PacketType=InterNodeReceiveHtoD;
 | 
					 | 
				
			||||||
	} else {
 | 
					 | 
				
			||||||
	  pending ++;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    //    std::cout << " PollIrecv "<<pending<<" pending requests"<<std::endl;
 | 
					 | 
				
			||||||
  } while ( pending );
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  int pending = 0;
 | 
					 | 
				
			||||||
  do {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    pending = 0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int idx = 0; idx<list.size();idx++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      if ( list[idx].PacketType==InterNodeXmit ) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	if ( acceleratorEventIsComplete(list[idx].ev) ) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  void *host_xmit = list[idx].host_buf;
 | 
					 | 
				
			||||||
	  uint32_t xbytes = list[idx].bytes;
 | 
					 | 
				
			||||||
	  int dest        = list[idx].dest;
 | 
					 | 
				
			||||||
	  int tag         = list[idx].tag;
 | 
					 | 
				
			||||||
	  int commdir     = list[idx].commdir;
 | 
					 | 
				
			||||||
	  ///////////////////
 | 
					 | 
				
			||||||
	  // Send packet
 | 
					 | 
				
			||||||
	  ///////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  //	  std::cout << " DtoH is complete for index "<<idx<<" calling MPI_Isend "<<std::endl;
 | 
					 | 
				
			||||||
	  
 | 
					 | 
				
			||||||
	  MPI_Request xrq;
 | 
					 | 
				
			||||||
	  int ierr =MPI_Isend(host_xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
 | 
					 | 
				
			||||||
	  assert(ierr==0);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  list[idx].req        = xrq; // Update the MPI request in the list
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	  list[idx].PacketType=InterNodeXmitISend;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	} else {
 | 
					 | 
				
			||||||
	  // not done, so return to polling loop
 | 
					 | 
				
			||||||
	  pending++;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  } while (pending);
 | 
					 | 
				
			||||||
}  
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
					 | 
				
			||||||
							 void *xmit,
 | 
					 | 
				
			||||||
							 int dest,int dox,
 | 
					 | 
				
			||||||
							 void *recv,
 | 
					 | 
				
			||||||
							 int from,int dor,
 | 
					 | 
				
			||||||
							 int xbytes,int rbytes,int dir)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  int ncomm  =communicator_halo.size();
 | 
					 | 
				
			||||||
  int commdir=dir%ncomm;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  MPI_Request xrq;
 | 
					 | 
				
			||||||
  MPI_Request rrq;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int ierr;
 | 
					 | 
				
			||||||
  int gdest = ShmRanks[dest];
 | 
					 | 
				
			||||||
  int gfrom = ShmRanks[from];
 | 
					 | 
				
			||||||
  int gme   = ShmRanks[_processor];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  assert(dest != _processor);
 | 
					 | 
				
			||||||
  assert(from != _processor);
 | 
					 | 
				
			||||||
  assert(gme  == ShmRank);
 | 
					 | 
				
			||||||
  double off_node_bytes=0.0;
 | 
					 | 
				
			||||||
  int tag;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void * host_xmit = NULL;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ////////////////////////////////
 | 
					 | 
				
			||||||
  // Receives already posted
 | 
					 | 
				
			||||||
  // Copies already started
 | 
					 | 
				
			||||||
  ////////////////////////////////
 | 
					 | 
				
			||||||
  /*  
 | 
					 | 
				
			||||||
   * PHASE 2: (Begin)
 | 
					 | 
				
			||||||
   * - complete all copies
 | 
					 | 
				
			||||||
   * - post MPI send asynch
 | 
					 | 
				
			||||||
   */
 | 
					 | 
				
			||||||
#ifdef NVLINK_GET
 | 
					 | 
				
			||||||
  if ( dor ) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if ( ! ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) ) {
 | 
					 | 
				
			||||||
      // Intranode
 | 
					 | 
				
			||||||
      void *shm = (void *) this->ShmBufferTranslate(from,xmit);
 | 
					 | 
				
			||||||
      assert(shm!=NULL);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      CommsRequest_t srq;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      srq.ev = acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      srq.PacketType = IntraNodeRecv;
 | 
					 | 
				
			||||||
      srq.bytes      = xbytes;
 | 
					 | 
				
			||||||
      //      srq.req        = xrq;
 | 
					 | 
				
			||||||
      srq.host_buf   = NULL;
 | 
					 | 
				
			||||||
      srq.device_buf = xmit;
 | 
					 | 
				
			||||||
      srq.tag        = -1;
 | 
					 | 
				
			||||||
      srq.dest       = dest;
 | 
					 | 
				
			||||||
      srq.commdir    = dir;
 | 
					 | 
				
			||||||
      list.push_back(srq);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }  
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
  if (dox) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if ( !( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) ) {
 | 
					 | 
				
			||||||
      // Intranode
 | 
					 | 
				
			||||||
      void *shm = (void *) this->ShmBufferTranslate(dest,recv);
 | 
					 | 
				
			||||||
      assert(shm!=NULL);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      CommsRequest_t srq;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      srq.ev = acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      srq.PacketType = IntraNodeXmit;
 | 
					 | 
				
			||||||
      srq.bytes      = xbytes;
 | 
					 | 
				
			||||||
      //      srq.req        = xrq;
 | 
					 | 
				
			||||||
      srq.host_buf   = NULL;
 | 
					 | 
				
			||||||
      srq.device_buf = xmit;
 | 
					 | 
				
			||||||
      srq.tag        = -1;
 | 
					 | 
				
			||||||
      srq.dest       = dest;
 | 
					 | 
				
			||||||
      srq.commdir    = dir;
 | 
					 | 
				
			||||||
      list.push_back(srq);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  return off_node_bytes;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  acceleratorCopySynchronise(); // Complete all pending copy transfers D2D
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  std::vector<MPI_Status> status;
 | 
					 | 
				
			||||||
  std::vector<MPI_Request> MpiRequests;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
  for(int r=0;r<list.size();r++){
 | 
					 | 
				
			||||||
    // Must check each Send buf is clear to reuse
 | 
					 | 
				
			||||||
    if ( list[r].PacketType == InterNodeXmitISend ) MpiRequests.push_back(list[r].req);
 | 
					 | 
				
			||||||
    //    if ( list[r].PacketType == InterNodeRecv ) MpiRequests.push_back(list[r].req); // Already "Test" passed
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int nreq=MpiRequests.size();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  if (nreq>0) {
 | 
					 | 
				
			||||||
    status.resize(MpiRequests.size());
 | 
					 | 
				
			||||||
    int ierr = MPI_Waitall(MpiRequests.size(),&MpiRequests[0],&status[0]); // Sends are guaranteed in order. No harm in not completing.
 | 
					 | 
				
			||||||
    assert(ierr==0);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  //  for(int r=0;r<nreq;r++){
 | 
					 | 
				
			||||||
  //    if ( list[r].PacketType==InterNodeRecv ) {
 | 
					 | 
				
			||||||
  //      acceleratorCopyToDeviceAsynch(list[r].host_buf,list[r].device_buf,list[r].bytes);
 | 
					 | 
				
			||||||
  //    }
 | 
					 | 
				
			||||||
  //  }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  list.resize(0);               // Delete the list
 | 
					 | 
				
			||||||
  this->HostBufferFreeAll();    // Clean up the buffer allocs
 | 
					 | 
				
			||||||
#ifndef NVLINK_GET
 | 
					 | 
				
			||||||
  this->StencilBarrier(); // if PUT must check our nbrs have filled our receive buffers.
 | 
					 | 
				
			||||||
#endif   
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
////////////////////////////////////////////
 | 
					 | 
				
			||||||
// END PIPELINE MODE / NO CUDA AWARE MPI
 | 
					 | 
				
			||||||
////////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
void CartesianCommunicator::StencilBarrier(void)
 | 
					void CartesianCommunicator::StencilBarrier(void)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  MPI_Barrier  (ShmComm);
 | 
					  MPI_Barrier  (ShmComm);
 | 
				
			||||||
@@ -818,10 +429,6 @@ int CartesianCommunicator::RankWorld(void){
 | 
				
			|||||||
  MPI_Comm_rank(communicator_world,&r);
 | 
					  MPI_Comm_rank(communicator_world,&r);
 | 
				
			||||||
  return r;
 | 
					  return r;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void CartesianCommunicator::BarrierWorld(void){
 | 
					 | 
				
			||||||
  int ierr = MPI_Barrier(communicator_world);
 | 
					 | 
				
			||||||
  assert(ierr==0);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
 | 
					void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  int ierr= MPI_Bcast(data,
 | 
					  int ierr= MPI_Bcast(data,
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -45,14 +45,12 @@ void CartesianCommunicator::Init(int *argc, char *** arv)
 | 
				
			|||||||
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank) 
 | 
					CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank) 
 | 
				
			||||||
  : CartesianCommunicator(processors) 
 | 
					  : CartesianCommunicator(processors) 
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  _shm_processors = Coordinate(processors.size(),1);
 | 
					 | 
				
			||||||
  srank=0;
 | 
					  srank=0;
 | 
				
			||||||
  SetCommunicator(communicator_world);
 | 
					  SetCommunicator(communicator_world);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
 | 
					CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  _shm_processors = Coordinate(processors.size(),1);
 | 
					 | 
				
			||||||
  _processors = processors;
 | 
					  _processors = processors;
 | 
				
			||||||
  _ndimension = processors.size();  assert(_ndimension>=1);
 | 
					  _ndimension = processors.size();  assert(_ndimension>=1);
 | 
				
			||||||
  _processor_coor.resize(_ndimension);
 | 
					  _processor_coor.resize(_ndimension);
 | 
				
			||||||
@@ -91,17 +89,6 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
 | 
				
			|||||||
{
 | 
					{
 | 
				
			||||||
  assert(0);
 | 
					  assert(0);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ assert(list.size()==0);}
 | 
					 | 
				
			||||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
					 | 
				
			||||||
						void *xmit,
 | 
					 | 
				
			||||||
						int dest,
 | 
					 | 
				
			||||||
						void *recv,
 | 
					 | 
				
			||||||
						int from,
 | 
					 | 
				
			||||||
						int bytes,int dir)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  assert(0);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
void CartesianCommunicator::AllToAll(int dim,void  *in,void *out,uint64_t words,uint64_t bytes)
 | 
					void CartesianCommunicator::AllToAll(int dim,void  *in,void *out,uint64_t words,uint64_t bytes)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  bcopy(in,out,bytes*words);
 | 
					  bcopy(in,out,bytes*words);
 | 
				
			||||||
@@ -115,7 +102,6 @@ int  CartesianCommunicator::RankWorld(void){return 0;}
 | 
				
			|||||||
void CartesianCommunicator::Barrier(void){}
 | 
					void CartesianCommunicator::Barrier(void){}
 | 
				
			||||||
void CartesianCommunicator::Broadcast(int root,void* data, int bytes) {}
 | 
					void CartesianCommunicator::Broadcast(int root,void* data, int bytes) {}
 | 
				
			||||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) { }
 | 
					void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) { }
 | 
				
			||||||
void CartesianCommunicator::BarrierWorld(void) { }
 | 
					 | 
				
			||||||
int  CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor) {  return 0;}
 | 
					int  CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor) {  return 0;}
 | 
				
			||||||
void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor){  coor = _processor_coor; }
 | 
					void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor){  coor = _processor_coor; }
 | 
				
			||||||
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
 | 
					void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
 | 
				
			||||||
@@ -125,32 +111,21 @@ void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest
 | 
				
			|||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
 | 
					double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
 | 
				
			||||||
						     int xmit_to_rank,int dox,
 | 
											     int xmit_to_rank,
 | 
				
			||||||
						     void *recv,
 | 
											     void *recv,
 | 
				
			||||||
						     int recv_from_rank,int dor,
 | 
											     int recv_from_rank,
 | 
				
			||||||
						     int bytes, int dir)
 | 
											     int bytes, int dir)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  return 2.0*bytes;
 | 
					  return 2.0*bytes;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void CartesianCommunicator::StencilSendToRecvFromPollIRecv(std::vector<CommsRequest_t> &list) {};
 | 
					 | 
				
			||||||
void CartesianCommunicator::StencilSendToRecvFromPollDtoH(std::vector<CommsRequest_t> &list) {};
 | 
					 | 
				
			||||||
double CartesianCommunicator::StencilSendToRecvFromPrepare(std::vector<CommsRequest_t> &list,
 | 
					 | 
				
			||||||
							   void *xmit,
 | 
					 | 
				
			||||||
							   int xmit_to_rank,int dox,
 | 
					 | 
				
			||||||
							   void *recv,
 | 
					 | 
				
			||||||
							   int recv_from_rank,int dor,
 | 
					 | 
				
			||||||
							   int xbytes,int rbytes, int dir)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  return 0.0;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
					double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
 | 
				
			||||||
							 void *xmit,
 | 
												 void *xmit,
 | 
				
			||||||
							 int xmit_to_rank,int dox,
 | 
												 int xmit_to_rank,
 | 
				
			||||||
							 void *recv,
 | 
												 void *recv,
 | 
				
			||||||
							 int recv_from_rank,int dor,
 | 
												 int recv_from_rank,
 | 
				
			||||||
							 int xbytes,int rbytes, int dir)
 | 
												 int bytes, int dir)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  return xbytes+rbytes;
 | 
					  return 2.0*bytes;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir)
 | 
					void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -40,9 +40,6 @@ int                 GlobalSharedMemory::_ShmAlloc;
 | 
				
			|||||||
uint64_t            GlobalSharedMemory::_ShmAllocBytes;
 | 
					uint64_t            GlobalSharedMemory::_ShmAllocBytes;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
std::vector<void *> GlobalSharedMemory::WorldShmCommBufs;
 | 
					std::vector<void *> GlobalSharedMemory::WorldShmCommBufs;
 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
void * GlobalSharedMemory::HostCommBuf;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
Grid_MPI_Comm       GlobalSharedMemory::WorldShmComm;
 | 
					Grid_MPI_Comm       GlobalSharedMemory::WorldShmComm;
 | 
				
			||||||
int                 GlobalSharedMemory::WorldShmRank;
 | 
					int                 GlobalSharedMemory::WorldShmRank;
 | 
				
			||||||
@@ -69,26 +66,6 @@ void GlobalSharedMemory::SharedMemoryFree(void)
 | 
				
			|||||||
/////////////////////////////////
 | 
					/////////////////////////////////
 | 
				
			||||||
// Alloc, free shmem region
 | 
					// Alloc, free shmem region
 | 
				
			||||||
/////////////////////////////////
 | 
					/////////////////////////////////
 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
void *SharedMemory::HostBufferMalloc(size_t bytes){
 | 
					 | 
				
			||||||
  void *ptr = (void *)host_heap_top;
 | 
					 | 
				
			||||||
  host_heap_top  += bytes;
 | 
					 | 
				
			||||||
  host_heap_bytes+= bytes;
 | 
					 | 
				
			||||||
  if (host_heap_bytes >= host_heap_size) {
 | 
					 | 
				
			||||||
    std::cout<< " HostBufferMalloc exceeded heap size -- try increasing with --shm <MB> flag" <<std::endl;
 | 
					 | 
				
			||||||
    std::cout<< " Parameter specified in units of MB (megabytes) " <<std::endl;
 | 
					 | 
				
			||||||
    std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout<< " Current bytes is " << (host_heap_bytes/(1024*1024)) <<"MB"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout<< " Current heap  is " << (host_heap_size/(1024*1024)) <<"MB"<<std::endl;
 | 
					 | 
				
			||||||
    assert(host_heap_bytes<host_heap_size);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  return ptr;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
void SharedMemory::HostBufferFreeAll(void) { 
 | 
					 | 
				
			||||||
  host_heap_top  =(size_t)HostCommBuf;
 | 
					 | 
				
			||||||
  host_heap_bytes=0;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
void *SharedMemory::ShmBufferMalloc(size_t bytes){
 | 
					void *SharedMemory::ShmBufferMalloc(size_t bytes){
 | 
				
			||||||
  //  bytes = (bytes+sizeof(vRealD))&(~(sizeof(vRealD)-1));// align up bytes
 | 
					  //  bytes = (bytes+sizeof(vRealD))&(~(sizeof(vRealD)-1));// align up bytes
 | 
				
			||||||
  void *ptr = (void *)heap_top;
 | 
					  void *ptr = (void *)heap_top;
 | 
				
			||||||
@@ -114,59 +91,6 @@ void *SharedMemory::ShmBufferSelf(void)
 | 
				
			|||||||
  //std::cerr << "ShmBufferSelf "<<ShmRank<<" "<<std::hex<< ShmCommBufs[ShmRank] <<std::dec<<std::endl;
 | 
					  //std::cerr << "ShmBufferSelf "<<ShmRank<<" "<<std::hex<< ShmCommBufs[ShmRank] <<std::dec<<std::endl;
 | 
				
			||||||
  return ShmCommBufs[ShmRank];
 | 
					  return ShmCommBufs[ShmRank];
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
static inline int divides(int a,int b)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  return ( b == ( (b/a)*a ) );
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  ////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // Allow user to configure through environment variable
 | 
					 | 
				
			||||||
  ////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  char* str = getenv(("GRID_SHM_DIMS_" + std::to_string(ShmDims.size())).c_str());
 | 
					 | 
				
			||||||
  if ( str ) {
 | 
					 | 
				
			||||||
    std::vector<int> IntShmDims;
 | 
					 | 
				
			||||||
    GridCmdOptionIntVector(std::string(str),IntShmDims);
 | 
					 | 
				
			||||||
    assert(IntShmDims.size() == WorldDims.size());
 | 
					 | 
				
			||||||
    long ShmSize = 1;
 | 
					 | 
				
			||||||
    for (int dim=0;dim<WorldDims.size();dim++) {
 | 
					 | 
				
			||||||
      ShmSize *= (ShmDims[dim] = IntShmDims[dim]);
 | 
					 | 
				
			||||||
      assert(divides(ShmDims[dim],WorldDims[dim]));
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    assert(ShmSize == WorldShmSize);
 | 
					 | 
				
			||||||
    return;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  ////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // Powers of 2,3,5 only in prime decomposition for now
 | 
					 | 
				
			||||||
  ////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  int ndimension = WorldDims.size();
 | 
					 | 
				
			||||||
  ShmDims=Coordinate(ndimension,1);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  std::vector<int> primes({2,3,5});
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int dim = 0;
 | 
					 | 
				
			||||||
  int last_dim = ndimension - 1;
 | 
					 | 
				
			||||||
  int AutoShmSize = 1;
 | 
					 | 
				
			||||||
  while(AutoShmSize != WorldShmSize) {
 | 
					 | 
				
			||||||
    int p;
 | 
					 | 
				
			||||||
    for(p=0;p<primes.size();p++) {
 | 
					 | 
				
			||||||
      int prime=primes[p];
 | 
					 | 
				
			||||||
      if ( divides(prime,WorldDims[dim]/ShmDims[dim])
 | 
					 | 
				
			||||||
        && divides(prime,WorldShmSize/AutoShmSize)  ) {
 | 
					 | 
				
			||||||
  AutoShmSize*=prime;
 | 
					 | 
				
			||||||
  ShmDims[dim]*=prime;
 | 
					 | 
				
			||||||
  last_dim = dim;
 | 
					 | 
				
			||||||
  break;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    if (p == primes.size() && last_dim == dim) {
 | 
					 | 
				
			||||||
      std::cerr << "GlobalSharedMemory::GetShmDims failed" << std::endl;
 | 
					 | 
				
			||||||
      exit(EXIT_FAILURE);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    dim=(dim+1) %ndimension;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_END(Grid); 
 | 
					NAMESPACE_END(Grid); 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -46,40 +46,8 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
#if defined (GRID_COMMS_MPI3) 
 | 
					#if defined (GRID_COMMS_MPI3) 
 | 
				
			||||||
typedef MPI_Comm    Grid_MPI_Comm;
 | 
					typedef MPI_Comm    Grid_MPI_Comm;
 | 
				
			||||||
typedef MPI_Request MpiCommsRequest_t;
 | 
					 | 
				
			||||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
typedef MPI_Request CommsRequest_t;
 | 
					typedef MPI_Request CommsRequest_t;
 | 
				
			||||||
#else 
 | 
					#else 
 | 
				
			||||||
/*
 | 
					 | 
				
			||||||
 * Enable state transitions as each packet flows.
 | 
					 | 
				
			||||||
 */
 | 
					 | 
				
			||||||
enum PacketType_t {
 | 
					 | 
				
			||||||
  FaceGather,
 | 
					 | 
				
			||||||
  InterNodeXmit,
 | 
					 | 
				
			||||||
  InterNodeRecv,
 | 
					 | 
				
			||||||
  IntraNodeXmit,
 | 
					 | 
				
			||||||
  IntraNodeRecv,
 | 
					 | 
				
			||||||
  InterNodeXmitISend,
 | 
					 | 
				
			||||||
  InterNodeReceiveHtoD
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
/*
 | 
					 | 
				
			||||||
 *Package arguments needed for various actions along packet flow
 | 
					 | 
				
			||||||
 */
 | 
					 | 
				
			||||||
typedef struct {
 | 
					 | 
				
			||||||
  PacketType_t PacketType;
 | 
					 | 
				
			||||||
  void *host_buf;
 | 
					 | 
				
			||||||
  void *device_buf;
 | 
					 | 
				
			||||||
  int dest;
 | 
					 | 
				
			||||||
  int tag;
 | 
					 | 
				
			||||||
  int commdir;
 | 
					 | 
				
			||||||
  unsigned long bytes;
 | 
					 | 
				
			||||||
  acceleratorEvent_t ev;
 | 
					 | 
				
			||||||
  MpiCommsRequest_t req;
 | 
					 | 
				
			||||||
} CommsRequest_t;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#else 
 | 
					 | 
				
			||||||
typedef int MpiCommsRequest_t;
 | 
					 | 
				
			||||||
typedef int CommsRequest_t;
 | 
					typedef int CommsRequest_t;
 | 
				
			||||||
typedef int Grid_MPI_Comm;
 | 
					typedef int Grid_MPI_Comm;
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
@@ -107,9 +75,7 @@ public:
 | 
				
			|||||||
  static int           Hugepages;
 | 
					  static int           Hugepages;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  static std::vector<void *> WorldShmCommBufs;
 | 
					  static std::vector<void *> WorldShmCommBufs;
 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					
 | 
				
			||||||
  static void *HostCommBuf;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  static Grid_MPI_Comm WorldComm;
 | 
					  static Grid_MPI_Comm WorldComm;
 | 
				
			||||||
  static int           WorldRank;
 | 
					  static int           WorldRank;
 | 
				
			||||||
  static int           WorldSize;
 | 
					  static int           WorldSize;
 | 
				
			||||||
@@ -127,17 +93,16 @@ public:
 | 
				
			|||||||
  // Create an optimal reordered communicator that makes MPI_Cart_create get it right
 | 
					  // Create an optimal reordered communicator that makes MPI_Cart_create get it right
 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////////////////
 | 
					  //////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
  static void Init(Grid_MPI_Comm comm); // Typically MPI_COMM_WORLD
 | 
					  static void Init(Grid_MPI_Comm comm); // Typically MPI_COMM_WORLD
 | 
				
			||||||
  // Turns MPI_COMM_WORLD into right layout for Cartesian
 | 
					  static void OptimalCommunicator            (const Coordinate &processors,Grid_MPI_Comm & optimal_comm);  // Turns MPI_COMM_WORLD into right layout for Cartesian
 | 
				
			||||||
  static void OptimalCommunicator            (const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims); 
 | 
					  static void OptimalCommunicatorHypercube   (const Coordinate &processors,Grid_MPI_Comm & optimal_comm);  // Turns MPI_COMM_WORLD into right layout for Cartesian
 | 
				
			||||||
  static void OptimalCommunicatorHypercube   (const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims); 
 | 
					  static void OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm);  // Turns MPI_COMM_WORLD into right layout for Cartesian
 | 
				
			||||||
  static void OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims); 
 | 
					 | 
				
			||||||
  static void GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims);
 | 
					  static void GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims);
 | 
				
			||||||
  ///////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////
 | 
				
			||||||
  // Provide shared memory facilities off comm world
 | 
					  // Provide shared memory facilities off comm world
 | 
				
			||||||
  ///////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////
 | 
				
			||||||
  static void SharedMemoryAllocate(uint64_t bytes, int flags);
 | 
					  static void SharedMemoryAllocate(uint64_t bytes, int flags);
 | 
				
			||||||
  static void SharedMemoryFree(void);
 | 
					  static void SharedMemoryFree(void);
 | 
				
			||||||
  //  static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
 | 
					  static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
 | 
				
			||||||
  static void SharedMemoryZero(void *dest,size_t bytes);
 | 
					  static void SharedMemoryZero(void *dest,size_t bytes);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
@@ -154,13 +119,6 @@ private:
 | 
				
			|||||||
  size_t heap_bytes;
 | 
					  size_t heap_bytes;
 | 
				
			||||||
  size_t heap_size;
 | 
					  size_t heap_size;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
  size_t host_heap_top;  // set in free all
 | 
					 | 
				
			||||||
  size_t host_heap_bytes;// set in free all
 | 
					 | 
				
			||||||
  void *HostCommBuf;     // set in SetCommunicator
 | 
					 | 
				
			||||||
  size_t host_heap_size; // set in SetCommunicator
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
protected:
 | 
					protected:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  Grid_MPI_Comm    ShmComm; // for barriers
 | 
					  Grid_MPI_Comm    ShmComm; // for barriers
 | 
				
			||||||
@@ -192,10 +150,7 @@ public:
 | 
				
			|||||||
  void *ShmBufferTranslate(int rank,void * local_p);
 | 
					  void *ShmBufferTranslate(int rank,void * local_p);
 | 
				
			||||||
  void *ShmBufferMalloc(size_t bytes);
 | 
					  void *ShmBufferMalloc(size_t bytes);
 | 
				
			||||||
  void  ShmBufferFreeAll(void) ;
 | 
					  void  ShmBufferFreeAll(void) ;
 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					  
 | 
				
			||||||
  void *HostBufferMalloc(size_t bytes);
 | 
					 | 
				
			||||||
  void HostBufferFreeAll(void);
 | 
					 | 
				
			||||||
#endif  
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////
 | 
					  //////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Make info on Nodes & ranks and Shared memory available
 | 
					  // Make info on Nodes & ranks and Shared memory available
 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////
 | 
					  //////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -27,8 +27,6 @@ Author: Christoph Lehner <christoph@lhnr.de>
 | 
				
			|||||||
*************************************************************************************/
 | 
					*************************************************************************************/
 | 
				
			||||||
/*  END LEGAL */
 | 
					/*  END LEGAL */
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#define Mheader "SharedMemoryMpi: "
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#include <Grid/GridCore.h>
 | 
					#include <Grid/GridCore.h>
 | 
				
			||||||
#include <pwd.h>
 | 
					#include <pwd.h>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -38,127 +36,12 @@ Author: Christoph Lehner <christoph@lhnr.de>
 | 
				
			|||||||
#ifdef GRID_HIP
 | 
					#ifdef GRID_HIP
 | 
				
			||||||
#include <hip/hip_runtime_api.h>
 | 
					#include <hip/hip_runtime_api.h>
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
#ifdef GRID_SYCL
 | 
					#ifdef GRID_SYCl
 | 
				
			||||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
#define GRID_SYCL_LEVEL_ZERO_IPC
 | 
					 | 
				
			||||||
#define SHM_SOCKETS
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
#ifdef HAVE_NUMAIF_H
 | 
					 | 
				
			||||||
  #warning " Using NUMAIF "
 | 
					 | 
				
			||||||
#include <numaif.h>
 | 
					 | 
				
			||||||
#endif 
 | 
					 | 
				
			||||||
#endif 
 | 
					 | 
				
			||||||
#include <syscall.h>
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
#include <sys/socket.h>
 | 
					#endif
 | 
				
			||||||
#include <sys/un.h>
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_BEGIN(Grid); 
 | 
					NAMESPACE_BEGIN(Grid); 
 | 
				
			||||||
 | 
					#define header "SharedMemoryMpi: "
 | 
				
			||||||
#ifdef SHM_SOCKETS
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/*
 | 
					 | 
				
			||||||
 * Barbaric extra intranode communication route in case we need sockets to pass FDs
 | 
					 | 
				
			||||||
 * Forced by level_zero not being nicely designed
 | 
					 | 
				
			||||||
 */
 | 
					 | 
				
			||||||
static int sock;
 | 
					 | 
				
			||||||
static const char *sock_path_fmt = "/tmp/GridUnixSocket.%d";
 | 
					 | 
				
			||||||
static char sock_path[256];
 | 
					 | 
				
			||||||
class UnixSockets {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  static void Open(int rank)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int errnum;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    sock = socket(AF_UNIX, SOCK_DGRAM, 0);  assert(sock>0);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    struct sockaddr_un sa_un = { 0 };
 | 
					 | 
				
			||||||
    sa_un.sun_family = AF_UNIX;
 | 
					 | 
				
			||||||
    snprintf(sa_un.sun_path, sizeof(sa_un.sun_path),sock_path_fmt,rank);
 | 
					 | 
				
			||||||
    unlink(sa_un.sun_path);
 | 
					 | 
				
			||||||
    if (bind(sock, (struct sockaddr *)&sa_un, sizeof(sa_un))) {
 | 
					 | 
				
			||||||
      perror("bind failure");
 | 
					 | 
				
			||||||
      exit(EXIT_FAILURE);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  static int RecvFileDescriptor(void)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    int n;
 | 
					 | 
				
			||||||
    int fd;
 | 
					 | 
				
			||||||
    char buf[1];
 | 
					 | 
				
			||||||
    struct iovec iov;
 | 
					 | 
				
			||||||
    struct msghdr msg;
 | 
					 | 
				
			||||||
    struct cmsghdr *cmsg;
 | 
					 | 
				
			||||||
    char cms[CMSG_SPACE(sizeof(int))];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    iov.iov_base = buf;
 | 
					 | 
				
			||||||
    iov.iov_len = 1;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    memset(&msg, 0, sizeof msg);
 | 
					 | 
				
			||||||
    msg.msg_name = 0;
 | 
					 | 
				
			||||||
    msg.msg_namelen = 0;
 | 
					 | 
				
			||||||
    msg.msg_iov = &iov;
 | 
					 | 
				
			||||||
    msg.msg_iovlen = 1;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    msg.msg_control = (caddr_t)cms;
 | 
					 | 
				
			||||||
    msg.msg_controllen = sizeof cms;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if((n=recvmsg(sock, &msg, 0)) < 0) {
 | 
					 | 
				
			||||||
      perror("recvmsg failed");
 | 
					 | 
				
			||||||
      return -1;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    if(n == 0){
 | 
					 | 
				
			||||||
      perror("recvmsg returned 0");
 | 
					 | 
				
			||||||
      return -1;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    cmsg = CMSG_FIRSTHDR(&msg);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    memmove(&fd, CMSG_DATA(cmsg), sizeof(int));
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    return fd;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  static void SendFileDescriptor(int fildes,int xmit_to_rank)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    struct msghdr msg;
 | 
					 | 
				
			||||||
    struct iovec iov;
 | 
					 | 
				
			||||||
    struct cmsghdr *cmsg = NULL;
 | 
					 | 
				
			||||||
    char ctrl[CMSG_SPACE(sizeof(int))];
 | 
					 | 
				
			||||||
    char data = ' ';
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    memset(&msg, 0, sizeof(struct msghdr));
 | 
					 | 
				
			||||||
    memset(ctrl, 0, CMSG_SPACE(sizeof(int)));
 | 
					 | 
				
			||||||
    iov.iov_base = &data;
 | 
					 | 
				
			||||||
    iov.iov_len = sizeof(data);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    sprintf(sock_path,sock_path_fmt,xmit_to_rank);
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    struct sockaddr_un sa_un = { 0 };
 | 
					 | 
				
			||||||
    sa_un.sun_family = AF_UNIX;
 | 
					 | 
				
			||||||
    snprintf(sa_un.sun_path, sizeof(sa_un.sun_path),sock_path_fmt,xmit_to_rank);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    msg.msg_name = (void *)&sa_un;
 | 
					 | 
				
			||||||
    msg.msg_namelen = sizeof(sa_un);
 | 
					 | 
				
			||||||
    msg.msg_iov = &iov;
 | 
					 | 
				
			||||||
    msg.msg_iovlen = 1;
 | 
					 | 
				
			||||||
    msg.msg_controllen =  CMSG_SPACE(sizeof(int));
 | 
					 | 
				
			||||||
    msg.msg_control = ctrl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    cmsg = CMSG_FIRSTHDR(&msg);
 | 
					 | 
				
			||||||
    cmsg->cmsg_level = SOL_SOCKET;
 | 
					 | 
				
			||||||
    cmsg->cmsg_type = SCM_RIGHTS;
 | 
					 | 
				
			||||||
    cmsg->cmsg_len = CMSG_LEN(sizeof(int));
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    *((int *) CMSG_DATA(cmsg)) = fildes;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    sendmsg(sock, &msg, 0);
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/*Construct from an MPI communicator*/
 | 
					/*Construct from an MPI communicator*/
 | 
				
			||||||
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
 | 
					void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
@@ -181,8 +64,8 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
 | 
				
			|||||||
  MPI_Comm_size(WorldShmComm     ,&WorldShmSize);
 | 
					  MPI_Comm_size(WorldShmComm     ,&WorldShmSize);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  if ( WorldRank == 0) {
 | 
					  if ( WorldRank == 0) {
 | 
				
			||||||
    std::cout << Mheader " World communicator of size " <<WorldSize << std::endl;  
 | 
					    std::cout << header " World communicator of size " <<WorldSize << std::endl;  
 | 
				
			||||||
    std::cout << Mheader " Node  communicator of size " <<WorldShmSize << std::endl;
 | 
					    std::cout << header " Node  communicator of size " <<WorldShmSize << std::endl;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  // WorldShmComm, WorldShmSize, WorldShmRank
 | 
					  // WorldShmComm, WorldShmSize, WorldShmRank
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -269,7 +152,7 @@ int Log2Size(int TwoToPower,int MAXLOG2)
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
  return log2size;
 | 
					  return log2size;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
 | 
					void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////////
 | 
					  //////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Look and see if it looks like an HPE 8600 based on hostname conventions
 | 
					  // Look and see if it looks like an HPE 8600 based on hostname conventions
 | 
				
			||||||
@@ -282,11 +165,63 @@ void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_M
 | 
				
			|||||||
  gethostname(name,namelen);
 | 
					  gethostname(name,namelen);
 | 
				
			||||||
  int nscan = sscanf(name,"r%di%dn%d",&R,&I,&N) ;
 | 
					  int nscan = sscanf(name,"r%di%dn%d",&R,&I,&N) ;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  if(nscan==3 && HPEhypercube ) OptimalCommunicatorHypercube(processors,optimal_comm,SHM);
 | 
					  if(nscan==3 && HPEhypercube ) OptimalCommunicatorHypercube(processors,optimal_comm);
 | 
				
			||||||
  else                          OptimalCommunicatorSharedMemory(processors,optimal_comm,SHM);
 | 
					  else                          OptimalCommunicatorSharedMemory(processors,optimal_comm);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					static inline int divides(int a,int b)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  return ( b == ( (b/a)*a ) );
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  ////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					  // Allow user to configure through environment variable
 | 
				
			||||||
 | 
					  ////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					  char* str = getenv(("GRID_SHM_DIMS_" + std::to_string(ShmDims.size())).c_str());
 | 
				
			||||||
 | 
					  if ( str ) {
 | 
				
			||||||
 | 
					    std::vector<int> IntShmDims;
 | 
				
			||||||
 | 
					    GridCmdOptionIntVector(std::string(str),IntShmDims);
 | 
				
			||||||
 | 
					    assert(IntShmDims.size() == WorldDims.size());
 | 
				
			||||||
 | 
					    long ShmSize = 1;
 | 
				
			||||||
 | 
					    for (int dim=0;dim<WorldDims.size();dim++) {
 | 
				
			||||||
 | 
					      ShmSize *= (ShmDims[dim] = IntShmDims[dim]);
 | 
				
			||||||
 | 
					      assert(divides(ShmDims[dim],WorldDims[dim]));
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    assert(ShmSize == WorldShmSize);
 | 
				
			||||||
 | 
					    return;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
 | 
					  ////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					  // Powers of 2,3,5 only in prime decomposition for now
 | 
				
			||||||
 | 
					  ////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					  int ndimension = WorldDims.size();
 | 
				
			||||||
 | 
					  ShmDims=Coordinate(ndimension,1);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  std::vector<int> primes({2,3,5});
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  int dim = 0;
 | 
				
			||||||
 | 
					  int last_dim = ndimension - 1;
 | 
				
			||||||
 | 
					  int AutoShmSize = 1;
 | 
				
			||||||
 | 
					  while(AutoShmSize != WorldShmSize) {
 | 
				
			||||||
 | 
					    int p;
 | 
				
			||||||
 | 
					    for(p=0;p<primes.size();p++) {
 | 
				
			||||||
 | 
					      int prime=primes[p];
 | 
				
			||||||
 | 
					      if ( divides(prime,WorldDims[dim]/ShmDims[dim])
 | 
				
			||||||
 | 
					        && divides(prime,WorldShmSize/AutoShmSize)  ) {
 | 
				
			||||||
 | 
						AutoShmSize*=prime;
 | 
				
			||||||
 | 
						ShmDims[dim]*=prime;
 | 
				
			||||||
 | 
						last_dim = dim;
 | 
				
			||||||
 | 
						break;
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    if (p == primes.size() && last_dim == dim) {
 | 
				
			||||||
 | 
					      std::cerr << "GlobalSharedMemory::GetShmDims failed" << std::endl;
 | 
				
			||||||
 | 
					      exit(EXIT_FAILURE);
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    dim=(dim+1) %ndimension;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  ////////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Assert power of two shm_size.
 | 
					  // Assert power of two shm_size.
 | 
				
			||||||
@@ -359,7 +294,6 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
 | 
				
			|||||||
  Coordinate HyperCoor(ndimension);
 | 
					  Coordinate HyperCoor(ndimension);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GetShmDims(WorldDims,ShmDims);
 | 
					  GetShmDims(WorldDims,ShmDims);
 | 
				
			||||||
  SHM = ShmDims;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  ////////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Establish torus of processes and nodes with sub-blockings
 | 
					  // Establish torus of processes and nodes with sub-blockings
 | 
				
			||||||
@@ -407,7 +341,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
 | 
				
			|||||||
  int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
 | 
					  int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
 | 
				
			||||||
  assert(ierr==0);
 | 
					  assert(ierr==0);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
 | 
					void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  ////////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Identify subblock of ranks on node spreading across dims
 | 
					  // Identify subblock of ranks on node spreading across dims
 | 
				
			||||||
@@ -419,8 +353,6 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
 | 
				
			|||||||
  Coordinate ShmCoor(ndimension);    Coordinate NodeCoor(ndimension);   Coordinate WorldCoor(ndimension);
 | 
					  Coordinate ShmCoor(ndimension);    Coordinate NodeCoor(ndimension);   Coordinate WorldCoor(ndimension);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GetShmDims(WorldDims,ShmDims);
 | 
					  GetShmDims(WorldDims,ShmDims);
 | 
				
			||||||
  SHM=ShmDims;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ////////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Establish torus of processes and nodes with sub-blockings
 | 
					  // Establish torus of processes and nodes with sub-blockings
 | 
				
			||||||
  ////////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -459,7 +391,7 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
 | 
				
			|||||||
#ifdef GRID_MPI3_SHMGET
 | 
					#ifdef GRID_MPI3_SHMGET
 | 
				
			||||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
					void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl;
 | 
					  std::cout << header "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl;
 | 
				
			||||||
  assert(_ShmSetup==1);
 | 
					  assert(_ShmSetup==1);
 | 
				
			||||||
  assert(_ShmAlloc==0);
 | 
					  assert(_ShmAlloc==0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -519,6 +451,46 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			|||||||
// Hugetlbfs mapping intended
 | 
					// Hugetlbfs mapping intended
 | 
				
			||||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
#if defined(GRID_CUDA) ||defined(GRID_HIP)  || defined(GRID_SYCL)
 | 
					#if defined(GRID_CUDA) ||defined(GRID_HIP)  || defined(GRID_SYCL)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					//if defined(GRID_SYCL)
 | 
				
			||||||
 | 
					#if 0
 | 
				
			||||||
 | 
					void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  void * ShmCommBuf ; 
 | 
				
			||||||
 | 
					  assert(_ShmSetup==1);
 | 
				
			||||||
 | 
					  assert(_ShmAlloc==0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					  // allocate the pointer array for shared windows for our group
 | 
				
			||||||
 | 
					  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					  MPI_Barrier(WorldShmComm);
 | 
				
			||||||
 | 
					  WorldShmCommBufs.resize(WorldShmSize);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					  // Each MPI rank should allocate our own buffer
 | 
				
			||||||
 | 
					  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					  ShmCommBuf = acceleratorAllocDevice(bytes);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  if (ShmCommBuf == (void *)NULL ) {
 | 
				
			||||||
 | 
					    std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
 | 
				
			||||||
 | 
					    exit(EXIT_FAILURE);  
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  std::cout << WorldRank << header " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes 
 | 
				
			||||||
 | 
						    << "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  SharedMemoryZero(ShmCommBuf,bytes);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  assert(WorldShmSize == 1);
 | 
				
			||||||
 | 
					  for(int r=0;r<WorldShmSize;r++){
 | 
				
			||||||
 | 
					    WorldShmCommBufs[r] = ShmCommBuf;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  _ShmAllocBytes=bytes;
 | 
				
			||||||
 | 
					  _ShmAlloc=1;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#if defined(GRID_CUDA) ||defined(GRID_HIP) ||defined(GRID_SYCL)  
 | 
				
			||||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
					void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  void * ShmCommBuf ; 
 | 
					  void * ShmCommBuf ; 
 | 
				
			||||||
@@ -541,94 +513,51 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			|||||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Each MPI rank should allocate our own buffer
 | 
					  // Each MPI rank should allocate our own buffer
 | 
				
			||||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					#ifdef GRID_SYCL_LEVEL_ZERO_IPC
 | 
				
			||||||
  // printf("Host buffer allocate for GPU non-aware MPI\n");
 | 
					  auto zeDevice = cl::sycl::get_native<cl::sycl::backend::level_zero>(theGridAccelerator->get_device());
 | 
				
			||||||
#if 0
 | 
					  auto zeContext= cl::sycl::get_native<cl::sycl::backend::level_zero>(theGridAccelerator->get_context());
 | 
				
			||||||
  HostCommBuf= acceleratorAllocHost(bytes);
 | 
					  ze_device_mem_alloc_desc_t zeDesc = {};
 | 
				
			||||||
 | 
					  zeMemAllocDevice(zeContext,&zeDesc,bytes,2*1024*1024,zeDevice,&ShmCommBuf);
 | 
				
			||||||
 | 
					  std::cout << WorldRank << header " SharedMemoryMPI.cc zeMemAllocDevice "<< bytes 
 | 
				
			||||||
 | 
						      << "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
 | 
				
			||||||
#else  
 | 
					#else  
 | 
				
			||||||
  HostCommBuf= malloc(bytes); /// CHANGE THIS TO malloc_host
 | 
					 | 
				
			||||||
#if 0
 | 
					 | 
				
			||||||
  #warning "Moving host buffers to specific NUMA domain"
 | 
					 | 
				
			||||||
  int numa;
 | 
					 | 
				
			||||||
  char *numa_name=(char *)getenv("MPI_BUF_NUMA");
 | 
					 | 
				
			||||||
  if(numa_name) {
 | 
					 | 
				
			||||||
    unsigned long page_size = sysconf(_SC_PAGESIZE);
 | 
					 | 
				
			||||||
    numa = atoi(numa_name);
 | 
					 | 
				
			||||||
    unsigned long page_count = bytes/page_size;
 | 
					 | 
				
			||||||
    std::vector<void *> pages(page_count);
 | 
					 | 
				
			||||||
    std::vector<int>    nodes(page_count,numa);
 | 
					 | 
				
			||||||
    std::vector<int>    status(page_count,-1);
 | 
					 | 
				
			||||||
    for(unsigned long p=0;p<page_count;p++){
 | 
					 | 
				
			||||||
      pages[p] =(void *) ((uint64_t) HostCommBuf + p*page_size);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    int ret = move_pages(0,
 | 
					 | 
				
			||||||
			 page_count,
 | 
					 | 
				
			||||||
			 &pages[0],
 | 
					 | 
				
			||||||
			 &nodes[0],
 | 
					 | 
				
			||||||
			 &status[0],
 | 
					 | 
				
			||||||
			 MPOL_MF_MOVE);
 | 
					 | 
				
			||||||
    printf("Host buffer move to numa domain %d : move_pages returned %d\n",numa,ret);
 | 
					 | 
				
			||||||
    if (ret) perror(" move_pages failed for reason:");
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
#endif  
 | 
					 | 
				
			||||||
  acceleratorPin(HostCommBuf,bytes);
 | 
					 | 
				
			||||||
#endif  
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#endif  
 | 
					 | 
				
			||||||
  ShmCommBuf = acceleratorAllocDevice(bytes);
 | 
					  ShmCommBuf = acceleratorAllocDevice(bytes);
 | 
				
			||||||
 | 
					#endif  
 | 
				
			||||||
  if (ShmCommBuf == (void *)NULL ) {
 | 
					  if (ShmCommBuf == (void *)NULL ) {
 | 
				
			||||||
    std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
 | 
					    std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
 | 
				
			||||||
    exit(EXIT_FAILURE);  
 | 
					    exit(EXIT_FAILURE);  
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  if ( WorldRank == 0 ){
 | 
					  //  if ( WorldRank == 0 ){
 | 
				
			||||||
    std::cout << WorldRank << Mheader " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes 
 | 
					  if ( 1 ){
 | 
				
			||||||
	      << "bytes at "<< std::hex<< ShmCommBuf << " - "<<(bytes-1+(uint64_t)ShmCommBuf) <<std::dec<<" for comms buffers " <<std::endl;
 | 
					    std::cout << WorldRank << header " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes 
 | 
				
			||||||
 | 
						      << "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  SharedMemoryZero(ShmCommBuf,bytes);
 | 
					  //  SharedMemoryZero(ShmCommBuf,bytes);
 | 
				
			||||||
  std::cout<< "Setting up IPC"<<std::endl;
 | 
					  std::cout<< "Setting up IPC"<<std::endl;
 | 
				
			||||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Loop over ranks/gpu's on our node
 | 
					  // Loop over ranks/gpu's on our node
 | 
				
			||||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
#ifdef SHM_SOCKETS
 | 
					 | 
				
			||||||
  UnixSockets::Open(WorldShmRank);
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  for(int r=0;r<WorldShmSize;r++){
 | 
					  for(int r=0;r<WorldShmSize;r++){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    MPI_Barrier(WorldShmComm);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#ifndef GRID_MPI3_SHM_NONE
 | 
					#ifndef GRID_MPI3_SHM_NONE
 | 
				
			||||||
    //////////////////////////////////////////////////
 | 
					    //////////////////////////////////////////////////
 | 
				
			||||||
    // If it is me, pass around the IPC access key
 | 
					    // If it is me, pass around the IPC access key
 | 
				
			||||||
    //////////////////////////////////////////////////
 | 
					    //////////////////////////////////////////////////
 | 
				
			||||||
    void * thisBuf = ShmCommBuf;
 | 
					 | 
				
			||||||
    if(!Stencil_force_mpi) {
 | 
					 | 
				
			||||||
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
 | 
					#ifdef GRID_SYCL_LEVEL_ZERO_IPC
 | 
				
			||||||
    typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t;
 | 
					    ze_ipc_mem_handle_t handle;
 | 
				
			||||||
 | 
					 | 
				
			||||||
    auto zeDevice    = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device());
 | 
					 | 
				
			||||||
    auto zeContext   = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context());
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    ze_ipc_mem_handle_t ihandle;
 | 
					 | 
				
			||||||
    clone_mem_t handle;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    if ( r==WorldShmRank ) { 
 | 
					    if ( r==WorldShmRank ) { 
 | 
				
			||||||
      auto err = zeMemGetIpcHandle(zeContext,ShmCommBuf,&ihandle);
 | 
					      auto err = zeMemGetIpcHandle(zeContext,ShmCommBuf,&handle);
 | 
				
			||||||
      if ( err != ZE_RESULT_SUCCESS ) {
 | 
					      if ( err != ZE_RESULT_SUCCESS ) {
 | 
				
			||||||
	std::cerr << "SharedMemoryMPI.cc zeMemGetIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
 | 
						std::cerr << "SharedMemoryMPI.cc zeMemGetIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
 | 
				
			||||||
	exit(EXIT_FAILURE);
 | 
						exit(EXIT_FAILURE);
 | 
				
			||||||
      } else {
 | 
					      } else {
 | 
				
			||||||
	std::cout << "SharedMemoryMPI.cc zeMemGetIpcHandle succeeded for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
 | 
						std::cerr << "SharedMemoryMPI.cc zeMemGetIpcHandle succeeded for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
      memcpy((void *)&handle.fd,(void *)&ihandle,sizeof(int));
 | 
					      std::cerr<<"Allocated IpcHandle rank "<<r<<" (hex) ";
 | 
				
			||||||
      handle.pid = getpid();
 | 
					      for(int c=0;c<ZE_MAX_IPC_HANDLE_SIZE;c++){
 | 
				
			||||||
      memcpy((void *)&handle.ze,(void *)&ihandle,sizeof(ihandle));
 | 
						std::cerr<<std::hex<<(uint32_t)((uint8_t)handle.data[c])<<std::dec;
 | 
				
			||||||
#ifdef SHM_SOCKETS
 | 
					 | 
				
			||||||
      for(int rr=0;rr<WorldShmSize;rr++){
 | 
					 | 
				
			||||||
	if(rr!=r){
 | 
					 | 
				
			||||||
	  UnixSockets::SendFileDescriptor(handle.fd,rr);
 | 
					 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
      }
 | 
					      std::cerr<<std::endl;
 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
#ifdef GRID_CUDA
 | 
					#ifdef GRID_CUDA
 | 
				
			||||||
@@ -651,12 +580,10 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			|||||||
      }
 | 
					      }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 | 
					 | 
				
			||||||
    //////////////////////////////////////////////////
 | 
					    //////////////////////////////////////////////////
 | 
				
			||||||
    // Share this IPC handle across the Shm Comm
 | 
					    // Share this IPC handle across the Shm Comm
 | 
				
			||||||
    //////////////////////////////////////////////////
 | 
					    //////////////////////////////////////////////////
 | 
				
			||||||
    { 
 | 
					    { 
 | 
				
			||||||
      MPI_Barrier(WorldShmComm);
 | 
					 | 
				
			||||||
      int ierr=MPI_Bcast(&handle,
 | 
					      int ierr=MPI_Bcast(&handle,
 | 
				
			||||||
			 sizeof(handle),
 | 
								 sizeof(handle),
 | 
				
			||||||
			 MPI_BYTE,
 | 
								 MPI_BYTE,
 | 
				
			||||||
@@ -668,41 +595,22 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			|||||||
    ///////////////////////////////////////////////////////////////
 | 
					    ///////////////////////////////////////////////////////////////
 | 
				
			||||||
    // If I am not the source, overwrite thisBuf with remote buffer
 | 
					    // If I am not the source, overwrite thisBuf with remote buffer
 | 
				
			||||||
    ///////////////////////////////////////////////////////////////
 | 
					    ///////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					    void * thisBuf = ShmCommBuf;
 | 
				
			||||||
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
 | 
					#ifdef GRID_SYCL_LEVEL_ZERO_IPC
 | 
				
			||||||
    if ( r!=WorldShmRank ) {
 | 
					    if ( r!=WorldShmRank ) {
 | 
				
			||||||
      thisBuf = nullptr;
 | 
					      thisBuf = nullptr;
 | 
				
			||||||
      int myfd;
 | 
					      std::cerr<<"Using IpcHandle rank "<<r<<" ";
 | 
				
			||||||
#ifdef SHM_SOCKETS
 | 
					      for(int c=0;c<ZE_MAX_IPC_HANDLE_SIZE;c++){
 | 
				
			||||||
      myfd=UnixSockets::RecvFileDescriptor();
 | 
						std::cerr<<std::hex<<(uint32_t)((uint8_t)handle.data[c])<<std::dec;
 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
      std::cout<<"mapping seeking remote pid/fd "
 | 
					 | 
				
			||||||
	       <<handle.pid<<"/"
 | 
					 | 
				
			||||||
	       <<handle.fd<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      int pidfd = syscall(SYS_pidfd_open,handle.pid,0);
 | 
					 | 
				
			||||||
      std::cout<<"Using IpcHandle pidfd "<<pidfd<<"\n";
 | 
					 | 
				
			||||||
      //      int myfd  = syscall(SYS_pidfd_getfd,pidfd,handle.fd,0);
 | 
					 | 
				
			||||||
      myfd  = syscall(438,pidfd,handle.fd,0);
 | 
					 | 
				
			||||||
      int err_t = errno;
 | 
					 | 
				
			||||||
      if (myfd < 0) {
 | 
					 | 
				
			||||||
        fprintf(stderr,"pidfd_getfd returned %d errno was %d\n", myfd,err_t); fflush(stderr);
 | 
					 | 
				
			||||||
	perror("pidfd_getfd failed ");
 | 
					 | 
				
			||||||
	assert(0);
 | 
					 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
#endif
 | 
					      std::cerr<<std::endl;
 | 
				
			||||||
      std::cout<<"Using IpcHandle mapped remote pid "<<handle.pid <<" FD "<<handle.fd <<" to myfd "<<myfd<<"\n";
 | 
					      auto err = zeMemOpenIpcHandle(zeContext,zeDevice,handle,0,&thisBuf);
 | 
				
			||||||
      memcpy((void *)&ihandle,(void *)&handle.ze,sizeof(ihandle));
 | 
					 | 
				
			||||||
      memcpy((void *)&ihandle,(void *)&myfd,sizeof(int));
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      auto err = zeMemOpenIpcHandle(zeContext,zeDevice,ihandle,0,&thisBuf);
 | 
					 | 
				
			||||||
      if ( err != ZE_RESULT_SUCCESS ) {
 | 
					      if ( err != ZE_RESULT_SUCCESS ) {
 | 
				
			||||||
	std::cerr << "SharedMemoryMPI.cc "<<zeContext<<" "<<zeDevice<<std::endl;
 | 
						std::cerr << "SharedMemoryMPI.cc "<<zeContext<<" "<<zeDevice<<std::endl;
 | 
				
			||||||
	std::cerr << "SharedMemoryMPI.cc zeMemOpenIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl; 
 | 
						std::cerr << "SharedMemoryMPI.cc zeMemOpenIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl; 
 | 
				
			||||||
	exit(EXIT_FAILURE);
 | 
						exit(EXIT_FAILURE);
 | 
				
			||||||
      } else {
 | 
					      } else {
 | 
				
			||||||
	std::cout << "SharedMemoryMPI.cc zeMemOpenIpcHandle succeeded for rank "<<r<<std::endl;
 | 
						std::cerr << "SharedMemoryMPI.cc zeMemOpenIpcHandle succeeded for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
 | 
				
			||||||
	std::cout << "SharedMemoryMPI.cc zeMemOpenIpcHandle pointer is "<<std::hex<<thisBuf<<std::dec<<std::endl;
 | 
					 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
      assert(thisBuf!=nullptr);
 | 
					      assert(thisBuf!=nullptr);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
@@ -728,23 +636,22 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			|||||||
    ///////////////////////////////////////////////////////////////
 | 
					    ///////////////////////////////////////////////////////////////
 | 
				
			||||||
    // Save a copy of the device buffers
 | 
					    // Save a copy of the device buffers
 | 
				
			||||||
    ///////////////////////////////////////////////////////////////
 | 
					    ///////////////////////////////////////////////////////////////
 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    WorldShmCommBufs[r] = thisBuf;
 | 
					    WorldShmCommBufs[r] = thisBuf;
 | 
				
			||||||
#else
 | 
					#else
 | 
				
			||||||
    WorldShmCommBufs[r] = ShmCommBuf;
 | 
					    WorldShmCommBufs[r] = ShmCommBuf;
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
    MPI_Barrier(WorldShmComm);
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  _ShmAllocBytes=bytes;
 | 
					  _ShmAllocBytes=bytes;
 | 
				
			||||||
  _ShmAlloc=1;
 | 
					  _ShmAlloc=1;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#else 
 | 
					#else 
 | 
				
			||||||
#ifdef GRID_MPI3_SHMMMAP
 | 
					#ifdef GRID_MPI3_SHMMMAP
 | 
				
			||||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
					void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl;
 | 
					  std::cout << header "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl;
 | 
				
			||||||
  assert(_ShmSetup==1);
 | 
					  assert(_ShmSetup==1);
 | 
				
			||||||
  assert(_ShmAlloc==0);
 | 
					  assert(_ShmAlloc==0);
 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -781,7 +688,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			|||||||
    assert(((uint64_t)ptr&0x3F)==0);
 | 
					    assert(((uint64_t)ptr&0x3F)==0);
 | 
				
			||||||
    close(fd);
 | 
					    close(fd);
 | 
				
			||||||
    WorldShmCommBufs[r] =ptr;
 | 
					    WorldShmCommBufs[r] =ptr;
 | 
				
			||||||
    //    std::cout << Mheader "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
 | 
					    //    std::cout << header "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  _ShmAlloc=1;
 | 
					  _ShmAlloc=1;
 | 
				
			||||||
  _ShmAllocBytes  = bytes;
 | 
					  _ShmAllocBytes  = bytes;
 | 
				
			||||||
@@ -791,7 +698,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			|||||||
#ifdef GRID_MPI3_SHM_NONE
 | 
					#ifdef GRID_MPI3_SHM_NONE
 | 
				
			||||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
					void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl;
 | 
					  std::cout << header "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl;
 | 
				
			||||||
  assert(_ShmSetup==1);
 | 
					  assert(_ShmSetup==1);
 | 
				
			||||||
  assert(_ShmAlloc==0);
 | 
					  assert(_ShmAlloc==0);
 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					  //////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -838,7 +745,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			|||||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
					void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
 | 
				
			||||||
{ 
 | 
					{ 
 | 
				
			||||||
  std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl;
 | 
					  std::cout << header "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl;
 | 
				
			||||||
  assert(_ShmSetup==1);
 | 
					  assert(_ShmSetup==1);
 | 
				
			||||||
  assert(_ShmAlloc==0); 
 | 
					  assert(_ShmAlloc==0); 
 | 
				
			||||||
  MPI_Barrier(WorldShmComm);
 | 
					  MPI_Barrier(WorldShmComm);
 | 
				
			||||||
@@ -916,14 +823,14 @@ void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
 | 
				
			|||||||
  bzero(dest,bytes);
 | 
					  bzero(dest,bytes);
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
//void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
 | 
					void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
 | 
				
			||||||
//{
 | 
					{
 | 
				
			||||||
//#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
 | 
					#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
 | 
				
			||||||
//  acceleratorCopyToDevice(src,dest,bytes);
 | 
					  acceleratorCopyToDevice(src,dest,bytes);
 | 
				
			||||||
//#else   
 | 
					#else   
 | 
				
			||||||
//  bcopy(src,dest,bytes);
 | 
					  bcopy(src,dest,bytes);
 | 
				
			||||||
//#endif
 | 
					#endif
 | 
				
			||||||
//}
 | 
					}
 | 
				
			||||||
////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////
 | 
				
			||||||
// Global shared functionality finished
 | 
					// Global shared functionality finished
 | 
				
			||||||
// Now move to per communicator functionality
 | 
					// Now move to per communicator functionality
 | 
				
			||||||
@@ -959,16 +866,9 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
 | 
				
			|||||||
    MPI_Allreduce(MPI_IN_PLACE,&wsr,1,MPI_UINT32_T,MPI_SUM,ShmComm);
 | 
					    MPI_Allreduce(MPI_IN_PLACE,&wsr,1,MPI_UINT32_T,MPI_SUM,ShmComm);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    ShmCommBufs[r] = GlobalSharedMemory::WorldShmCommBufs[wsr];
 | 
					    ShmCommBufs[r] = GlobalSharedMemory::WorldShmCommBufs[wsr];
 | 
				
			||||||
    //    std::cerr << " SetCommunicator rank "<<r<<" comm "<<ShmCommBufs[r] <<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  ShmBufferFreeAll();
 | 
					  ShmBufferFreeAll();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
  host_heap_size = heap_size;
 | 
					 | 
				
			||||||
  HostCommBuf= GlobalSharedMemory::HostCommBuf;
 | 
					 | 
				
			||||||
  HostBufferFreeAll();
 | 
					 | 
				
			||||||
#endif  
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////////////////////////////
 | 
					  /////////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // find comm ranks in our SHM group (i.e. which ranks are on our node)
 | 
					  // find comm ranks in our SHM group (i.e. which ranks are on our node)
 | 
				
			||||||
  /////////////////////////////////////////////////////////////////////
 | 
					  /////////////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -990,7 +890,7 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  SharedMemoryTest();
 | 
					  //SharedMemoryTest();
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
//////////////////////////////////////////////////////////////////
 | 
					//////////////////////////////////////////////////////////////////
 | 
				
			||||||
// On node barrier
 | 
					// On node barrier
 | 
				
			||||||
@@ -1012,18 +912,19 @@ void SharedMemory::SharedMemoryTest(void)
 | 
				
			|||||||
       check[0]=GlobalSharedMemory::WorldNode;
 | 
					       check[0]=GlobalSharedMemory::WorldNode;
 | 
				
			||||||
       check[1]=r;
 | 
					       check[1]=r;
 | 
				
			||||||
       check[2]=magic;
 | 
					       check[2]=magic;
 | 
				
			||||||
       acceleratorCopyToDevice(check,ShmCommBufs[r],3*sizeof(uint64_t));
 | 
					       GlobalSharedMemory::SharedMemoryCopy( ShmCommBufs[r], check, 3*sizeof(uint64_t));
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  ShmBarrier();
 | 
					  ShmBarrier();
 | 
				
			||||||
  for(uint64_t r=0;r<ShmSize;r++){
 | 
					  for(uint64_t r=0;r<ShmSize;r++){
 | 
				
			||||||
    acceleratorCopyFromDevice(ShmCommBufs[r],check,3*sizeof(uint64_t));
 | 
					    ShmBarrier();
 | 
				
			||||||
 | 
					    GlobalSharedMemory::SharedMemoryCopy(check,ShmCommBufs[r], 3*sizeof(uint64_t));
 | 
				
			||||||
 | 
					    ShmBarrier();
 | 
				
			||||||
    assert(check[0]==GlobalSharedMemory::WorldNode);
 | 
					    assert(check[0]==GlobalSharedMemory::WorldNode);
 | 
				
			||||||
    assert(check[1]==r);
 | 
					    assert(check[1]==r);
 | 
				
			||||||
    assert(check[2]==magic);
 | 
					    assert(check[2]==magic);
 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
    ShmBarrier();
 | 
					    ShmBarrier();
 | 
				
			||||||
  std::cout << GridLogDebug << " SharedMemoryTest has passed "<<std::endl;
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
void *SharedMemory::ShmBuffer(int rank)
 | 
					void *SharedMemory::ShmBuffer(int rank)
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -48,10 +48,9 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
 | 
				
			|||||||
  _ShmSetup=1;
 | 
					  _ShmSetup=1;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
 | 
					void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  optimal_comm = WorldComm;
 | 
					  optimal_comm = WorldComm;
 | 
				
			||||||
  SHM = Coordinate(processors.size(),1);
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -51,6 +51,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
#endif 
 | 
					#endif 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					NAMESPACE_BEGIN(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr> 
 | 
					template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr> 
 | 
				
			||||||
auto Cshift(const Expression &expr,int dim,int shift)  -> decltype(closure(expr)) 
 | 
					auto Cshift(const Expression &expr,int dim,int shift)  -> decltype(closure(expr)) 
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -29,28 +29,13 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					NAMESPACE_BEGIN(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
extern std::vector<std::pair<int,int> > Cshift_table; 
 | 
					extern Vector<std::pair<int,int> > Cshift_table; 
 | 
				
			||||||
extern deviceVector<std::pair<int,int> > Cshift_table_device; 
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
inline std::pair<int,int> *MapCshiftTable(void)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  // GPU version
 | 
					 | 
				
			||||||
  uint64_t sz=Cshift_table.size();
 | 
					 | 
				
			||||||
  if (Cshift_table_device.size()!=sz )    {
 | 
					 | 
				
			||||||
    Cshift_table_device.resize(sz);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  acceleratorCopyToDevice((void *)&Cshift_table[0],
 | 
					 | 
				
			||||||
			  (void *)&Cshift_table_device[0],
 | 
					 | 
				
			||||||
			  sizeof(Cshift_table[0])*sz);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  return &Cshift_table_device[0];
 | 
					 | 
				
			||||||
  // CPU version use identify map
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
///////////////////////////////////////////////////////////////////
 | 
					///////////////////////////////////////////////////////////////////
 | 
				
			||||||
// Gather for when there is no need to SIMD split 
 | 
					// Gather for when there is no need to SIMD split 
 | 
				
			||||||
///////////////////////////////////////////////////////////////////
 | 
					///////////////////////////////////////////////////////////////////
 | 
				
			||||||
template<class vobj> void 
 | 
					template<class vobj> void 
 | 
				
			||||||
Gather_plane_simple (const Lattice<vobj> &rhs,deviceVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
 | 
					Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  int rd = rhs.Grid()->_rdimensions[dimension];
 | 
					  int rd = rhs.Grid()->_rdimensions[dimension];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -89,11 +74,18 @@ Gather_plane_simple (const Lattice<vobj> &rhs,deviceVector<vobj> &buffer,int dim
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    auto buffer_p = & buffer[0];
 | 
					    auto buffer_p = & buffer[0];
 | 
				
			||||||
    auto table = MapCshiftTable();
 | 
					    auto table = &Cshift_table[0];
 | 
				
			||||||
 | 
					#ifdef ACCELERATOR_CSHIFT    
 | 
				
			||||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
					    autoView(rhs_v , rhs, AcceleratorRead);
 | 
				
			||||||
    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
					    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
				
			||||||
	coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second]));
 | 
						coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second]));
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
 | 
					    autoView(rhs_v , rhs, CpuRead);
 | 
				
			||||||
 | 
					    thread_for(i,ent,{
 | 
				
			||||||
 | 
					      buffer_p[table[i].first]=rhs_v[table[i].second];
 | 
				
			||||||
 | 
					    });
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -118,6 +110,7 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
 | 
				
			|||||||
  int n1=rhs.Grid()->_slice_stride[dimension];
 | 
					  int n1=rhs.Grid()->_slice_stride[dimension];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  if ( cbmask ==0x3){
 | 
					  if ( cbmask ==0x3){
 | 
				
			||||||
 | 
					#ifdef ACCELERATOR_CSHIFT
 | 
				
			||||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
					    autoView(rhs_v , rhs, AcceleratorRead);
 | 
				
			||||||
    accelerator_for(nn,e1*e2,1,{
 | 
					    accelerator_for(nn,e1*e2,1,{
 | 
				
			||||||
	int n = nn%e1;
 | 
						int n = nn%e1;
 | 
				
			||||||
@@ -128,10 +121,21 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
 | 
				
			|||||||
	vobj temp =rhs_v[so+o+b];
 | 
						vobj temp =rhs_v[so+o+b];
 | 
				
			||||||
	extract<vobj>(temp,pointers,offset);
 | 
						extract<vobj>(temp,pointers,offset);
 | 
				
			||||||
      });
 | 
					      });
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
 | 
					    autoView(rhs_v , rhs, CpuRead);
 | 
				
			||||||
 | 
					    thread_for2d(n,e1,b,e2,{
 | 
				
			||||||
 | 
						int o      =   n*n1;
 | 
				
			||||||
 | 
						int offset = b+n*e2;
 | 
				
			||||||
 | 
						
 | 
				
			||||||
 | 
						vobj temp =rhs_v[so+o+b];
 | 
				
			||||||
 | 
						extract<vobj>(temp,pointers,offset);
 | 
				
			||||||
 | 
					      });
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
  } else { 
 | 
					  } else { 
 | 
				
			||||||
    Coordinate rdim=rhs.Grid()->_rdimensions;
 | 
					    Coordinate rdim=rhs.Grid()->_rdimensions;
 | 
				
			||||||
    Coordinate cdm =rhs.Grid()->_checker_dim_mask;
 | 
					    Coordinate cdm =rhs.Grid()->_checker_dim_mask;
 | 
				
			||||||
    std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb?
 | 
					    std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb?
 | 
				
			||||||
 | 
					#ifdef ACCELERATOR_CSHIFT    
 | 
				
			||||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
					    autoView(rhs_v , rhs, AcceleratorRead);
 | 
				
			||||||
    accelerator_for(nn,e1*e2,1,{
 | 
					    accelerator_for(nn,e1*e2,1,{
 | 
				
			||||||
	int n = nn%e1;
 | 
						int n = nn%e1;
 | 
				
			||||||
@@ -152,13 +156,33 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
 | 
				
			|||||||
	  extract<vobj>(temp,pointers,offset);
 | 
						  extract<vobj>(temp,pointers,offset);
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
      });
 | 
					      });
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
 | 
					    autoView(rhs_v , rhs, CpuRead);
 | 
				
			||||||
 | 
					    thread_for2d(n,e1,b,e2,{
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						Coordinate coor;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						int o=n*n1;
 | 
				
			||||||
 | 
						int oindex = o+b;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					       	int cb = RedBlackCheckerBoardFromOindex(oindex, rdim, cdm);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						int ocb=1<<cb;
 | 
				
			||||||
 | 
						int offset = b+n*e2;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						if ( ocb & cbmask ) {
 | 
				
			||||||
 | 
						  vobj temp =rhs_v[so+o+b];
 | 
				
			||||||
 | 
						  extract<vobj>(temp,pointers,offset);
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					      });
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
//////////////////////////////////////////////////////
 | 
					//////////////////////////////////////////////////////
 | 
				
			||||||
// Scatter for when there is no need to SIMD split
 | 
					// Scatter for when there is no need to SIMD split
 | 
				
			||||||
//////////////////////////////////////////////////////
 | 
					//////////////////////////////////////////////////////
 | 
				
			||||||
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,deviceVector<vobj> &buffer, int dimension,int plane,int cbmask)
 | 
					template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<vobj> &buffer, int dimension,int plane,int cbmask)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  int rd = rhs.Grid()->_rdimensions[dimension];
 | 
					  int rd = rhs.Grid()->_rdimensions[dimension];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -201,11 +225,18 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,deviceVector<
 | 
				
			|||||||
  
 | 
					  
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    auto buffer_p = & buffer[0];
 | 
					    auto buffer_p = & buffer[0];
 | 
				
			||||||
    auto table = MapCshiftTable();
 | 
					    auto table = &Cshift_table[0];
 | 
				
			||||||
 | 
					#ifdef ACCELERATOR_CSHIFT    
 | 
				
			||||||
    autoView( rhs_v, rhs, AcceleratorWrite);
 | 
					    autoView( rhs_v, rhs, AcceleratorWrite);
 | 
				
			||||||
    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
					    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
				
			||||||
	coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second]));
 | 
						coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second]));
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
 | 
					    autoView( rhs_v, rhs, CpuWrite);
 | 
				
			||||||
 | 
					    thread_for(i,ent,{
 | 
				
			||||||
 | 
					      rhs_v[table[i].first]=buffer_p[table[i].second];
 | 
				
			||||||
 | 
					    });
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -228,6 +259,7 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
 | 
				
			|||||||
  if(cbmask ==0x3 ) {
 | 
					  if(cbmask ==0x3 ) {
 | 
				
			||||||
    int _slice_stride = rhs.Grid()->_slice_stride[dimension];
 | 
					    int _slice_stride = rhs.Grid()->_slice_stride[dimension];
 | 
				
			||||||
    int _slice_block = rhs.Grid()->_slice_block[dimension];
 | 
					    int _slice_block = rhs.Grid()->_slice_block[dimension];
 | 
				
			||||||
 | 
					#ifdef ACCELERATOR_CSHIFT    
 | 
				
			||||||
    autoView( rhs_v , rhs, AcceleratorWrite);
 | 
					    autoView( rhs_v , rhs, AcceleratorWrite);
 | 
				
			||||||
    accelerator_for(nn,e1*e2,1,{
 | 
					    accelerator_for(nn,e1*e2,1,{
 | 
				
			||||||
	int n = nn%e1;
 | 
						int n = nn%e1;
 | 
				
			||||||
@@ -236,6 +268,14 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
 | 
				
			|||||||
	int offset = b+n*_slice_block;
 | 
						int offset = b+n*_slice_block;
 | 
				
			||||||
	merge(rhs_v[so+o+b],pointers,offset);
 | 
						merge(rhs_v[so+o+b],pointers,offset);
 | 
				
			||||||
      });
 | 
					      });
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
 | 
					    autoView( rhs_v , rhs, CpuWrite);
 | 
				
			||||||
 | 
					    thread_for2d(n,e1,b,e2,{
 | 
				
			||||||
 | 
						int o      = n*_slice_stride;
 | 
				
			||||||
 | 
						int offset = b+n*_slice_block;
 | 
				
			||||||
 | 
						merge(rhs_v[so+o+b],pointers,offset);
 | 
				
			||||||
 | 
					    });
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
  } else { 
 | 
					  } else { 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // Case of SIMD split AND checker dim cannot currently be hit, except in 
 | 
					    // Case of SIMD split AND checker dim cannot currently be hit, except in 
 | 
				
			||||||
@@ -300,12 +340,20 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    auto table = MapCshiftTable();
 | 
					    auto table = &Cshift_table[0];
 | 
				
			||||||
 | 
					#ifdef ACCELERATOR_CSHIFT    
 | 
				
			||||||
    autoView(rhs_v , rhs, AcceleratorRead);
 | 
					    autoView(rhs_v , rhs, AcceleratorRead);
 | 
				
			||||||
    autoView(lhs_v , lhs, AcceleratorWrite);
 | 
					    autoView(lhs_v , lhs, AcceleratorWrite);
 | 
				
			||||||
    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
					    accelerator_for(i,ent,vobj::Nsimd(),{
 | 
				
			||||||
      coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second]));
 | 
					      coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second]));
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
 | 
					    autoView(rhs_v , rhs, CpuRead);
 | 
				
			||||||
 | 
					    autoView(lhs_v , lhs, CpuWrite);
 | 
				
			||||||
 | 
					    thread_for(i,ent,{
 | 
				
			||||||
 | 
					      lhs_v[table[i].first]=rhs_v[table[i].second];
 | 
				
			||||||
 | 
					    });
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -344,12 +392,20 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    auto table = MapCshiftTable();
 | 
					    auto table = &Cshift_table[0];
 | 
				
			||||||
 | 
					#ifdef ACCELERATOR_CSHIFT    
 | 
				
			||||||
    autoView( rhs_v, rhs, AcceleratorRead);
 | 
					    autoView( rhs_v, rhs, AcceleratorRead);
 | 
				
			||||||
    autoView( lhs_v, lhs, AcceleratorWrite);
 | 
					    autoView( lhs_v, lhs, AcceleratorWrite);
 | 
				
			||||||
    accelerator_for(i,ent,1,{
 | 
					    accelerator_for(i,ent,1,{
 | 
				
			||||||
      permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
 | 
					      permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
 | 
					    autoView( rhs_v, rhs, CpuRead);
 | 
				
			||||||
 | 
					    autoView( lhs_v, lhs, CpuWrite);
 | 
				
			||||||
 | 
					    thread_for(i,ent,{
 | 
				
			||||||
 | 
					      permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
 | 
				
			||||||
 | 
					    });
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -31,7 +31,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_BEGIN(Grid); 
 | 
					NAMESPACE_BEGIN(Grid); 
 | 
				
			||||||
const int Cshift_verbose=0;
 | 
					
 | 
				
			||||||
template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift)
 | 
					template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
@@ -52,20 +52,17 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
 | 
				
			|||||||
  int comm_dim        = rhs.Grid()->_processors[dimension] >1 ;
 | 
					  int comm_dim        = rhs.Grid()->_processors[dimension] >1 ;
 | 
				
			||||||
  int splice_dim      = rhs.Grid()->_simd_layout[dimension]>1 && (comm_dim);
 | 
					  int splice_dim      = rhs.Grid()->_simd_layout[dimension]>1 && (comm_dim);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  RealD t1,t0;
 | 
					
 | 
				
			||||||
  t0=usecond();
 | 
					 | 
				
			||||||
  if ( !comm_dim ) {
 | 
					  if ( !comm_dim ) {
 | 
				
			||||||
    //    std::cout << "CSHIFT: Cshift_local" <<std::endl;
 | 
					    //std::cout << "CSHIFT: Cshift_local" <<std::endl;
 | 
				
			||||||
    Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding
 | 
					    Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding
 | 
				
			||||||
  } else if ( splice_dim ) {
 | 
					  } else if ( splice_dim ) {
 | 
				
			||||||
    //    std::cout << "CSHIFT: Cshift_comms_simd call - splice_dim = " << splice_dim << " shift " << shift << " dimension = " << dimension << std::endl;
 | 
					    //std::cout << "CSHIFT: Cshift_comms_simd call - splice_dim = " << splice_dim << " shift " << shift << " dimension = " << dimension << std::endl;
 | 
				
			||||||
    Cshift_comms_simd(ret,rhs,dimension,shift);
 | 
					    Cshift_comms_simd(ret,rhs,dimension,shift);
 | 
				
			||||||
  } else {
 | 
					  } else {
 | 
				
			||||||
    //    std::cout << "CSHIFT: Cshift_comms" <<std::endl;
 | 
					    //std::cout << "CSHIFT: Cshift_comms" <<std::endl;
 | 
				
			||||||
    Cshift_comms(ret,rhs,dimension,shift);
 | 
					    Cshift_comms(ret,rhs,dimension,shift);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  t1=usecond();
 | 
					 | 
				
			||||||
  if(Cshift_verbose) std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl;
 | 
					 | 
				
			||||||
  return ret;
 | 
					  return ret;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -94,16 +91,18 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vob
 | 
				
			|||||||
  sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
 | 
					  sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
 | 
				
			||||||
  sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
 | 
					  sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //  std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.Checkerboard()<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
 | 
					  //std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.checkerboard<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
 | 
				
			||||||
  if ( sshift[0] == sshift[1] ) {
 | 
					  if ( sshift[0] == sshift[1] ) {
 | 
				
			||||||
    //    std::cout << "Single pass Cshift_comms" <<std::endl;
 | 
					    //std::cout << "Single pass Cshift_comms" <<std::endl;
 | 
				
			||||||
    Cshift_comms_simd(ret,rhs,dimension,shift,0x3);
 | 
					    Cshift_comms_simd(ret,rhs,dimension,shift,0x3);
 | 
				
			||||||
  } else {
 | 
					  } else {
 | 
				
			||||||
    //    std::cout << "Two pass Cshift_comms" <<std::endl;
 | 
					    //std::cout << "Two pass Cshift_comms" <<std::endl;
 | 
				
			||||||
    Cshift_comms_simd(ret,rhs,dimension,shift,0x1);// if checkerboard is unfavourable take two passes
 | 
					    Cshift_comms_simd(ret,rhs,dimension,shift,0x1);// if checkerboard is unfavourable take two passes
 | 
				
			||||||
    Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
 | 
					    Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					#define ACCELERATOR_CSHIFT_NO_COPY
 | 
				
			||||||
 | 
					#ifdef ACCELERATOR_CSHIFT_NO_COPY
 | 
				
			||||||
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
					template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
@@ -123,29 +122,21 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
 | 
				
			|||||||
  assert(shift<fd);
 | 
					  assert(shift<fd);
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
 | 
					  int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
 | 
				
			||||||
  static deviceVector<vobj> send_buf; send_buf.resize(buffer_size);
 | 
					  static cshiftVector<vobj> send_buf; send_buf.resize(buffer_size);
 | 
				
			||||||
  static deviceVector<vobj> recv_buf; recv_buf.resize(buffer_size);
 | 
					  static cshiftVector<vobj> recv_buf; recv_buf.resize(buffer_size);
 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
  static hostVector<vobj> hsend_buf; hsend_buf.resize(buffer_size);
 | 
					 | 
				
			||||||
  static hostVector<vobj> hrecv_buf; hrecv_buf.resize(buffer_size);
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
  int cb= (cbmask==0x2)? Odd : Even;
 | 
					  int cb= (cbmask==0x2)? Odd : Even;
 | 
				
			||||||
  int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
 | 
					  int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
 | 
				
			||||||
  RealD tcopy=0.0;
 | 
					
 | 
				
			||||||
  RealD tgather=0.0;
 | 
					 | 
				
			||||||
  RealD tscatter=0.0;
 | 
					 | 
				
			||||||
  RealD tcomms=0.0;
 | 
					 | 
				
			||||||
  uint64_t xbytes=0;
 | 
					 | 
				
			||||||
  for(int x=0;x<rd;x++){       
 | 
					  for(int x=0;x<rd;x++){       
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    int sx        =  (x+sshift)%rd;
 | 
					    int sx        =  (x+sshift)%rd;
 | 
				
			||||||
    int comm_proc = ((x+sshift)/rd)%pd;
 | 
					    int comm_proc = ((x+sshift)/rd)%pd;
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    if (comm_proc==0) {
 | 
					    if (comm_proc==0) {
 | 
				
			||||||
      tcopy-=usecond();
 | 
					
 | 
				
			||||||
      Copy_plane(ret,rhs,dimension,x,sx,cbmask); 
 | 
					      Copy_plane(ret,rhs,dimension,x,sx,cbmask); 
 | 
				
			||||||
      tcopy+=usecond();
 | 
					
 | 
				
			||||||
    } else {
 | 
					    } else {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      int words = buffer_size;
 | 
					      int words = buffer_size;
 | 
				
			||||||
@@ -153,52 +144,26 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
      int bytes = words * sizeof(vobj);
 | 
					      int bytes = words * sizeof(vobj);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      tgather-=usecond();
 | 
					 | 
				
			||||||
      Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask);
 | 
					      Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask);
 | 
				
			||||||
      tgather+=usecond();
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
      //      int rank           = grid->_processor;
 | 
					      //      int rank           = grid->_processor;
 | 
				
			||||||
      int recv_from_rank;
 | 
					      int recv_from_rank;
 | 
				
			||||||
      int xmit_to_rank;
 | 
					      int xmit_to_rank;
 | 
				
			||||||
 | 
					 | 
				
			||||||
      grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
 | 
					      grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      tcomms-=usecond();
 | 
					 | 
				
			||||||
      grid->Barrier();
 | 
					      grid->Barrier();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
      grid->SendToRecvFrom((void *)&send_buf[0],
 | 
					      grid->SendToRecvFrom((void *)&send_buf[0],
 | 
				
			||||||
			   xmit_to_rank,
 | 
								   xmit_to_rank,
 | 
				
			||||||
			   (void *)&recv_buf[0],
 | 
								   (void *)&recv_buf[0],
 | 
				
			||||||
			   recv_from_rank,
 | 
								   recv_from_rank,
 | 
				
			||||||
			   bytes);
 | 
								   bytes);
 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
      // bouncy bouncy
 | 
					 | 
				
			||||||
      acceleratorCopyFromDevice(&send_buf[0],&hsend_buf[0],bytes);
 | 
					 | 
				
			||||||
      grid->SendToRecvFrom((void *)&hsend_buf[0],
 | 
					 | 
				
			||||||
			   xmit_to_rank,
 | 
					 | 
				
			||||||
			   (void *)&hrecv_buf[0],
 | 
					 | 
				
			||||||
			   recv_from_rank,
 | 
					 | 
				
			||||||
			   bytes);
 | 
					 | 
				
			||||||
      acceleratorCopyToDevice(&hrecv_buf[0],&recv_buf[0],bytes);
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
      xbytes+=bytes;
 | 
					 | 
				
			||||||
      grid->Barrier();
 | 
					      grid->Barrier();
 | 
				
			||||||
      tcomms+=usecond();
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
      tscatter-=usecond();
 | 
					 | 
				
			||||||
      Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask);
 | 
					      Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask);
 | 
				
			||||||
      tscatter+=usecond();
 | 
					 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  if (Cshift_verbose){
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << " Cshift copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << " Cshift gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << " Cshift comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
					template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
				
			||||||
@@ -216,7 +181,7 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
				
			|||||||
  int simd_layout     = grid->_simd_layout[dimension];
 | 
					  int simd_layout     = grid->_simd_layout[dimension];
 | 
				
			||||||
  int comm_dim        = grid->_processors[dimension] >1 ;
 | 
					  int comm_dim        = grid->_processors[dimension] >1 ;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //  std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
 | 
					  //std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
 | 
				
			||||||
  //    << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout 
 | 
					  //    << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout 
 | 
				
			||||||
  //    << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
 | 
					  //    << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -225,12 +190,6 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
				
			|||||||
  assert(shift>=0);
 | 
					  assert(shift>=0);
 | 
				
			||||||
  assert(shift<fd);
 | 
					  assert(shift<fd);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  RealD tcopy=0.0;
 | 
					 | 
				
			||||||
  RealD tgather=0.0;
 | 
					 | 
				
			||||||
  RealD tscatter=0.0;
 | 
					 | 
				
			||||||
  RealD tcomms=0.0;
 | 
					 | 
				
			||||||
  uint64_t xbytes=0;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  int permute_type=grid->PermuteType(dimension);
 | 
					  int permute_type=grid->PermuteType(dimension);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  ///////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////
 | 
				
			||||||
@@ -239,8 +198,8 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
				
			|||||||
  int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
 | 
					  int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
 | 
				
			||||||
  //  int words = sizeof(vobj)/sizeof(vector_type);
 | 
					  //  int words = sizeof(vobj)/sizeof(vector_type);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  static std::vector<deviceVector<scalar_object> >  send_buf_extract; send_buf_extract.resize(Nsimd);
 | 
					  static std::vector<cshiftVector<scalar_object> >  send_buf_extract; send_buf_extract.resize(Nsimd);
 | 
				
			||||||
  static std::vector<deviceVector<scalar_object> >  recv_buf_extract; recv_buf_extract.resize(Nsimd);
 | 
					  static std::vector<cshiftVector<scalar_object> >  recv_buf_extract; recv_buf_extract.resize(Nsimd);
 | 
				
			||||||
  scalar_object *  recv_buf_extract_mpi;
 | 
					  scalar_object *  recv_buf_extract_mpi;
 | 
				
			||||||
  scalar_object *  send_buf_extract_mpi;
 | 
					  scalar_object *  send_buf_extract_mpi;
 | 
				
			||||||
 
 | 
					 
 | 
				
			||||||
@@ -248,10 +207,6 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
				
			|||||||
    send_buf_extract[s].resize(buffer_size);
 | 
					    send_buf_extract[s].resize(buffer_size);
 | 
				
			||||||
    recv_buf_extract[s].resize(buffer_size);
 | 
					    recv_buf_extract[s].resize(buffer_size);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
  hostVector<scalar_object> hsend_buf; hsend_buf.resize(buffer_size);
 | 
					 | 
				
			||||||
  hostVector<scalar_object> hrecv_buf; hrecv_buf.resize(buffer_size);
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  int bytes = buffer_size*sizeof(scalar_object);
 | 
					  int bytes = buffer_size*sizeof(scalar_object);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -272,9 +227,7 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
				
			|||||||
      pointers[i] = &send_buf_extract[i][0];
 | 
					      pointers[i] = &send_buf_extract[i][0];
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    int sx   = (x+sshift)%rd;
 | 
					    int sx   = (x+sshift)%rd;
 | 
				
			||||||
    tgather-=usecond();
 | 
					 | 
				
			||||||
    Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
 | 
					    Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
 | 
				
			||||||
    tgather+=usecond();
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    for(int i=0;i<Nsimd;i++){
 | 
					    for(int i=0;i<Nsimd;i++){
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
@@ -299,31 +252,17 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
				
			|||||||
      if(nbr_proc){
 | 
					      if(nbr_proc){
 | 
				
			||||||
	grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank); 
 | 
						grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank); 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	tcomms-=usecond();
 | 
					 | 
				
			||||||
	grid->Barrier();
 | 
						grid->Barrier();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
 | 
						send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
 | 
				
			||||||
	recv_buf_extract_mpi = &recv_buf_extract[i][0];
 | 
						recv_buf_extract_mpi = &recv_buf_extract[i][0];
 | 
				
			||||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
	grid->SendToRecvFrom((void *)send_buf_extract_mpi,
 | 
						grid->SendToRecvFrom((void *)send_buf_extract_mpi,
 | 
				
			||||||
			     xmit_to_rank,
 | 
								     xmit_to_rank,
 | 
				
			||||||
			     (void *)recv_buf_extract_mpi,
 | 
								     (void *)recv_buf_extract_mpi,
 | 
				
			||||||
			     recv_from_rank,
 | 
								     recv_from_rank,
 | 
				
			||||||
			     bytes);
 | 
								     bytes);
 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
      // bouncy bouncy
 | 
					 | 
				
			||||||
	acceleratorCopyFromDevice((void *)send_buf_extract_mpi,(void *)&hsend_buf[0],bytes);
 | 
					 | 
				
			||||||
	grid->SendToRecvFrom((void *)&hsend_buf[0],
 | 
					 | 
				
			||||||
			     xmit_to_rank,
 | 
					 | 
				
			||||||
			     (void *)&hrecv_buf[0],
 | 
					 | 
				
			||||||
			     recv_from_rank,
 | 
					 | 
				
			||||||
			     bytes);
 | 
					 | 
				
			||||||
	acceleratorCopyToDevice((void *)&hrecv_buf[0],(void *)recv_buf_extract_mpi,bytes);
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
	xbytes+=bytes;
 | 
					 | 
				
			||||||
	grid->Barrier();
 | 
						grid->Barrier();
 | 
				
			||||||
	tcomms+=usecond();
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
	rpointers[i] = &recv_buf_extract[i][0];
 | 
						rpointers[i] = &recv_buf_extract[i][0];
 | 
				
			||||||
      } else { 
 | 
					      } else { 
 | 
				
			||||||
@@ -331,19 +270,198 @@ template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
 | 
				
			|||||||
      }
 | 
					      }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    tscatter-=usecond();
 | 
					 | 
				
			||||||
    Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
 | 
					    Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
 | 
				
			||||||
    tscatter+=usecond();
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  if(Cshift_verbose){
 | 
					
 | 
				
			||||||
    std::cout << GridLogPerformance << " Cshift (s) copy    "<<tcopy/1e3<<" ms"<<std::endl;
 | 
					}
 | 
				
			||||||
    std::cout << GridLogPerformance << " Cshift (s) gather  "<<tgather/1e3<<" ms"<<std::endl;
 | 
					#else 
 | 
				
			||||||
    std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
 | 
					template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
				
			||||||
    std::cout << GridLogPerformance << " Cshift (s) comm    "<<tcomms/1e3<<" ms"<<std::endl;
 | 
					{
 | 
				
			||||||
    std::cout << GridLogPerformance << " Cshift BW      "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
 | 
					  typedef typename vobj::scalar_type scalar_type;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  GridBase *grid=rhs.Grid();
 | 
				
			||||||
 | 
					  Lattice<vobj> temp(rhs.Grid());
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  int fd              = rhs.Grid()->_fdimensions[dimension];
 | 
				
			||||||
 | 
					  int rd              = rhs.Grid()->_rdimensions[dimension];
 | 
				
			||||||
 | 
					  int pd              = rhs.Grid()->_processors[dimension];
 | 
				
			||||||
 | 
					  int simd_layout     = rhs.Grid()->_simd_layout[dimension];
 | 
				
			||||||
 | 
					  int comm_dim        = rhs.Grid()->_processors[dimension] >1 ;
 | 
				
			||||||
 | 
					  assert(simd_layout==1);
 | 
				
			||||||
 | 
					  assert(comm_dim==1);
 | 
				
			||||||
 | 
					  assert(shift>=0);
 | 
				
			||||||
 | 
					  assert(shift<fd);
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
 | 
					  int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
 | 
				
			||||||
 | 
					  static cshiftVector<vobj> send_buf_v; send_buf_v.resize(buffer_size);
 | 
				
			||||||
 | 
					  static cshiftVector<vobj> recv_buf_v; recv_buf_v.resize(buffer_size);
 | 
				
			||||||
 | 
					  vobj *send_buf;
 | 
				
			||||||
 | 
					  vobj *recv_buf;
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    grid->ShmBufferFreeAll();
 | 
				
			||||||
 | 
					    size_t bytes = buffer_size*sizeof(vobj);
 | 
				
			||||||
 | 
					    send_buf=(vobj *)grid->ShmBufferMalloc(bytes);
 | 
				
			||||||
 | 
					    recv_buf=(vobj *)grid->ShmBufferMalloc(bytes);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					  int cb= (cbmask==0x2)? Odd : Even;
 | 
				
			||||||
 | 
					  int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  for(int x=0;x<rd;x++){       
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    int sx        =  (x+sshift)%rd;
 | 
				
			||||||
 | 
					    int comm_proc = ((x+sshift)/rd)%pd;
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    if (comm_proc==0) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      Copy_plane(ret,rhs,dimension,x,sx,cbmask); 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    } else {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      int words = buffer_size;
 | 
				
			||||||
 | 
					      if (cbmask != 0x3) words=words>>1;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      int bytes = words * sizeof(vobj);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      //      int rank           = grid->_processor;
 | 
				
			||||||
 | 
					      int recv_from_rank;
 | 
				
			||||||
 | 
					      int xmit_to_rank;
 | 
				
			||||||
 | 
					      grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      grid->Barrier();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes);
 | 
				
			||||||
 | 
					      grid->SendToRecvFrom((void *)&send_buf[0],
 | 
				
			||||||
 | 
								   xmit_to_rank,
 | 
				
			||||||
 | 
								   (void *)&recv_buf[0],
 | 
				
			||||||
 | 
								   recv_from_rank,
 | 
				
			||||||
 | 
								   bytes);
 | 
				
			||||||
 | 
					      acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      grid->Barrier();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask);
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					template<class vobj> void  Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  GridBase *grid=rhs.Grid();
 | 
				
			||||||
 | 
					  const int Nsimd = grid->Nsimd();
 | 
				
			||||||
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
 | 
					  typedef typename vobj::scalar_object scalar_object;
 | 
				
			||||||
 | 
					  typedef typename vobj::scalar_type scalar_type;
 | 
				
			||||||
 | 
					   
 | 
				
			||||||
 | 
					  int fd = grid->_fdimensions[dimension];
 | 
				
			||||||
 | 
					  int rd = grid->_rdimensions[dimension];
 | 
				
			||||||
 | 
					  int ld = grid->_ldimensions[dimension];
 | 
				
			||||||
 | 
					  int pd = grid->_processors[dimension];
 | 
				
			||||||
 | 
					  int simd_layout     = grid->_simd_layout[dimension];
 | 
				
			||||||
 | 
					  int comm_dim        = grid->_processors[dimension] >1 ;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  //std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
 | 
				
			||||||
 | 
					  //    << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout 
 | 
				
			||||||
 | 
					  //    << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  assert(comm_dim==1);
 | 
				
			||||||
 | 
					  assert(simd_layout==2);
 | 
				
			||||||
 | 
					  assert(shift>=0);
 | 
				
			||||||
 | 
					  assert(shift<fd);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  int permute_type=grid->PermuteType(dimension);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  ///////////////////////////////////////////////
 | 
				
			||||||
 | 
					  // Simd direction uses an extract/merge pair
 | 
				
			||||||
 | 
					  ///////////////////////////////////////////////
 | 
				
			||||||
 | 
					  int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
 | 
				
			||||||
 | 
					  //  int words = sizeof(vobj)/sizeof(vector_type);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  static std::vector<cshiftVector<scalar_object> >  send_buf_extract; send_buf_extract.resize(Nsimd);
 | 
				
			||||||
 | 
					  static std::vector<cshiftVector<scalar_object> >  recv_buf_extract; recv_buf_extract.resize(Nsimd);
 | 
				
			||||||
 | 
					  scalar_object *  recv_buf_extract_mpi;
 | 
				
			||||||
 | 
					  scalar_object *  send_buf_extract_mpi;
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    size_t bytes = sizeof(scalar_object)*buffer_size;
 | 
				
			||||||
 | 
					    grid->ShmBufferFreeAll();
 | 
				
			||||||
 | 
					    send_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
 | 
				
			||||||
 | 
					    recv_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  for(int s=0;s<Nsimd;s++){
 | 
				
			||||||
 | 
					    send_buf_extract[s].resize(buffer_size);
 | 
				
			||||||
 | 
					    recv_buf_extract[s].resize(buffer_size);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  int bytes = buffer_size*sizeof(scalar_object);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  ExtractPointerArray<scalar_object>  pointers(Nsimd); // 
 | 
				
			||||||
 | 
					  ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  ///////////////////////////////////////////
 | 
				
			||||||
 | 
					  // Work out what to send where
 | 
				
			||||||
 | 
					  ///////////////////////////////////////////
 | 
				
			||||||
 | 
					  int cb    = (cbmask==0x2)? Odd : Even;
 | 
				
			||||||
 | 
					  int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  // loop over outer coord planes orthog to dim
 | 
				
			||||||
 | 
					  for(int x=0;x<rd;x++){       
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    // FIXME call local permute copy if none are offnode.
 | 
				
			||||||
 | 
					    for(int i=0;i<Nsimd;i++){       
 | 
				
			||||||
 | 
					      pointers[i] = &send_buf_extract[i][0];
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    int sx   = (x+sshift)%rd;
 | 
				
			||||||
 | 
					    Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for(int i=0;i<Nsimd;i++){
 | 
				
			||||||
 | 
					      
 | 
				
			||||||
 | 
					      int inner_bit = (Nsimd>>(permute_type+1));
 | 
				
			||||||
 | 
					      int ic= (i&inner_bit)? 1:0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      int my_coor          = rd*ic + x;
 | 
				
			||||||
 | 
					      int nbr_coor         = my_coor+sshift;
 | 
				
			||||||
 | 
					      int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      int nbr_ic   = (nbr_coor%ld)/rd;    // inner coord of peer
 | 
				
			||||||
 | 
					      int nbr_ox   = (nbr_coor%rd);       // outer coord of peer
 | 
				
			||||||
 | 
					      int nbr_lane = (i&(~inner_bit));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      int recv_from_rank;
 | 
				
			||||||
 | 
					      int xmit_to_rank;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      if (nbr_ic) nbr_lane|=inner_bit;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      assert (sx == nbr_ox);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      if(nbr_proc){
 | 
				
			||||||
 | 
						grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank); 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						grid->Barrier();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes);
 | 
				
			||||||
 | 
						grid->SendToRecvFrom((void *)send_buf_extract_mpi,
 | 
				
			||||||
 | 
								     xmit_to_rank,
 | 
				
			||||||
 | 
								     (void *)recv_buf_extract_mpi,
 | 
				
			||||||
 | 
								     recv_from_rank,
 | 
				
			||||||
 | 
								     bytes);
 | 
				
			||||||
 | 
						acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						grid->Barrier();
 | 
				
			||||||
 | 
						rpointers[i] = &recv_buf_extract[i][0];
 | 
				
			||||||
 | 
					      } else { 
 | 
				
			||||||
 | 
						rpointers[i] = &send_buf_extract[nbr_lane][0];
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
NAMESPACE_END(Grid); 
 | 
					NAMESPACE_END(Grid); 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1,5 +1,4 @@
 | 
				
			|||||||
#include <Grid/GridCore.h>       
 | 
					#include <Grid/GridCore.h>       
 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					NAMESPACE_BEGIN(Grid);
 | 
				
			||||||
std::vector<std::pair<int,int> > Cshift_table; 
 | 
					Vector<std::pair<int,int> > Cshift_table; 
 | 
				
			||||||
deviceVector<std::pair<int,int> > Cshift_table_device; 
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
 
 | 
				
			|||||||
							
								
								
									
										23551
									
								
								Grid/json/json.hpp
									
									
									
									
									
								
							
							
						
						
									
										23551
									
								
								Grid/json/json.hpp
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							@@ -35,7 +35,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
#include <Grid/lattice/Lattice_transpose.h>
 | 
					#include <Grid/lattice/Lattice_transpose.h>
 | 
				
			||||||
#include <Grid/lattice/Lattice_local.h>
 | 
					#include <Grid/lattice/Lattice_local.h>
 | 
				
			||||||
#include <Grid/lattice/Lattice_reduction.h>
 | 
					#include <Grid/lattice/Lattice_reduction.h>
 | 
				
			||||||
#include <Grid/lattice/Lattice_crc.h>
 | 
					 | 
				
			||||||
#include <Grid/lattice/Lattice_peekpoke.h>
 | 
					#include <Grid/lattice/Lattice_peekpoke.h>
 | 
				
			||||||
#include <Grid/lattice/Lattice_reality.h>
 | 
					#include <Grid/lattice/Lattice_reality.h>
 | 
				
			||||||
#include <Grid/lattice/Lattice_real_imag.h>
 | 
					#include <Grid/lattice/Lattice_real_imag.h>
 | 
				
			||||||
@@ -47,4 +46,3 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
				
			|||||||
#include <Grid/lattice/Lattice_unary.h>
 | 
					#include <Grid/lattice/Lattice_unary.h>
 | 
				
			||||||
#include <Grid/lattice/Lattice_transfer.h>
 | 
					#include <Grid/lattice/Lattice_transfer.h>
 | 
				
			||||||
#include <Grid/lattice/Lattice_basis.h>
 | 
					#include <Grid/lattice/Lattice_basis.h>
 | 
				
			||||||
#include <Grid/lattice/PaddedCell.h>
 | 
					 | 
				
			||||||
 
 | 
				
			|||||||
@@ -63,7 +63,7 @@ accelerator_inline vobj predicatedWhere(const iobj &predicate,
 | 
				
			|||||||
  typename std::remove_const<vobj>::type ret;
 | 
					  typename std::remove_const<vobj>::type ret;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  typedef typename vobj::scalar_object scalar_object;
 | 
					  typedef typename vobj::scalar_object scalar_object;
 | 
				
			||||||
  //  typedef typename vobj::scalar_type scalar_type;
 | 
					  typedef typename vobj::scalar_type scalar_type;
 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  const int Nsimd = vobj::vector_type::Nsimd();
 | 
					  const int Nsimd = vobj::vector_type::Nsimd();
 | 
				
			||||||
@@ -345,9 +345,7 @@ GridUnopClass(UnaryNot, Not(a));
 | 
				
			|||||||
GridUnopClass(UnaryTrace, trace(a));
 | 
					GridUnopClass(UnaryTrace, trace(a));
 | 
				
			||||||
GridUnopClass(UnaryTranspose, transpose(a));
 | 
					GridUnopClass(UnaryTranspose, transpose(a));
 | 
				
			||||||
GridUnopClass(UnaryTa, Ta(a));
 | 
					GridUnopClass(UnaryTa, Ta(a));
 | 
				
			||||||
GridUnopClass(UnarySpTa, SpTa(a));
 | 
					 | 
				
			||||||
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
 | 
					GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
 | 
				
			||||||
GridUnopClass(UnaryProjectOnSpGroup, ProjectOnSpGroup(a));
 | 
					 | 
				
			||||||
GridUnopClass(UnaryTimesI, timesI(a));
 | 
					GridUnopClass(UnaryTimesI, timesI(a));
 | 
				
			||||||
GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
 | 
					GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
 | 
				
			||||||
GridUnopClass(UnaryAbs, abs(a));
 | 
					GridUnopClass(UnaryAbs, abs(a));
 | 
				
			||||||
@@ -458,9 +456,7 @@ GRID_DEF_UNOP(operator!, UnaryNot);
 | 
				
			|||||||
GRID_DEF_UNOP(trace, UnaryTrace);
 | 
					GRID_DEF_UNOP(trace, UnaryTrace);
 | 
				
			||||||
GRID_DEF_UNOP(transpose, UnaryTranspose);
 | 
					GRID_DEF_UNOP(transpose, UnaryTranspose);
 | 
				
			||||||
GRID_DEF_UNOP(Ta, UnaryTa);
 | 
					GRID_DEF_UNOP(Ta, UnaryTa);
 | 
				
			||||||
GRID_DEF_UNOP(SpTa, UnarySpTa);
 | 
					 | 
				
			||||||
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
 | 
					GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
 | 
				
			||||||
GRID_DEF_UNOP(ProjectOnSpGroup, UnaryProjectOnSpGroup);
 | 
					 | 
				
			||||||
GRID_DEF_UNOP(timesI, UnaryTimesI);
 | 
					GRID_DEF_UNOP(timesI, UnaryTimesI);
 | 
				
			||||||
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
 | 
					GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
 | 
				
			||||||
GRID_DEF_UNOP(abs, UnaryAbs);  // abs overloaded in cmath C++98; DON'T do the
 | 
					GRID_DEF_UNOP(abs, UnaryAbs);  // abs overloaded in cmath C++98; DON'T do the
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -36,7 +36,6 @@ NAMESPACE_BEGIN(Grid);
 | 
				
			|||||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					//////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
template<class obj1,class obj2,class obj3> inline
 | 
					template<class obj1,class obj2,class obj3> inline
 | 
				
			||||||
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
					void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
				
			||||||
  GRID_TRACE("mult");
 | 
					 | 
				
			||||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
					  ret.Checkerboard() = lhs.Checkerboard();
 | 
				
			||||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
					  autoView( ret_v , ret, AcceleratorWrite);
 | 
				
			||||||
  autoView( lhs_v , lhs, AcceleratorRead);
 | 
					  autoView( lhs_v , lhs, AcceleratorRead);
 | 
				
			||||||
@@ -54,7 +53,6 @@ void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
				
			|||||||
  
 | 
					  
 | 
				
			||||||
template<class obj1,class obj2,class obj3> inline
 | 
					template<class obj1,class obj2,class obj3> inline
 | 
				
			||||||
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
					void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
				
			||||||
  GRID_TRACE("mac");
 | 
					 | 
				
			||||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
					  ret.Checkerboard() = lhs.Checkerboard();
 | 
				
			||||||
  conformable(ret,rhs);
 | 
					  conformable(ret,rhs);
 | 
				
			||||||
  conformable(lhs,rhs);
 | 
					  conformable(lhs,rhs);
 | 
				
			||||||
@@ -72,7 +70,6 @@ void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
				
			|||||||
  
 | 
					  
 | 
				
			||||||
template<class obj1,class obj2,class obj3> inline
 | 
					template<class obj1,class obj2,class obj3> inline
 | 
				
			||||||
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
					void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
				
			||||||
  GRID_TRACE("sub");
 | 
					 | 
				
			||||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
					  ret.Checkerboard() = lhs.Checkerboard();
 | 
				
			||||||
  conformable(ret,rhs);
 | 
					  conformable(ret,rhs);
 | 
				
			||||||
  conformable(lhs,rhs);
 | 
					  conformable(lhs,rhs);
 | 
				
			||||||
@@ -89,7 +86,6 @@ void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
				
			|||||||
}
 | 
					}
 | 
				
			||||||
template<class obj1,class obj2,class obj3> inline
 | 
					template<class obj1,class obj2,class obj3> inline
 | 
				
			||||||
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
					void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
				
			||||||
  GRID_TRACE("add");
 | 
					 | 
				
			||||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
					  ret.Checkerboard() = lhs.Checkerboard();
 | 
				
			||||||
  conformable(ret,rhs);
 | 
					  conformable(ret,rhs);
 | 
				
			||||||
  conformable(lhs,rhs);
 | 
					  conformable(lhs,rhs);
 | 
				
			||||||
@@ -110,7 +106,6 @@ void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
 | 
				
			|||||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					//////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
template<class obj1,class obj2,class obj3> inline
 | 
					template<class obj1,class obj2,class obj3> inline
 | 
				
			||||||
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
					void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
				
			||||||
  GRID_TRACE("mult");
 | 
					 | 
				
			||||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
					  ret.Checkerboard() = lhs.Checkerboard();
 | 
				
			||||||
  conformable(lhs,ret);
 | 
					  conformable(lhs,ret);
 | 
				
			||||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
					  autoView( ret_v , ret, AcceleratorWrite);
 | 
				
			||||||
@@ -124,7 +119,6 @@ void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
				
			|||||||
  
 | 
					  
 | 
				
			||||||
template<class obj1,class obj2,class obj3> inline
 | 
					template<class obj1,class obj2,class obj3> inline
 | 
				
			||||||
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
					void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
				
			||||||
  GRID_TRACE("mac");
 | 
					 | 
				
			||||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
					  ret.Checkerboard() = lhs.Checkerboard();
 | 
				
			||||||
  conformable(ret,lhs);
 | 
					  conformable(ret,lhs);
 | 
				
			||||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
					  autoView( ret_v , ret, AcceleratorWrite);
 | 
				
			||||||
@@ -139,7 +133,6 @@ void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
				
			|||||||
  
 | 
					  
 | 
				
			||||||
template<class obj1,class obj2,class obj3> inline
 | 
					template<class obj1,class obj2,class obj3> inline
 | 
				
			||||||
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
					void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
				
			||||||
  GRID_TRACE("sub");
 | 
					 | 
				
			||||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
					  ret.Checkerboard() = lhs.Checkerboard();
 | 
				
			||||||
  conformable(ret,lhs);
 | 
					  conformable(ret,lhs);
 | 
				
			||||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
					  autoView( ret_v , ret, AcceleratorWrite);
 | 
				
			||||||
@@ -153,7 +146,6 @@ void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
				
			|||||||
}
 | 
					}
 | 
				
			||||||
template<class obj1,class obj2,class obj3> inline
 | 
					template<class obj1,class obj2,class obj3> inline
 | 
				
			||||||
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
					void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
				
			||||||
  GRID_TRACE("add");
 | 
					 | 
				
			||||||
  ret.Checkerboard() = lhs.Checkerboard();
 | 
					  ret.Checkerboard() = lhs.Checkerboard();
 | 
				
			||||||
  conformable(lhs,ret);
 | 
					  conformable(lhs,ret);
 | 
				
			||||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
					  autoView( ret_v , ret, AcceleratorWrite);
 | 
				
			||||||
@@ -171,7 +163,6 @@ void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
 | 
				
			|||||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					//////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
template<class obj1,class obj2,class obj3> inline
 | 
					template<class obj1,class obj2,class obj3> inline
 | 
				
			||||||
void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
					void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
				
			||||||
  GRID_TRACE("mult");
 | 
					 | 
				
			||||||
  ret.Checkerboard() = rhs.Checkerboard();
 | 
					  ret.Checkerboard() = rhs.Checkerboard();
 | 
				
			||||||
  conformable(ret,rhs);
 | 
					  conformable(ret,rhs);
 | 
				
			||||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
					  autoView( ret_v , ret, AcceleratorWrite);
 | 
				
			||||||
@@ -186,7 +177,6 @@ void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
				
			|||||||
  
 | 
					  
 | 
				
			||||||
template<class obj1,class obj2,class obj3> inline
 | 
					template<class obj1,class obj2,class obj3> inline
 | 
				
			||||||
void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
					void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
				
			||||||
  GRID_TRACE("mac");
 | 
					 | 
				
			||||||
  ret.Checkerboard() = rhs.Checkerboard();
 | 
					  ret.Checkerboard() = rhs.Checkerboard();
 | 
				
			||||||
  conformable(ret,rhs);
 | 
					  conformable(ret,rhs);
 | 
				
			||||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
					  autoView( ret_v , ret, AcceleratorWrite);
 | 
				
			||||||
@@ -201,7 +191,6 @@ void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
				
			|||||||
  
 | 
					  
 | 
				
			||||||
template<class obj1,class obj2,class obj3> inline
 | 
					template<class obj1,class obj2,class obj3> inline
 | 
				
			||||||
void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
					void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
				
			||||||
  GRID_TRACE("sub");
 | 
					 | 
				
			||||||
  ret.Checkerboard() = rhs.Checkerboard();
 | 
					  ret.Checkerboard() = rhs.Checkerboard();
 | 
				
			||||||
  conformable(ret,rhs);
 | 
					  conformable(ret,rhs);
 | 
				
			||||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
					  autoView( ret_v , ret, AcceleratorWrite);
 | 
				
			||||||
@@ -215,7 +204,6 @@ void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
				
			|||||||
}
 | 
					}
 | 
				
			||||||
template<class obj1,class obj2,class obj3> inline
 | 
					template<class obj1,class obj2,class obj3> inline
 | 
				
			||||||
void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
					void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
				
			||||||
  GRID_TRACE("add");
 | 
					 | 
				
			||||||
  ret.Checkerboard() = rhs.Checkerboard();
 | 
					  ret.Checkerboard() = rhs.Checkerboard();
 | 
				
			||||||
  conformable(ret,rhs);
 | 
					  conformable(ret,rhs);
 | 
				
			||||||
  autoView( ret_v , ret, AcceleratorWrite);
 | 
					  autoView( ret_v , ret, AcceleratorWrite);
 | 
				
			||||||
@@ -230,7 +218,6 @@ void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
 | 
				
			|||||||
  
 | 
					  
 | 
				
			||||||
template<class sobj,class vobj> inline
 | 
					template<class sobj,class vobj> inline
 | 
				
			||||||
void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){
 | 
					void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){
 | 
				
			||||||
  GRID_TRACE("axpy");
 | 
					 | 
				
			||||||
  ret.Checkerboard() = x.Checkerboard();
 | 
					  ret.Checkerboard() = x.Checkerboard();
 | 
				
			||||||
  conformable(ret,x);
 | 
					  conformable(ret,x);
 | 
				
			||||||
  conformable(x,y);
 | 
					  conformable(x,y);
 | 
				
			||||||
@@ -238,13 +225,12 @@ void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &
 | 
				
			|||||||
  autoView( x_v , x, AcceleratorRead);
 | 
					  autoView( x_v , x, AcceleratorRead);
 | 
				
			||||||
  autoView( y_v , y, AcceleratorRead);
 | 
					  autoView( y_v , y, AcceleratorRead);
 | 
				
			||||||
  accelerator_for(ss,x_v.size(),vobj::Nsimd(),{
 | 
					  accelerator_for(ss,x_v.size(),vobj::Nsimd(),{
 | 
				
			||||||
    auto tmp = a*coalescedRead(x_v[ss])+coalescedRead(y_v[ss]);
 | 
					    auto tmp = a*x_v(ss)+y_v(ss);
 | 
				
			||||||
    coalescedWrite(ret_v[ss],tmp);
 | 
					    coalescedWrite(ret_v[ss],tmp);
 | 
				
			||||||
  });
 | 
					  });
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
template<class sobj,class vobj> inline
 | 
					template<class sobj,class vobj> inline
 | 
				
			||||||
void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y){
 | 
					void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y){
 | 
				
			||||||
  GRID_TRACE("axpby");
 | 
					 | 
				
			||||||
  ret.Checkerboard() = x.Checkerboard();
 | 
					  ret.Checkerboard() = x.Checkerboard();
 | 
				
			||||||
  conformable(ret,x);
 | 
					  conformable(ret,x);
 | 
				
			||||||
  conformable(x,y);
 | 
					  conformable(x,y);
 | 
				
			||||||
@@ -257,68 +243,16 @@ void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice
 | 
				
			|||||||
  });
 | 
					  });
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#define FAST_AXPY_NORM
 | 
					 | 
				
			||||||
template<class sobj,class vobj> inline
 | 
					template<class sobj,class vobj> inline
 | 
				
			||||||
RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
 | 
					RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GRID_TRACE("axpy_norm");
 | 
					 | 
				
			||||||
#ifdef FAST_AXPY_NORM
 | 
					 | 
				
			||||||
    return axpy_norm_fast(ret,a,x,y);
 | 
					    return axpy_norm_fast(ret,a,x,y);
 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
  ret = a*x+y;
 | 
					 | 
				
			||||||
  RealD nn=norm2(ret);
 | 
					 | 
				
			||||||
  return nn;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
template<class sobj,class vobj> inline
 | 
					template<class sobj,class vobj> inline
 | 
				
			||||||
RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
 | 
					RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GRID_TRACE("axpby_norm");
 | 
					 | 
				
			||||||
#ifdef FAST_AXPY_NORM
 | 
					 | 
				
			||||||
    return axpby_norm_fast(ret,a,b,x,y);
 | 
					    return axpby_norm_fast(ret,a,b,x,y);
 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
  ret = a*x+b*y;
 | 
					 | 
				
			||||||
  RealD nn=norm2(ret);
 | 
					 | 
				
			||||||
  return nn;
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
/// Trace product
 | 
					 | 
				
			||||||
template<class obj> auto traceProduct(const Lattice<obj> &rhs_1,const Lattice<obj> &rhs_2)
 | 
					 | 
				
			||||||
  -> Lattice<decltype(trace(obj()))>
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  typedef decltype(trace(obj())) robj;
 | 
					 | 
				
			||||||
  Lattice<robj> ret_i(rhs_1.Grid());
 | 
					 | 
				
			||||||
  autoView( rhs1 , rhs_1, AcceleratorRead);
 | 
					 | 
				
			||||||
  autoView( rhs2 , rhs_2, AcceleratorRead);
 | 
					 | 
				
			||||||
  autoView( ret , ret_i, AcceleratorWrite);
 | 
					 | 
				
			||||||
  ret.Checkerboard() = rhs_1.Checkerboard();
 | 
					 | 
				
			||||||
  accelerator_for(ss,rhs1.size(),obj::Nsimd(),{
 | 
					 | 
				
			||||||
      coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2(ss)));
 | 
					 | 
				
			||||||
  });
 | 
					 | 
				
			||||||
  return ret_i;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class obj1,class obj2> auto traceProduct(const Lattice<obj1> &rhs_1,const obj2 &rhs2)
 | 
					 | 
				
			||||||
  -> Lattice<decltype(trace(obj1()))>
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  typedef decltype(trace(obj1())) robj;
 | 
					 | 
				
			||||||
  Lattice<robj> ret_i(rhs_1.Grid());
 | 
					 | 
				
			||||||
  autoView( rhs1 , rhs_1, AcceleratorRead);
 | 
					 | 
				
			||||||
  autoView( ret , ret_i, AcceleratorWrite);
 | 
					 | 
				
			||||||
  ret.Checkerboard() = rhs_1.Checkerboard();
 | 
					 | 
				
			||||||
  accelerator_for(ss,rhs1.size(),obj1::Nsimd(),{
 | 
					 | 
				
			||||||
      coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2));
 | 
					 | 
				
			||||||
  });
 | 
					 | 
				
			||||||
  return ret_i;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
template<class obj1,class obj2> auto traceProduct(const obj2 &rhs_2,const Lattice<obj1> &rhs_1)
 | 
					 | 
				
			||||||
  -> Lattice<decltype(trace(obj1()))>
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  return traceProduct(rhs_1,rhs_2);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -88,13 +88,6 @@ public:
 | 
				
			|||||||
    LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this),mode);
 | 
					    LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this),mode);
 | 
				
			||||||
    accessor.ViewClose();
 | 
					    accessor.ViewClose();
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					 | 
				
			||||||
  // Helper function to print the state of this object in the AccCache
 | 
					 | 
				
			||||||
  void PrintCacheState(void)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    MemoryManager::PrintState(this->_odata);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /////////////////////////////////////////////////////////////////////////////////
 | 
					  /////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
  // Return a view object that may be dereferenced in site loops.
 | 
					  // Return a view object that may be dereferenced in site loops.
 | 
				
			||||||
  // The view is trivially copy constructible and may be copied to an accelerator device
 | 
					  // The view is trivially copy constructible and may be copied to an accelerator device
 | 
				
			||||||
@@ -117,7 +110,6 @@ public:
 | 
				
			|||||||
  ////////////////////////////////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
  template <typename Op, typename T1> inline Lattice<vobj> & operator=(const LatticeUnaryExpression<Op,T1> &expr)
 | 
					  template <typename Op, typename T1> inline Lattice<vobj> & operator=(const LatticeUnaryExpression<Op,T1> &expr)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    GRID_TRACE("ExpressionTemplateEval");
 | 
					 | 
				
			||||||
    GridBase *egrid(nullptr);
 | 
					    GridBase *egrid(nullptr);
 | 
				
			||||||
    GridFromExpression(egrid,expr);
 | 
					    GridFromExpression(egrid,expr);
 | 
				
			||||||
    assert(egrid!=nullptr);
 | 
					    assert(egrid!=nullptr);
 | 
				
			||||||
@@ -141,7 +133,6 @@ public:
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
  template <typename Op, typename T1,typename T2> inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr)
 | 
					  template <typename Op, typename T1,typename T2> inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    GRID_TRACE("ExpressionTemplateEval");
 | 
					 | 
				
			||||||
    GridBase *egrid(nullptr);
 | 
					    GridBase *egrid(nullptr);
 | 
				
			||||||
    GridFromExpression(egrid,expr);
 | 
					    GridFromExpression(egrid,expr);
 | 
				
			||||||
    assert(egrid!=nullptr);
 | 
					    assert(egrid!=nullptr);
 | 
				
			||||||
@@ -165,7 +156,6 @@ public:
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
  template <typename Op, typename T1,typename T2,typename T3> inline Lattice<vobj> & operator=(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr)
 | 
					  template <typename Op, typename T1,typename T2,typename T3> inline Lattice<vobj> & operator=(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    GRID_TRACE("ExpressionTemplateEval");
 | 
					 | 
				
			||||||
    GridBase *egrid(nullptr);
 | 
					    GridBase *egrid(nullptr);
 | 
				
			||||||
    GridFromExpression(egrid,expr);
 | 
					    GridFromExpression(egrid,expr);
 | 
				
			||||||
    assert(egrid!=nullptr);
 | 
					    assert(egrid!=nullptr);
 | 
				
			||||||
@@ -234,23 +224,10 @@ public:
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){
 | 
					  template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){
 | 
				
			||||||
    vobj vtmp;
 | 
					 | 
				
			||||||
    vtmp = r;
 | 
					 | 
				
			||||||
#if 0
 | 
					 | 
				
			||||||
    deviceVector<vobj> vvtmp(1);
 | 
					 | 
				
			||||||
    acceleratorPut(vvtmp[0],vtmp);
 | 
					 | 
				
			||||||
    vobj *vvtmp_p = & vvtmp[0];
 | 
					 | 
				
			||||||
    auto me  = View(AcceleratorWrite);
 | 
					 | 
				
			||||||
    accelerator_for(ss,me.size(),vobj::Nsimd(),{
 | 
					 | 
				
			||||||
	auto stmp=coalescedRead(*vvtmp_p);
 | 
					 | 
				
			||||||
	coalescedWrite(me[ss],stmp);
 | 
					 | 
				
			||||||
    });
 | 
					 | 
				
			||||||
#else    
 | 
					 | 
				
			||||||
    auto me  = View(CpuWrite);
 | 
					    auto me  = View(CpuWrite);
 | 
				
			||||||
    thread_for(ss,me.size(),{
 | 
					    thread_for(ss,me.size(),{
 | 
				
			||||||
	me[ss]= r;
 | 
						me[ss]= r;
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
#endif    
 | 
					 | 
				
			||||||
    me.ViewClose();
 | 
					    me.ViewClose();
 | 
				
			||||||
    return *this;
 | 
					    return *this;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -304,8 +281,8 @@ public:
 | 
				
			|||||||
    typename std::enable_if<!std::is_same<robj,vobj>::value,int>::type i=0;
 | 
					    typename std::enable_if<!std::is_same<robj,vobj>::value,int>::type i=0;
 | 
				
			||||||
    conformable(*this,r);
 | 
					    conformable(*this,r);
 | 
				
			||||||
    this->checkerboard = r.Checkerboard();
 | 
					    this->checkerboard = r.Checkerboard();
 | 
				
			||||||
    auto him= r.View(AcceleratorRead);
 | 
					 | 
				
			||||||
    auto me =   View(AcceleratorWriteDiscard);
 | 
					    auto me =   View(AcceleratorWriteDiscard);
 | 
				
			||||||
 | 
					    auto him= r.View(AcceleratorRead);
 | 
				
			||||||
    accelerator_for(ss,me.size(),vobj::Nsimd(),{
 | 
					    accelerator_for(ss,me.size(),vobj::Nsimd(),{
 | 
				
			||||||
      coalescedWrite(me[ss],him(ss));
 | 
					      coalescedWrite(me[ss],him(ss));
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
@@ -319,8 +296,8 @@ public:
 | 
				
			|||||||
  inline Lattice<vobj> & operator = (const Lattice<vobj> & r){
 | 
					  inline Lattice<vobj> & operator = (const Lattice<vobj> & r){
 | 
				
			||||||
    this->checkerboard = r.Checkerboard();
 | 
					    this->checkerboard = r.Checkerboard();
 | 
				
			||||||
    conformable(*this,r);
 | 
					    conformable(*this,r);
 | 
				
			||||||
    auto him= r.View(AcceleratorRead);
 | 
					 | 
				
			||||||
    auto me =   View(AcceleratorWriteDiscard);
 | 
					    auto me =   View(AcceleratorWriteDiscard);
 | 
				
			||||||
 | 
					    auto him= r.View(AcceleratorRead);
 | 
				
			||||||
    accelerator_for(ss,me.size(),vobj::Nsimd(),{
 | 
					    accelerator_for(ss,me.size(),vobj::Nsimd(),{
 | 
				
			||||||
      coalescedWrite(me[ss],him(ss));
 | 
					      coalescedWrite(me[ss],him(ss));
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
@@ -373,7 +350,7 @@ public:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
 | 
					template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					  typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
  for(int64_t g=0;g<o.Grid()->_gsites;g++){
 | 
					  for(int g=0;g<o.Grid()->_gsites;g++){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    Coordinate gcoor;
 | 
					    Coordinate gcoor;
 | 
				
			||||||
    o.Grid()->GlobalIndexToGlobalCoor(g,gcoor);
 | 
					    o.Grid()->GlobalIndexToGlobalCoor(g,gcoor);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -53,19 +53,36 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
 | 
				
			|||||||
  typedef decltype(basis[0]) Field;
 | 
					  typedef decltype(basis[0]) Field;
 | 
				
			||||||
  typedef decltype(basis[0].View(AcceleratorRead)) View;
 | 
					  typedef decltype(basis[0].View(AcceleratorRead)) View;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  hostVector<View>  h_basis_v(basis.size());
 | 
					  Vector<View> basis_v; basis_v.reserve(basis.size());
 | 
				
			||||||
  deviceVector<View> d_basis_v(basis.size());
 | 
					  typedef typename std::remove_reference<decltype(basis_v[0][0])>::type vobj;
 | 
				
			||||||
  typedef typename std::remove_reference<decltype(h_basis_v[0][0])>::type vobj;
 | 
					 | 
				
			||||||
  typedef typename std::remove_reference<decltype(Qt(0,0))>::type Coeff_t;
 | 
					  typedef typename std::remove_reference<decltype(Qt(0,0))>::type Coeff_t;
 | 
				
			||||||
 | 
					 | 
				
			||||||
  GridBase* grid = basis[0].Grid();
 | 
					  GridBase* grid = basis[0].Grid();
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
  for(int k=0;k<basis.size();k++){
 | 
					  for(int k=0;k<basis.size();k++){
 | 
				
			||||||
    h_basis_v[k] = basis[k].View(AcceleratorWrite);
 | 
					    basis_v.push_back(basis[k].View(AcceleratorWrite));
 | 
				
			||||||
    acceleratorPut(d_basis_v[k],h_basis_v[k]);
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  View *basis_vp = &d_basis_v[0];
 | 
					#if ( (!defined(GRID_CUDA)) )
 | 
				
			||||||
 | 
					  int max_threads = thread_max();
 | 
				
			||||||
 | 
					  Vector < vobj > Bt(Nm * max_threads);
 | 
				
			||||||
 | 
					  thread_region
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      vobj* B = &Bt[Nm * thread_num()];
 | 
				
			||||||
 | 
					      thread_for_in_region(ss, grid->oSites(),{
 | 
				
			||||||
 | 
						  for(int j=j0; j<j1; ++j) B[j]=0.;
 | 
				
			||||||
 | 
					      
 | 
				
			||||||
 | 
						  for(int j=j0; j<j1; ++j){
 | 
				
			||||||
 | 
						    for(int k=k0; k<k1; ++k){
 | 
				
			||||||
 | 
						      B[j] +=Qt(j,k) * basis_v[k][ss];
 | 
				
			||||||
 | 
						    }
 | 
				
			||||||
 | 
						  }
 | 
				
			||||||
 | 
						  for(int j=j0; j<j1; ++j){
 | 
				
			||||||
 | 
						    basis_v[j][ss] = B[j];
 | 
				
			||||||
 | 
						  }
 | 
				
			||||||
 | 
						});
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
 | 
					  View *basis_vp = &basis_v[0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  int nrot = j1-j0;
 | 
					  int nrot = j1-j0;
 | 
				
			||||||
  if (!nrot) // edge case not handled gracefully by Cuda
 | 
					  if (!nrot) // edge case not handled gracefully by Cuda
 | 
				
			||||||
@@ -74,19 +91,17 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
 | 
				
			|||||||
  uint64_t oSites   =grid->oSites();
 | 
					  uint64_t oSites   =grid->oSites();
 | 
				
			||||||
  uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead
 | 
					  uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  deviceVector <vobj> Bt(siteBlock * nrot); 
 | 
					  Vector <vobj> Bt(siteBlock * nrot); 
 | 
				
			||||||
  auto Bp=&Bt[0];
 | 
					  auto Bp=&Bt[0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // GPU readable copy of matrix
 | 
					  // GPU readable copy of matrix
 | 
				
			||||||
  hostVector<Coeff_t> h_Qt_jv(Nm*Nm);
 | 
					  Vector<Coeff_t> Qt_jv(Nm*Nm);
 | 
				
			||||||
  deviceVector<Coeff_t> Qt_jv(Nm*Nm);
 | 
					 | 
				
			||||||
  Coeff_t *Qt_p = & Qt_jv[0];
 | 
					  Coeff_t *Qt_p = & Qt_jv[0];
 | 
				
			||||||
  thread_for(i,Nm*Nm,{
 | 
					  thread_for(i,Nm*Nm,{
 | 
				
			||||||
      int j = i/Nm;
 | 
					      int j = i/Nm;
 | 
				
			||||||
      int k = i%Nm;
 | 
					      int k = i%Nm;
 | 
				
			||||||
      h_Qt_jv[i]=Qt(j,k);
 | 
					      Qt_p[i]=Qt(j,k);
 | 
				
			||||||
  });
 | 
					  });
 | 
				
			||||||
  acceleratorCopyToDevice(&h_Qt_jv[0],Qt_p,Nm*Nm*sizeof(Coeff_t));
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Block the loop to keep storage footprint down
 | 
					  // Block the loop to keep storage footprint down
 | 
				
			||||||
  for(uint64_t s=0;s<oSites;s+=siteBlock){
 | 
					  for(uint64_t s=0;s<oSites;s+=siteBlock){
 | 
				
			||||||
@@ -110,7 +125,7 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
	for(int k=k0; k<k1; ++k){
 | 
						for(int k=k0; k<k1; ++k){
 | 
				
			||||||
	  auto tmp = coalescedRead(Bp[ss*nrot+j]);
 | 
						  auto tmp = coalescedRead(Bp[ss*nrot+j]);
 | 
				
			||||||
	  coalescedWrite(Bp[ss*nrot+j],tmp+ Qt_p[jj*Nm+k] * coalescedRead(basis_vp[k][sss]));
 | 
						  coalescedWrite(Bp[ss*nrot+j],tmp+ Qt_p[jj*Nm+k] * coalescedRead(basis_v[k][sss]));
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
      });
 | 
					      });
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -119,11 +134,12 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
 | 
				
			|||||||
	int jj  =j0+j;
 | 
						int jj  =j0+j;
 | 
				
			||||||
	int ss =sj/nrot;
 | 
						int ss =sj/nrot;
 | 
				
			||||||
	int sss=ss+s;
 | 
						int sss=ss+s;
 | 
				
			||||||
	coalescedWrite(basis_vp[jj][sss],coalescedRead(Bp[ss*nrot+j]));
 | 
						coalescedWrite(basis_v[jj][sss],coalescedRead(Bp[ss*nrot+j]));
 | 
				
			||||||
      });
 | 
					      });
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  for(int k=0;k<basis.size();k++) h_basis_v[k].ViewClose();
 | 
					  for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
// Extract a single rotated vector
 | 
					// Extract a single rotated vector
 | 
				
			||||||
@@ -136,19 +152,16 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  result.Checkerboard() = basis[0].Checkerboard();
 | 
					  result.Checkerboard() = basis[0].Checkerboard();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  hostVector<View>  h_basis_v(basis.size());
 | 
					  Vector<View> basis_v; basis_v.reserve(basis.size());
 | 
				
			||||||
  deviceVector<View> d_basis_v(basis.size());
 | 
					 | 
				
			||||||
  for(int k=0;k<basis.size();k++){
 | 
					  for(int k=0;k<basis.size();k++){
 | 
				
			||||||
    h_basis_v[k]=basis[k].View(AcceleratorRead);
 | 
					    basis_v.push_back(basis[k].View(AcceleratorRead));
 | 
				
			||||||
    acceleratorPut(d_basis_v[k],h_basis_v[k]);
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					 | 
				
			||||||
  vobj zz=Zero();
 | 
					  vobj zz=Zero();
 | 
				
			||||||
  deviceVector<double> Qt_jv(Nm);
 | 
					  Vector<double> Qt_jv(Nm);
 | 
				
			||||||
  double * Qt_j = & Qt_jv[0];
 | 
					  double * Qt_j = & Qt_jv[0];
 | 
				
			||||||
  for(int k=0;k<Nm;++k) acceleratorPut(Qt_j[k],Qt(j,k));
 | 
					  for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  auto basis_vp=& d_basis_v[0];
 | 
					  auto basis_vp=& basis_v[0];
 | 
				
			||||||
  autoView(result_v,result,AcceleratorWrite);
 | 
					  autoView(result_v,result,AcceleratorWrite);
 | 
				
			||||||
  accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
 | 
					  accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
 | 
				
			||||||
    vobj zzz=Zero();
 | 
					    vobj zzz=Zero();
 | 
				
			||||||
@@ -158,7 +171,7 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in
 | 
				
			|||||||
    }
 | 
					    }
 | 
				
			||||||
    coalescedWrite(result_v[ss], B);
 | 
					    coalescedWrite(result_v[ss], B);
 | 
				
			||||||
  });
 | 
					  });
 | 
				
			||||||
  for(int k=0;k<basis.size();k++) h_basis_v[k].ViewClose();
 | 
					  for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class Field>
 | 
					template<class Field>
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1,55 +0,0 @@
 | 
				
			|||||||
/*************************************************************************************
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: ./lib/lattice/Lattice_crc.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2021
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
*************************************************************************************/
 | 
					 | 
				
			||||||
/*  END LEGAL */
 | 
					 | 
				
			||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class vobj> void DumpSliceNorm(std::string s,const Lattice<vobj> &f,int mu=-1)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  auto ff = localNorm2(f);
 | 
					 | 
				
			||||||
  if ( mu==-1 ) mu = f.Grid()->Nd()-1;
 | 
					 | 
				
			||||||
  typedef typename vobj::tensor_reduced normtype;
 | 
					 | 
				
			||||||
  typedef typename normtype::scalar_object scalar;
 | 
					 | 
				
			||||||
  std::vector<scalar> sff;
 | 
					 | 
				
			||||||
  sliceSum(ff,sff,mu);
 | 
					 | 
				
			||||||
  for(int t=0;t<sff.size();t++){
 | 
					 | 
				
			||||||
    std::cout << s<<" "<<t<<" "<<sff[t]<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class vobj> uint32_t crc(const Lattice<vobj> & buf)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  autoView( buf_v , buf, CpuRead);
 | 
					 | 
				
			||||||
  return ::crc32(0L,(unsigned char *)&buf_v[0],(size_t)sizeof(vobj)*buf.oSites());
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#define CRC(U) std::cerr << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
@@ -32,6 +32,7 @@ template<class vobj>
 | 
				
			|||||||
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0) 
 | 
					static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0) 
 | 
				
			||||||
{    
 | 
					{    
 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					  typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
 | 
					  typedef typename vobj::scalar_type scalar_type;
 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
					  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
				
			||||||
@@ -81,6 +82,7 @@ template<class vobj>
 | 
				
			|||||||
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0) 
 | 
					static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0) 
 | 
				
			||||||
{    
 | 
					{    
 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					  typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
 | 
					  typedef typename vobj::scalar_type scalar_type;
 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
					  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
				
			||||||
@@ -128,6 +130,7 @@ template<class vobj>
 | 
				
			|||||||
static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog) 
 | 
					static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog) 
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					  typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
 | 
					  typedef typename vobj::scalar_type scalar_type;
 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  GridBase *FullGrid  = lhs.Grid();
 | 
					  GridBase *FullGrid  = lhs.Grid();
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -96,6 +96,9 @@ void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  GridBase *grid=l.Grid();
 | 
					  GridBase *grid=l.Grid();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  typedef typename vobj::scalar_type scalar_type;
 | 
				
			||||||
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  int Nsimd = grid->Nsimd();
 | 
					  int Nsimd = grid->Nsimd();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  assert( l.Checkerboard()== l.Grid()->CheckerBoard(site));
 | 
					  assert( l.Checkerboard()== l.Grid()->CheckerBoard(site));
 | 
				
			||||||
@@ -122,17 +125,14 @@ void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){
 | 
				
			|||||||
//////////////////////////////////////////////////////////
 | 
					//////////////////////////////////////////////////////////
 | 
				
			||||||
// Peek a scalar object from the SIMD array
 | 
					// Peek a scalar object from the SIMD array
 | 
				
			||||||
//////////////////////////////////////////////////////////
 | 
					//////////////////////////////////////////////////////////
 | 
				
			||||||
template<class vobj>
 | 
					 | 
				
			||||||
typename vobj::scalar_object peekSite(const Lattice<vobj> &l,const Coordinate &site){
 | 
					 | 
				
			||||||
  typename vobj::scalar_object s;
 | 
					 | 
				
			||||||
  peekSite(s,l,site);
 | 
					 | 
				
			||||||
  return s;
 | 
					 | 
				
			||||||
}        
 | 
					 | 
				
			||||||
template<class vobj,class sobj>
 | 
					template<class vobj,class sobj>
 | 
				
			||||||
void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
 | 
					void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
 | 
				
			||||||
        
 | 
					        
 | 
				
			||||||
  GridBase *grid=l.Grid();
 | 
					  GridBase *grid=l.Grid();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  typedef typename vobj::scalar_type scalar_type;
 | 
				
			||||||
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  int Nsimd = grid->Nsimd();
 | 
					  int Nsimd = grid->Nsimd();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  assert( l.Checkerboard() == l.Grid()->CheckerBoard(site));
 | 
					  assert( l.Checkerboard() == l.Grid()->CheckerBoard(site));
 | 
				
			||||||
@@ -165,7 +165,7 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  int Nsimd = grid->Nsimd();
 | 
					  int Nsimd = grid->Nsimd();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //  assert( l.Checkerboard()== grid->CheckerBoard(site));
 | 
					  assert( l.Checkerboard()== grid->CheckerBoard(site));
 | 
				
			||||||
  assert( sizeof(sobj)*Nsimd == sizeof(vobj));
 | 
					  assert( sizeof(sobj)*Nsimd == sizeof(vobj));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
					  static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
				
			||||||
@@ -173,13 +173,13 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
 | 
				
			|||||||
  idx= grid->iIndex(site);
 | 
					  idx= grid->iIndex(site);
 | 
				
			||||||
  odx= grid->oIndex(site);
 | 
					  odx= grid->oIndex(site);
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  const vector_type *vp = (const vector_type *) &l[odx];
 | 
					  scalar_type * vp = (scalar_type *)&l[odx];
 | 
				
			||||||
  scalar_type * pt = (scalar_type *)&s;
 | 
					  scalar_type * pt = (scalar_type *)&s;
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
  for(int w=0;w<words;w++){
 | 
					  for(int w=0;w<words;w++){
 | 
				
			||||||
    pt[w] = getlane(vp[w],idx);
 | 
					    pt[w] = vp[idx+w*Nsimd];
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  //  std::cout << "peekLocalSite "<<site<<" "<<odx<<","<<idx<<" "<<s<<std::endl;
 | 
					      
 | 
				
			||||||
  return;
 | 
					  return;
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
template<class vobj,class sobj>
 | 
					template<class vobj,class sobj>
 | 
				
			||||||
@@ -202,7 +202,7 @@ inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  int Nsimd = grid->Nsimd();
 | 
					  int Nsimd = grid->Nsimd();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //  assert( l.Checkerboard()== grid->CheckerBoard(site));
 | 
					  assert( l.Checkerboard()== grid->CheckerBoard(site));
 | 
				
			||||||
  assert( sizeof(sobj)*Nsimd == sizeof(vobj));
 | 
					  assert( sizeof(sobj)*Nsimd == sizeof(vobj));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
					  static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
				
			||||||
@@ -210,10 +210,10 @@ inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site)
 | 
				
			|||||||
  idx= grid->iIndex(site);
 | 
					  idx= grid->iIndex(site);
 | 
				
			||||||
  odx= grid->oIndex(site);
 | 
					  odx= grid->oIndex(site);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  vector_type * vp = (vector_type *)&l[odx];
 | 
					  scalar_type * vp = (scalar_type *)&l[odx];
 | 
				
			||||||
  scalar_type * pt = (scalar_type *)&s;
 | 
					  scalar_type * pt = (scalar_type *)&s;
 | 
				
			||||||
  for(int w=0;w<words;w++){
 | 
					  for(int w=0;w<words;w++){
 | 
				
			||||||
    putlane(vp[w],pt[w],idx);
 | 
					    vp[idx+w*Nsimd] = pt[w];
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  return;
 | 
					  return;
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -28,10 +28,6 @@ Author: Christoph Lehner <christoph@lhnr.de>
 | 
				
			|||||||
#if defined(GRID_CUDA)||defined(GRID_HIP)
 | 
					#if defined(GRID_CUDA)||defined(GRID_HIP)
 | 
				
			||||||
#include <Grid/lattice/Lattice_reduction_gpu.h>
 | 
					#include <Grid/lattice/Lattice_reduction_gpu.h>
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
#if defined(GRID_SYCL)
 | 
					 | 
				
			||||||
#include <Grid/lattice/Lattice_reduction_sycl.h>
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
#include <Grid/lattice/Lattice_slicesum_core.h>
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					NAMESPACE_BEGIN(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -46,7 +42,7 @@ inline typename vobj::scalar_object sum_cpu(const vobj *arg, Integer osites)
 | 
				
			|||||||
  //  const int Nsimd = vobj::Nsimd();
 | 
					  //  const int Nsimd = vobj::Nsimd();
 | 
				
			||||||
  const int nthread = GridThread::GetThreads();
 | 
					  const int nthread = GridThread::GetThreads();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  std::vector<sobj> sumarray(nthread);
 | 
					  Vector<sobj> sumarray(nthread);
 | 
				
			||||||
  for(int i=0;i<nthread;i++){
 | 
					  for(int i=0;i<nthread;i++){
 | 
				
			||||||
    sumarray[i]=Zero();
 | 
					    sumarray[i]=Zero();
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -75,7 +71,7 @@ inline typename vobj::scalar_objectD sumD_cpu(const vobj *arg, Integer osites)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  const int nthread = GridThread::GetThreads();
 | 
					  const int nthread = GridThread::GetThreads();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  std::vector<sobj> sumarray(nthread);
 | 
					  Vector<sobj> sumarray(nthread);
 | 
				
			||||||
  for(int i=0;i<nthread;i++){
 | 
					  for(int i=0;i<nthread;i++){
 | 
				
			||||||
    sumarray[i]=Zero();
 | 
					    sumarray[i]=Zero();
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -95,7 +91,10 @@ inline typename vobj::scalar_objectD sumD_cpu(const vobj *arg, Integer osites)
 | 
				
			|||||||
  for(int i=0;i<nthread;i++){
 | 
					  for(int i=0;i<nthread;i++){
 | 
				
			||||||
    ssum = ssum+sumarray[i];
 | 
					    ssum = ssum+sumarray[i];
 | 
				
			||||||
  } 
 | 
					  } 
 | 
				
			||||||
  return ssum;
 | 
					  
 | 
				
			||||||
 | 
					  typedef typename vobj::scalar_object ssobj;
 | 
				
			||||||
 | 
					  ssobj ret = ssum;
 | 
				
			||||||
 | 
					  return ret;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
/*
 | 
					/*
 | 
				
			||||||
Threaded max, don't use for now
 | 
					Threaded max, don't use for now
 | 
				
			||||||
@@ -128,7 +127,7 @@ inline Double max(const Double *arg, Integer osites)
 | 
				
			|||||||
template<class vobj>
 | 
					template<class vobj>
 | 
				
			||||||
inline typename vobj::scalar_object sum(const vobj *arg, Integer osites)
 | 
					inline typename vobj::scalar_object sum(const vobj *arg, Integer osites)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
#if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL)
 | 
					#if defined(GRID_CUDA)||defined(GRID_HIP)
 | 
				
			||||||
  return sum_gpu(arg,osites);
 | 
					  return sum_gpu(arg,osites);
 | 
				
			||||||
#else
 | 
					#else
 | 
				
			||||||
  return sum_cpu(arg,osites);
 | 
					  return sum_cpu(arg,osites);
 | 
				
			||||||
@@ -137,61 +136,25 @@ inline typename vobj::scalar_object sum(const vobj *arg, Integer osites)
 | 
				
			|||||||
template<class vobj>
 | 
					template<class vobj>
 | 
				
			||||||
inline typename vobj::scalar_objectD sumD(const vobj *arg, Integer osites)
 | 
					inline typename vobj::scalar_objectD sumD(const vobj *arg, Integer osites)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
#if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL)
 | 
					#if defined(GRID_CUDA)||defined(GRID_HIP)
 | 
				
			||||||
  return sumD_gpu(arg,osites);
 | 
					  return sumD_gpu(arg,osites);
 | 
				
			||||||
#else
 | 
					#else
 | 
				
			||||||
  return sumD_cpu(arg,osites);
 | 
					  return sumD_cpu(arg,osites);
 | 
				
			||||||
#endif  
 | 
					#endif  
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
template<class vobj>
 | 
					 | 
				
			||||||
inline typename vobj::scalar_objectD sumD_large(const vobj *arg, Integer osites)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
#if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL)
 | 
					 | 
				
			||||||
  return sumD_gpu_large(arg,osites);
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
  return sumD_cpu(arg,osites);
 | 
					 | 
				
			||||||
#endif  
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class vobj>
 | 
					 | 
				
			||||||
inline typename vobj::scalar_object rankSum(const Lattice<vobj> &arg)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  Integer osites = arg.Grid()->oSites();
 | 
					 | 
				
			||||||
#if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL)
 | 
					 | 
				
			||||||
  autoView( arg_v, arg, AcceleratorRead);
 | 
					 | 
				
			||||||
  return sum_gpu(&arg_v[0],osites);
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
  autoView(arg_v, arg, CpuRead);
 | 
					 | 
				
			||||||
  return sum_cpu(&arg_v[0],osites);
 | 
					 | 
				
			||||||
#endif  
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj>
 | 
					template<class vobj>
 | 
				
			||||||
inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
 | 
					inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  auto ssum = rankSum(arg);
 | 
					#if defined(GRID_CUDA)||defined(GRID_HIP)
 | 
				
			||||||
  arg.Grid()->GlobalSum(ssum);
 | 
					 | 
				
			||||||
  return ssum;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class vobj>
 | 
					 | 
				
			||||||
inline typename vobj::scalar_object rankSumLarge(const Lattice<vobj> &arg)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
#if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL)
 | 
					 | 
				
			||||||
  autoView( arg_v, arg, AcceleratorRead);
 | 
					  autoView( arg_v, arg, AcceleratorRead);
 | 
				
			||||||
  Integer osites = arg.Grid()->oSites();
 | 
					  Integer osites = arg.Grid()->oSites();
 | 
				
			||||||
  return sum_gpu_large(&arg_v[0],osites);
 | 
					  auto ssum= sum_gpu(&arg_v[0],osites);
 | 
				
			||||||
#else
 | 
					#else
 | 
				
			||||||
  autoView(arg_v, arg, CpuRead);
 | 
					  autoView(arg_v, arg, CpuRead);
 | 
				
			||||||
  Integer osites = arg.Grid()->oSites();
 | 
					  Integer osites = arg.Grid()->oSites();
 | 
				
			||||||
  return sum_cpu(&arg_v[0],osites);
 | 
					  auto ssum= sum_cpu(&arg_v[0],osites);
 | 
				
			||||||
#endif  
 | 
					#endif  
 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class vobj>
 | 
					 | 
				
			||||||
inline typename vobj::scalar_object sum_large(const Lattice<vobj> &arg)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  auto ssum = rankSumLarge(arg);
 | 
					 | 
				
			||||||
  arg.Grid()->GlobalSum(ssum);
 | 
					  arg.Grid()->GlobalSum(ssum);
 | 
				
			||||||
  return ssum;
 | 
					  return ssum;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
@@ -204,27 +167,6 @@ template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){
 | 
				
			|||||||
  return real(nrm); 
 | 
					  return real(nrm); 
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class Op,class T1>
 | 
					 | 
				
			||||||
inline auto norm2(const LatticeUnaryExpression<Op,T1> & expr)  ->RealD
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  return norm2(closure(expr));
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class Op,class T1,class T2>
 | 
					 | 
				
			||||||
inline auto norm2(const LatticeBinaryExpression<Op,T1,T2> & expr)      ->RealD
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  return norm2(closure(expr));
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class Op,class T1,class T2,class T3>
 | 
					 | 
				
			||||||
inline auto norm2(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)      ->RealD
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  return norm2(closure(expr));
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
//The global maximum of the site norm2
 | 
					//The global maximum of the site norm2
 | 
				
			||||||
template<class vobj> inline RealD maxLocalNorm2(const Lattice<vobj> &arg)
 | 
					template<class vobj> inline RealD maxLocalNorm2(const Lattice<vobj> &arg)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
@@ -255,6 +197,7 @@ template<class vobj> inline RealD maxLocalNorm2(const Lattice<vobj> &arg)
 | 
				
			|||||||
template<class vobj>
 | 
					template<class vobj>
 | 
				
			||||||
inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right)
 | 
					inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
 | 
					  typedef typename vobj::scalar_type scalar_type;
 | 
				
			||||||
  typedef typename vobj::vector_typeD vector_type;
 | 
					  typedef typename vobj::vector_typeD vector_type;
 | 
				
			||||||
  ComplexD  nrm;
 | 
					  ComplexD  nrm;
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
@@ -264,8 +207,8 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
 | 
				
			|||||||
  const uint64_t sites = grid->oSites();
 | 
					  const uint64_t sites = grid->oSites();
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  // Might make all code paths go this way.
 | 
					  // Might make all code paths go this way.
 | 
				
			||||||
  typedef decltype(innerProduct(vobj(),vobj())) inner_t;
 | 
					  typedef decltype(innerProductD(vobj(),vobj())) inner_t;
 | 
				
			||||||
  deviceVector<inner_t> inner_tmp(sites);
 | 
					  Vector<inner_t> inner_tmp(sites);
 | 
				
			||||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
					  auto inner_tmp_v = &inner_tmp[0];
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
@@ -273,63 +216,24 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
 | 
				
			|||||||
    autoView( right_v,right, AcceleratorRead);
 | 
					    autoView( right_v,right, AcceleratorRead);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // GPU - SIMT lane compliance...
 | 
					    // GPU - SIMT lane compliance...
 | 
				
			||||||
    accelerator_for( ss, sites, nsimd,{
 | 
					    accelerator_for( ss, sites, 1,{
 | 
				
			||||||
	auto x_l = left_v(ss);
 | 
						auto x_l = left_v[ss];
 | 
				
			||||||
	auto y_l = right_v(ss);
 | 
						auto y_l = right_v[ss];
 | 
				
			||||||
	coalescedWrite(inner_tmp_v[ss],innerProduct(x_l,y_l));
 | 
						inner_tmp_v[ss]=innerProductD(x_l,y_l);
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // This is in single precision and fails some tests
 | 
					  // This is in single precision and fails some tests
 | 
				
			||||||
  auto anrm = sumD(inner_tmp_v,sites);  
 | 
					  auto anrm = sum(inner_tmp_v,sites);  
 | 
				
			||||||
  nrm = anrm;
 | 
					  nrm = anrm;
 | 
				
			||||||
  return nrm;
 | 
					  return nrm;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class vobj>
 | 
					template<class vobj>
 | 
				
			||||||
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) {
 | 
					inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) {
 | 
				
			||||||
  GridBase *grid = left.Grid();
 | 
					  GridBase *grid = left.Grid();
 | 
				
			||||||
 | 
					 | 
				
			||||||
  bool ok;
 | 
					 | 
				
			||||||
#ifdef GRID_SYCL
 | 
					 | 
				
			||||||
  uint64_t csum=0;
 | 
					 | 
				
			||||||
  uint64_t csum2=0;
 | 
					 | 
				
			||||||
  if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    // Hack
 | 
					 | 
				
			||||||
    // Fast integer xor checksum. Can also be used in comms now.
 | 
					 | 
				
			||||||
    autoView(l_v,left,AcceleratorRead);
 | 
					 | 
				
			||||||
    Integer words = left.Grid()->oSites()*sizeof(vobj)/sizeof(uint64_t);
 | 
					 | 
				
			||||||
    uint64_t *base= (uint64_t *)&l_v[0];
 | 
					 | 
				
			||||||
    csum=svm_xor(base,words);
 | 
					 | 
				
			||||||
    ok = FlightRecorder::CsumLog(csum);
 | 
					 | 
				
			||||||
    if ( !ok ) {
 | 
					 | 
				
			||||||
      csum2=svm_xor(base,words);
 | 
					 | 
				
			||||||
      std::cerr<< " Bad CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
 | 
					 | 
				
			||||||
    } else {
 | 
					 | 
				
			||||||
      //      csum2=svm_xor(base,words);
 | 
					 | 
				
			||||||
      //      std::cerr<< " ok CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    assert(ok);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  FlightRecorder::StepLog("rank inner product");
 | 
					 | 
				
			||||||
  ComplexD nrm = rankInnerProduct(left,right);
 | 
					  ComplexD nrm = rankInnerProduct(left,right);
 | 
				
			||||||
  //  ComplexD nrmck=nrm;
 | 
					 | 
				
			||||||
  RealD local = real(nrm);
 | 
					 | 
				
			||||||
  ok = FlightRecorder::NormLog(real(nrm));
 | 
					 | 
				
			||||||
  if ( !ok ) {
 | 
					 | 
				
			||||||
    ComplexD nrm2 = rankInnerProduct(left,right);
 | 
					 | 
				
			||||||
    RealD local2 = real(nrm2);
 | 
					 | 
				
			||||||
    std::cerr<< " Bad NORM " << local << " recomputed as "<<local2<<std::endl;
 | 
					 | 
				
			||||||
    assert(ok);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  FlightRecorder::StepLog("Start global sum");
 | 
					 | 
				
			||||||
  //  grid->GlobalSumP2P(nrm);
 | 
					 | 
				
			||||||
  grid->GlobalSum(nrm);
 | 
					  grid->GlobalSum(nrm);
 | 
				
			||||||
  FlightRecorder::StepLog("Finished global sum");
 | 
					 | 
				
			||||||
  //  std::cout << " norm "<< nrm << " p2p norm "<<nrmck<<std::endl;
 | 
					 | 
				
			||||||
  FlightRecorder::ReductionLog(local,real(nrm)); 
 | 
					 | 
				
			||||||
  return nrm;
 | 
					  return nrm;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -353,7 +257,8 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
 | 
				
			|||||||
  conformable(z,x);
 | 
					  conformable(z,x);
 | 
				
			||||||
  conformable(x,y);
 | 
					  conformable(x,y);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //  typedef typename vobj::vector_typeD vector_type;
 | 
					  typedef typename vobj::scalar_type scalar_type;
 | 
				
			||||||
 | 
					  typedef typename vobj::vector_typeD vector_type;
 | 
				
			||||||
  RealD  nrm;
 | 
					  RealD  nrm;
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  GridBase *grid = x.Grid();
 | 
					  GridBase *grid = x.Grid();
 | 
				
			||||||
@@ -365,54 +270,18 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
 | 
				
			|||||||
  autoView( x_v, x, AcceleratorRead);
 | 
					  autoView( x_v, x, AcceleratorRead);
 | 
				
			||||||
  autoView( y_v, y, AcceleratorRead);
 | 
					  autoView( y_v, y, AcceleratorRead);
 | 
				
			||||||
  autoView( z_v, z, AcceleratorWrite);
 | 
					  autoView( z_v, z, AcceleratorWrite);
 | 
				
			||||||
  typedef decltype(innerProduct(x_v[0],y_v[0])) inner_t;
 | 
					
 | 
				
			||||||
  deviceVector<inner_t> inner_tmp;
 | 
					  typedef decltype(innerProductD(x_v[0],y_v[0])) inner_t;
 | 
				
			||||||
  inner_tmp.resize(sites);
 | 
					  Vector<inner_t> inner_tmp(sites);
 | 
				
			||||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
					  auto inner_tmp_v = &inner_tmp[0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  accelerator_for( ss, sites, nsimd,{
 | 
					  accelerator_for( ss, sites, 1,{
 | 
				
			||||||
      auto tmp = a*x_v(ss)+b*y_v(ss);
 | 
					      auto tmp = a*x_v[ss]+b*y_v[ss];
 | 
				
			||||||
      coalescedWrite(inner_tmp_v[ss],innerProduct(tmp,tmp));
 | 
					      inner_tmp_v[ss]=innerProductD(tmp,tmp);
 | 
				
			||||||
      coalescedWrite(z_v[ss],tmp);
 | 
					      z_v[ss]=tmp;
 | 
				
			||||||
  });
 | 
					  });
 | 
				
			||||||
  bool ok;
 | 
					  nrm = real(TensorRemove(sum(inner_tmp_v,sites)));
 | 
				
			||||||
#ifdef GRID_SYCL
 | 
					 | 
				
			||||||
  uint64_t csum=0;
 | 
					 | 
				
			||||||
  uint64_t csum2=0;
 | 
					 | 
				
			||||||
  if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    // z_v
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      Integer words = sites*sizeof(vobj)/sizeof(uint64_t);
 | 
					 | 
				
			||||||
      uint64_t *base= (uint64_t *)&z_v[0];
 | 
					 | 
				
			||||||
      csum=svm_xor(base,words);
 | 
					 | 
				
			||||||
      ok = FlightRecorder::CsumLog(csum);
 | 
					 | 
				
			||||||
      if ( !ok ) {
 | 
					 | 
				
			||||||
	csum2=svm_xor(base,words);
 | 
					 | 
				
			||||||
	std::cerr<< " Bad z_v CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      assert(ok);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    // inner_v
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
      Integer words = sites*sizeof(inner_t)/sizeof(uint64_t);
 | 
					 | 
				
			||||||
      uint64_t *base= (uint64_t *)&inner_tmp_v[0];
 | 
					 | 
				
			||||||
      csum=svm_xor(base,words);
 | 
					 | 
				
			||||||
      ok = FlightRecorder::CsumLog(csum);
 | 
					 | 
				
			||||||
      if ( !ok ) {
 | 
					 | 
				
			||||||
	csum2=svm_xor(base,words);
 | 
					 | 
				
			||||||
	std::cerr<< " Bad inner_tmp_v CSUM " << std::hex<< csum << " recomputed as "<<csum2<<std::dec<<std::endl;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      assert(ok);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
  nrm = real(TensorRemove(sumD(inner_tmp_v,sites)));
 | 
					 | 
				
			||||||
  ok = FlightRecorder::NormLog(real(nrm));
 | 
					 | 
				
			||||||
  assert(ok);
 | 
					 | 
				
			||||||
  RealD local = real(nrm);
 | 
					 | 
				
			||||||
  grid->GlobalSum(nrm);
 | 
					  grid->GlobalSum(nrm);
 | 
				
			||||||
  FlightRecorder::ReductionLog(local,real(nrm));
 | 
					 | 
				
			||||||
  return nrm; 
 | 
					  return nrm; 
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 
 | 
					 
 | 
				
			||||||
@@ -421,8 +290,9 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti
 | 
				
			|||||||
{
 | 
					{
 | 
				
			||||||
  conformable(left,right);
 | 
					  conformable(left,right);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  typedef typename vobj::scalar_type scalar_type;
 | 
				
			||||||
  typedef typename vobj::vector_typeD vector_type;
 | 
					  typedef typename vobj::vector_typeD vector_type;
 | 
				
			||||||
  std::vector<ComplexD> tmp(2);
 | 
					  Vector<ComplexD> tmp(2);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GridBase *grid = left.Grid();
 | 
					  GridBase *grid = left.Grid();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -432,8 +302,8 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti
 | 
				
			|||||||
  // GPU
 | 
					  // GPU
 | 
				
			||||||
  typedef decltype(innerProductD(vobj(),vobj())) inner_t;
 | 
					  typedef decltype(innerProductD(vobj(),vobj())) inner_t;
 | 
				
			||||||
  typedef decltype(innerProductD(vobj(),vobj())) norm_t;
 | 
					  typedef decltype(innerProductD(vobj(),vobj())) norm_t;
 | 
				
			||||||
  deviceVector<inner_t> inner_tmp(sites);
 | 
					  Vector<inner_t> inner_tmp(sites);
 | 
				
			||||||
  deviceVector<norm_t>  norm_tmp(sites);
 | 
					  Vector<norm_t>  norm_tmp(sites);
 | 
				
			||||||
  auto inner_tmp_v = &inner_tmp[0];
 | 
					  auto inner_tmp_v = &inner_tmp[0];
 | 
				
			||||||
  auto norm_tmp_v = &norm_tmp[0];
 | 
					  auto norm_tmp_v = &norm_tmp[0];
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
@@ -483,9 +353,7 @@ inline auto sum(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)
 | 
				
			|||||||
// sliceSum, sliceInnerProduct, sliceAxpy, sliceNorm etc...
 | 
					// sliceSum, sliceInnerProduct, sliceAxpy, sliceNorm etc...
 | 
				
			||||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					//////////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,
 | 
					template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<typename vobj::scalar_object> &result,int orthogdim)
 | 
				
			||||||
					  std::vector<typename vobj::scalar_object> &result,
 | 
					 | 
				
			||||||
					  int orthogdim)
 | 
					 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  ///////////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////////
 | 
				
			||||||
  // FIXME precision promoted summation
 | 
					  // FIXME precision promoted summation
 | 
				
			||||||
@@ -493,7 +361,6 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,
 | 
				
			|||||||
  // But easily avoided by using double precision fields
 | 
					  // But easily avoided by using double precision fields
 | 
				
			||||||
  ///////////////////////////////////////////////////////
 | 
					  ///////////////////////////////////////////////////////
 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					  typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
  typedef typename vobj::scalar_object::scalar_type scalar_type;
 | 
					 | 
				
			||||||
  GridBase  *grid = Data.Grid();
 | 
					  GridBase  *grid = Data.Grid();
 | 
				
			||||||
  assert(grid!=NULL);
 | 
					  assert(grid!=NULL);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -507,8 +374,8 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,
 | 
				
			|||||||
  int ld=grid->_ldimensions[orthogdim];
 | 
					  int ld=grid->_ldimensions[orthogdim];
 | 
				
			||||||
  int rd=grid->_rdimensions[orthogdim];
 | 
					  int rd=grid->_rdimensions[orthogdim];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  std::vector<vobj> lvSum(rd); // will locally sum vectors first
 | 
					  Vector<vobj> lvSum(rd); // will locally sum vectors first
 | 
				
			||||||
  std::vector<sobj> lsSum(ld,Zero());                    // sum across these down to scalars
 | 
					  Vector<sobj> lsSum(ld,Zero());                    // sum across these down to scalars
 | 
				
			||||||
  ExtractBuffer<sobj> extracted(Nsimd);                  // splitting the SIMD
 | 
					  ExtractBuffer<sobj> extracted(Nsimd);                  // splitting the SIMD
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  result.resize(fd); // And then global sum to return the same vector to every node 
 | 
					  result.resize(fd); // And then global sum to return the same vector to every node 
 | 
				
			||||||
@@ -519,10 +386,19 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,
 | 
				
			|||||||
  int e1=    grid->_slice_nblock[orthogdim];
 | 
					  int e1=    grid->_slice_nblock[orthogdim];
 | 
				
			||||||
  int e2=    grid->_slice_block [orthogdim];
 | 
					  int e2=    grid->_slice_block [orthogdim];
 | 
				
			||||||
  int stride=grid->_slice_stride[orthogdim];
 | 
					  int stride=grid->_slice_stride[orthogdim];
 | 
				
			||||||
  int ostride=grid->_ostride[orthogdim];
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  //Reduce Data down to lvSum
 | 
					  // sum over reduced dimension planes, breaking out orthog dir
 | 
				
			||||||
  sliceSumReduction(Data,lvSum,rd, e1,e2,stride,ostride,Nsimd);
 | 
					  // Parallel over orthog direction
 | 
				
			||||||
 | 
					  autoView( Data_v, Data, CpuRead);
 | 
				
			||||||
 | 
					  thread_for( r,rd, {
 | 
				
			||||||
 | 
					    int so=r*grid->_ostride[orthogdim]; // base offset for start of plane 
 | 
				
			||||||
 | 
					    for(int n=0;n<e1;n++){
 | 
				
			||||||
 | 
					      for(int b=0;b<e2;b++){
 | 
				
			||||||
 | 
						int ss= so+n*stride+b;
 | 
				
			||||||
 | 
						lvSum[r]=lvSum[r]+Data_v[ss];
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  });
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Sum across simd lanes in the plane, breaking out orthog dir.
 | 
					  // Sum across simd lanes in the plane, breaking out orthog dir.
 | 
				
			||||||
  Coordinate icoor(Nd);
 | 
					  Coordinate icoor(Nd);
 | 
				
			||||||
@@ -543,45 +419,22 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  // sum over nodes.
 | 
					  // sum over nodes.
 | 
				
			||||||
 | 
					  sobj gsum;
 | 
				
			||||||
  for(int t=0;t<fd;t++){
 | 
					  for(int t=0;t<fd;t++){
 | 
				
			||||||
    int pt = t/ld; // processor plane
 | 
					    int pt = t/ld; // processor plane
 | 
				
			||||||
    int lt = t%ld;
 | 
					    int lt = t%ld;
 | 
				
			||||||
    if ( pt == grid->_processor_coor[orthogdim] ) {
 | 
					    if ( pt == grid->_processor_coor[orthogdim] ) {
 | 
				
			||||||
      result[t]=lsSum[lt];
 | 
					      gsum=lsSum[lt];
 | 
				
			||||||
    } else {
 | 
					    } else {
 | 
				
			||||||
      result[t]=Zero();
 | 
					      gsum=Zero();
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    grid->GlobalSum(gsum);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    result[t]=gsum;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  scalar_type * ptr = (scalar_type *) &result[0];
 | 
					 | 
				
			||||||
  int words = fd*sizeof(sobj)/sizeof(scalar_type);
 | 
					 | 
				
			||||||
  grid->GlobalSumVector(ptr, words);
 | 
					 | 
				
			||||||
  //  std::cout << GridLogMessage << " sliceSum local"<<t_sum<<" us, host+mpi "<<t_rest<<std::endl;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
template<class vobj> inline
 | 
					 | 
				
			||||||
std::vector<typename vobj::scalar_object> 
 | 
					 | 
				
			||||||
sliceSum(const Lattice<vobj> &Data,int orthogdim)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  std::vector<typename vobj::scalar_object> result;
 | 
					 | 
				
			||||||
  sliceSum(Data,result,orthogdim);
 | 
					 | 
				
			||||||
  return result;
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
/*
 | 
					 | 
				
			||||||
Reimplement
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
1)
 | 
					 | 
				
			||||||
template<class vobj>
 | 
					 | 
				
			||||||
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0) 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
2)
 | 
					 | 
				
			||||||
template<class vobj>
 | 
					 | 
				
			||||||
static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog) 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
3)
 | 
					 | 
				
			||||||
-- Make Slice Mul Matrix call sliceMaddMatrix
 | 
					 | 
				
			||||||
 */
 | 
					 | 
				
			||||||
template<class vobj>
 | 
					template<class vobj>
 | 
				
			||||||
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim) 
 | 
					static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim) 
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
@@ -601,8 +454,8 @@ static void sliceInnerProductVector( std::vector<ComplexD> & result, const Latti
 | 
				
			|||||||
  int ld=grid->_ldimensions[orthogdim];
 | 
					  int ld=grid->_ldimensions[orthogdim];
 | 
				
			||||||
  int rd=grid->_rdimensions[orthogdim];
 | 
					  int rd=grid->_rdimensions[orthogdim];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  std::vector<vector_type> lvSum(rd); // will locally sum vectors first
 | 
					  Vector<vector_type> lvSum(rd); // will locally sum vectors first
 | 
				
			||||||
  std::vector<scalar_type > lsSum(ld,scalar_type(0.0));                    // sum across these down to scalars
 | 
					  Vector<scalar_type > lsSum(ld,scalar_type(0.0));                    // sum across these down to scalars
 | 
				
			||||||
  ExtractBuffer<iScalar<scalar_type> > extracted(Nsimd);   // splitting the SIMD  
 | 
					  ExtractBuffer<iScalar<scalar_type> > extracted(Nsimd);   // splitting the SIMD  
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  result.resize(fd); // And then global sum to return the same vector to every node for IO to file
 | 
					  result.resize(fd); // And then global sum to return the same vector to every node for IO to file
 | 
				
			||||||
@@ -686,7 +539,6 @@ template<class vobj>
 | 
				
			|||||||
static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice<vobj> &X,const Lattice<vobj> &Y,
 | 
					static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice<vobj> &X,const Lattice<vobj> &Y,
 | 
				
			||||||
			    int orthogdim,RealD scale=1.0) 
 | 
								    int orthogdim,RealD scale=1.0) 
 | 
				
			||||||
{    
 | 
					{    
 | 
				
			||||||
  // perhaps easier to just promote A to a field and use regular madd
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					  typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					  typedef typename vobj::scalar_type scalar_type;
 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
@@ -717,7 +569,8 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice
 | 
				
			|||||||
    for(int l=0;l<Nsimd;l++){
 | 
					    for(int l=0;l<Nsimd;l++){
 | 
				
			||||||
      grid->iCoorFromIindex(icoor,l);
 | 
					      grid->iCoorFromIindex(icoor,l);
 | 
				
			||||||
      int ldx =r+icoor[orthogdim]*rd;
 | 
					      int ldx =r+icoor[orthogdim]*rd;
 | 
				
			||||||
      av.putlane(scalar_type(a[ldx])*zscale,l);
 | 
					      scalar_type *as =(scalar_type *)&av;
 | 
				
			||||||
 | 
					      as[l] = scalar_type(a[ldx])*zscale;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    tensor_reduced at; at=av;
 | 
					    tensor_reduced at; at=av;
 | 
				
			||||||
@@ -732,96 +585,206 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
inline GridBase         *makeSubSliceGrid(const GridBase *BlockSolverGrid,int Orthog)
 | 
					inline GridBase         *makeSubSliceGrid(const GridBase *BlockSolverGrid,int Orthog)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  int NN    = BlockSolverGrid->_ndimension;
 | 
					  int NN    = BlockSolverGrid->_ndimension;
 | 
				
			||||||
  int nsimd = BlockSolverGrid->Nsimd();
 | 
					  int nsimd = BlockSolverGrid->Nsimd();
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  std::vector<int> latt_phys(NN-1);
 | 
					  std::vector<int> latt_phys(0);
 | 
				
			||||||
  Coordinate simd_phys;
 | 
					  std::vector<int> simd_phys(0);
 | 
				
			||||||
  std::vector<int>  mpi_phys(NN-1);
 | 
					  std::vector<int>  mpi_phys(0);
 | 
				
			||||||
  Coordinate checker_dim_mask(NN-1);
 | 
					 | 
				
			||||||
  int checker_dim=-1;
 | 
					 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  int dd;
 | 
					 | 
				
			||||||
  for(int d=0;d<NN;d++){
 | 
					  for(int d=0;d<NN;d++){
 | 
				
			||||||
    if( d!=Orthog ) { 
 | 
					    if( d!=Orthog ) { 
 | 
				
			||||||
      latt_phys[dd]=BlockSolverGrid->_fdimensions[d];
 | 
					      latt_phys.push_back(BlockSolverGrid->_fdimensions[d]);
 | 
				
			||||||
      mpi_phys[dd] =BlockSolverGrid->_processors[d];
 | 
					      simd_phys.push_back(BlockSolverGrid->_simd_layout[d]);
 | 
				
			||||||
      checker_dim_mask[dd] = BlockSolverGrid->_checker_dim_mask[d];
 | 
					      mpi_phys.push_back(BlockSolverGrid->_processors[d]);
 | 
				
			||||||
      if ( d == BlockSolverGrid->_checker_dim ) checker_dim = dd;
 | 
					 | 
				
			||||||
      dd++;
 | 
					 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  simd_phys=GridDefaultSimd(latt_phys.size(),nsimd);
 | 
					  return (GridBase *)new GridCartesian(latt_phys,simd_phys,mpi_phys); 
 | 
				
			||||||
  GridCartesian *tmp         = new GridCartesian(latt_phys,simd_phys,mpi_phys);
 | 
					 | 
				
			||||||
  if(BlockSolverGrid->_isCheckerBoarded) {
 | 
					 | 
				
			||||||
    GridRedBlackCartesian *ret = new GridRedBlackCartesian(tmp,checker_dim_mask,checker_dim);
 | 
					 | 
				
			||||||
    delete tmp;
 | 
					 | 
				
			||||||
    return (GridBase *) ret;
 | 
					 | 
				
			||||||
  } else { 
 | 
					 | 
				
			||||||
    return (GridBase *) tmp;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj>
 | 
					template<class vobj>
 | 
				
			||||||
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0) 
 | 
					static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0) 
 | 
				
			||||||
{    
 | 
					{    
 | 
				
			||||||
  GridBase *FullGrid = X.Grid();
 | 
					 | 
				
			||||||
  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  Lattice<vobj> Ys(SliceGrid);
 | 
					 | 
				
			||||||
  Lattice<vobj> Rs(SliceGrid);
 | 
					 | 
				
			||||||
  Lattice<vobj> Xs(SliceGrid);
 | 
					 | 
				
			||||||
  Lattice<vobj> RR(FullGrid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  RR = R; // Copies checkerboard for insert
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					  typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
 | 
					  typedef typename vobj::scalar_type scalar_type;
 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
  int Nslice = X.Grid()->GlobalDimensions()[Orthog];
 | 
					
 | 
				
			||||||
  for(int i=0;i<Nslice;i++){
 | 
					  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
				
			||||||
    ExtractSlice(Ys,Y,i,Orthog);
 | 
					
 | 
				
			||||||
    ExtractSlice(Rs,R,i,Orthog);
 | 
					  GridBase *FullGrid  = X.Grid();
 | 
				
			||||||
    Rs=Ys;
 | 
					  //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
 | 
				
			||||||
    for(int j=0;j<Nslice;j++){
 | 
					
 | 
				
			||||||
      ExtractSlice(Xs,X,j,Orthog);
 | 
					  //  Lattice<vobj> Xslice(SliceGrid);
 | 
				
			||||||
      Rs = Rs + Xs*(scale*aa(j,i));
 | 
					  //  Lattice<vobj> Rslice(SliceGrid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
				
			||||||
 | 
					  //  int nh =  FullGrid->_ndimension;
 | 
				
			||||||
 | 
					  //  int nl = SliceGrid->_ndimension;
 | 
				
			||||||
 | 
					  //  int nl = nh-1;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  //FIXME package in a convenient iterator
 | 
				
			||||||
 | 
					  //Should loop over a plane orthogonal to direction "Orthog"
 | 
				
			||||||
 | 
					  int stride=FullGrid->_slice_stride[Orthog];
 | 
				
			||||||
 | 
					  int block =FullGrid->_slice_block [Orthog];
 | 
				
			||||||
 | 
					  int nblock=FullGrid->_slice_nblock[Orthog];
 | 
				
			||||||
 | 
					  int ostride=FullGrid->_ostride[Orthog];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  autoView( X_v, X, CpuRead);
 | 
				
			||||||
 | 
					  autoView( Y_v, Y, CpuRead);
 | 
				
			||||||
 | 
					  autoView( R_v, R, CpuWrite);
 | 
				
			||||||
 | 
					  thread_region
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    Vector<vobj> s_x(Nblock);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    thread_for_collapse_in_region(2, n,nblock, {
 | 
				
			||||||
 | 
					     for(int b=0;b<block;b++){
 | 
				
			||||||
 | 
					      int o  = n*stride + b;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      for(int i=0;i<Nblock;i++){
 | 
				
			||||||
 | 
						s_x[i] = X_v[o+i*ostride];
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
    InsertSlice(Rs,RR,i,Orthog);
 | 
					
 | 
				
			||||||
 | 
					      vobj dot;
 | 
				
			||||||
 | 
					      for(int i=0;i<Nblock;i++){
 | 
				
			||||||
 | 
						dot = Y_v[o+i*ostride];
 | 
				
			||||||
 | 
						for(int j=0;j<Nblock;j++){
 | 
				
			||||||
 | 
						  dot = dot + s_x[j]*(scale*aa(j,i));
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						R_v[o+i*ostride]=dot;
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    }});
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  R=RR; // Copy back handles arguments aliasing case
 | 
					 | 
				
			||||||
  delete SliceGrid;
 | 
					 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj>
 | 
					template<class vobj>
 | 
				
			||||||
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0) 
 | 
					static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0) 
 | 
				
			||||||
{    
 | 
					{    
 | 
				
			||||||
  R=Zero();
 | 
					  typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
  sliceMaddMatrix(R,aa,X,R,Orthog,scale);
 | 
					  typedef typename vobj::scalar_type scalar_type;
 | 
				
			||||||
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  int Nblock = X.Grid()->GlobalDimensions()[Orthog];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  GridBase *FullGrid  = X.Grid();
 | 
				
			||||||
 | 
					  //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
 | 
				
			||||||
 | 
					  //  Lattice<vobj> Xslice(SliceGrid);
 | 
				
			||||||
 | 
					  //  Lattice<vobj> Rslice(SliceGrid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
				
			||||||
 | 
					  //  int nh =  FullGrid->_ndimension;
 | 
				
			||||||
 | 
					  //  int nl = SliceGrid->_ndimension;
 | 
				
			||||||
 | 
					  //  int nl=1;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  //FIXME package in a convenient iterator
 | 
				
			||||||
 | 
					  // thread_for2d_in_region
 | 
				
			||||||
 | 
					  //Should loop over a plane orthogonal to direction "Orthog"
 | 
				
			||||||
 | 
					  int stride=FullGrid->_slice_stride[Orthog];
 | 
				
			||||||
 | 
					  int block =FullGrid->_slice_block [Orthog];
 | 
				
			||||||
 | 
					  int nblock=FullGrid->_slice_nblock[Orthog];
 | 
				
			||||||
 | 
					  int ostride=FullGrid->_ostride[Orthog];
 | 
				
			||||||
 | 
					  autoView( R_v, R, CpuWrite);
 | 
				
			||||||
 | 
					  autoView( X_v, X, CpuRead);
 | 
				
			||||||
 | 
					  thread_region
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    std::vector<vobj> s_x(Nblock);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    thread_for_collapse_in_region( 2 ,n,nblock,{
 | 
				
			||||||
 | 
					    for(int b=0;b<block;b++){
 | 
				
			||||||
 | 
					      int o  = n*stride + b;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      for(int i=0;i<Nblock;i++){
 | 
				
			||||||
 | 
						s_x[i] = X_v[o+i*ostride];
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      vobj dot;
 | 
				
			||||||
 | 
					      for(int i=0;i<Nblock;i++){
 | 
				
			||||||
 | 
						dot = s_x[0]*(scale*aa(0,i));
 | 
				
			||||||
 | 
						for(int j=1;j<Nblock;j++){
 | 
				
			||||||
 | 
						  dot = dot + s_x[j]*(scale*aa(j,i));
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						R_v[o+i*ostride]=dot;
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    }});
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj>
 | 
					template<class vobj>
 | 
				
			||||||
static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog) 
 | 
					static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog) 
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  GridBase *SliceGrid = makeSubSliceGrid(lhs.Grid(),Orthog);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  Lattice<vobj> ls(SliceGrid);
 | 
					 | 
				
			||||||
  Lattice<vobj> rs(SliceGrid);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					  typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
 | 
					  typedef typename vobj::scalar_type scalar_type;
 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
  int Nslice = lhs.Grid()->GlobalDimensions()[Orthog];
 | 
					  
 | 
				
			||||||
  mat = Eigen::MatrixXcd::Zero(Nslice,Nslice);
 | 
					  GridBase *FullGrid  = lhs.Grid();
 | 
				
			||||||
  for(int s=0;s<Nslice;s++){
 | 
					  //  GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
 | 
				
			||||||
    ExtractSlice(ls,lhs,s,Orthog);
 | 
					  
 | 
				
			||||||
    for(int ss=0;ss<Nslice;ss++){
 | 
					  int Nblock = FullGrid->GlobalDimensions()[Orthog];
 | 
				
			||||||
      ExtractSlice(rs,rhs,ss,Orthog);
 | 
					  
 | 
				
			||||||
      mat(s,ss) = innerProduct(ls,rs);
 | 
					  //  Lattice<vobj> Lslice(SliceGrid);
 | 
				
			||||||
 | 
					  //  Lattice<vobj> Rslice(SliceGrid);
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
 | 
					  mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  assert( FullGrid->_simd_layout[Orthog]==1);
 | 
				
			||||||
 | 
					  //  int nh =  FullGrid->_ndimension;
 | 
				
			||||||
 | 
					  //  int nl = SliceGrid->_ndimension;
 | 
				
			||||||
 | 
					  //  int nl = nh-1;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  //FIXME package in a convenient iterator
 | 
				
			||||||
 | 
					  //Should loop over a plane orthogonal to direction "Orthog"
 | 
				
			||||||
 | 
					  int stride=FullGrid->_slice_stride[Orthog];
 | 
				
			||||||
 | 
					  int block =FullGrid->_slice_block [Orthog];
 | 
				
			||||||
 | 
					  int nblock=FullGrid->_slice_nblock[Orthog];
 | 
				
			||||||
 | 
					  int ostride=FullGrid->_ostride[Orthog];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  typedef typename vobj::vector_typeD vector_typeD;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  autoView( lhs_v, lhs, CpuRead);
 | 
				
			||||||
 | 
					  autoView( rhs_v, rhs, CpuRead);
 | 
				
			||||||
 | 
					  thread_region
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    std::vector<vobj> Left(Nblock);
 | 
				
			||||||
 | 
					    std::vector<vobj> Right(Nblock);
 | 
				
			||||||
 | 
					    Eigen::MatrixXcd  mat_thread = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    thread_for_collapse_in_region( 2, n,nblock,{
 | 
				
			||||||
 | 
					    for(int b=0;b<block;b++){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      int o  = n*stride + b;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      for(int i=0;i<Nblock;i++){
 | 
				
			||||||
 | 
						Left [i] = lhs_v[o+i*ostride];
 | 
				
			||||||
 | 
						Right[i] = rhs_v[o+i*ostride];
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      for(int i=0;i<Nblock;i++){
 | 
				
			||||||
 | 
					      for(int j=0;j<Nblock;j++){
 | 
				
			||||||
 | 
						auto tmp = innerProduct(Left[i],Right[j]);
 | 
				
			||||||
 | 
						auto rtmp = TensorRemove(tmp);
 | 
				
			||||||
 | 
						auto red  =  Reduce(rtmp);
 | 
				
			||||||
 | 
						mat_thread(i,j) += std::complex<double>(real(red),imag(red));
 | 
				
			||||||
 | 
					      }}
 | 
				
			||||||
 | 
					    }});
 | 
				
			||||||
 | 
					    thread_critical
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      mat += mat_thread;
 | 
				
			||||||
    }  
 | 
					    }  
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  delete SliceGrid;
 | 
					
 | 
				
			||||||
 | 
					  for(int i=0;i<Nblock;i++){
 | 
				
			||||||
 | 
					  for(int j=0;j<Nblock;j++){
 | 
				
			||||||
 | 
					    ComplexD sum = mat(i,j);
 | 
				
			||||||
 | 
					    FullGrid->GlobalSum(sum);
 | 
				
			||||||
 | 
					    mat(i,j)=sum;
 | 
				
			||||||
 | 
					  }}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  return;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -23,27 +23,28 @@ unsigned int nextPow2(Iterator x) {
 | 
				
			|||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template <class Iterator>
 | 
					template <class Iterator>
 | 
				
			||||||
int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &threads, Iterator &blocks) {
 | 
					void getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &threads, Iterator &blocks) {
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  int device;
 | 
					  int device;
 | 
				
			||||||
#ifdef GRID_CUDA
 | 
					#ifdef GRID_CUDA
 | 
				
			||||||
  cudaGetDevice(&device);
 | 
					  cudaGetDevice(&device);
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
#ifdef GRID_HIP
 | 
					#ifdef GRID_HIP
 | 
				
			||||||
  auto r=hipGetDevice(&device);
 | 
					  hipGetDevice(&device);
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  Iterator warpSize            = gpu_props[device].warpSize;
 | 
					  Iterator warpSize            = gpu_props[device].warpSize;
 | 
				
			||||||
  Iterator sharedMemPerBlock   = gpu_props[device].sharedMemPerBlock;
 | 
					  Iterator sharedMemPerBlock   = gpu_props[device].sharedMemPerBlock;
 | 
				
			||||||
  Iterator maxThreadsPerBlock  = gpu_props[device].maxThreadsPerBlock;
 | 
					  Iterator maxThreadsPerBlock  = gpu_props[device].maxThreadsPerBlock;
 | 
				
			||||||
  Iterator multiProcessorCount = gpu_props[device].multiProcessorCount;
 | 
					  Iterator multiProcessorCount = gpu_props[device].multiProcessorCount;
 | 
				
			||||||
  /*  
 | 
					  
 | 
				
			||||||
  std::cout << GridLogDebug << "GPU has:" << std::endl;
 | 
					  std::cout << GridLogDebug << "GPU has:" << std::endl;
 | 
				
			||||||
  std::cout << GridLogDebug << "\twarpSize            = " << warpSize << std::endl;
 | 
					  std::cout << GridLogDebug << "\twarpSize            = " << warpSize << std::endl;
 | 
				
			||||||
  std::cout << GridLogDebug << "\tsharedMemPerBlock   = " << sharedMemPerBlock << std::endl;
 | 
					  std::cout << GridLogDebug << "\tsharedMemPerBlock   = " << sharedMemPerBlock << std::endl;
 | 
				
			||||||
  std::cout << GridLogDebug << "\tmaxThreadsPerBlock  = " << maxThreadsPerBlock << std::endl;
 | 
					  std::cout << GridLogDebug << "\tmaxThreadsPerBlock  = " << maxThreadsPerBlock << std::endl;
 | 
				
			||||||
 | 
					  std::cout << GridLogDebug << "\tmaxThreadsPerBlock  = " << warpSize << std::endl;
 | 
				
			||||||
  std::cout << GridLogDebug << "\tmultiProcessorCount = " << multiProcessorCount << std::endl;
 | 
					  std::cout << GridLogDebug << "\tmultiProcessorCount = " << multiProcessorCount << std::endl;
 | 
				
			||||||
  */  
 | 
					  
 | 
				
			||||||
  if (warpSize != WARP_SIZE) {
 | 
					  if (warpSize != WARP_SIZE) {
 | 
				
			||||||
    std::cout << GridLogError << "The warp size of the GPU in use does not match the warp size set when compiling Grid." << std::endl;
 | 
					    std::cout << GridLogError << "The warp size of the GPU in use does not match the warp size set when compiling Grid." << std::endl;
 | 
				
			||||||
    exit(EXIT_FAILURE);
 | 
					    exit(EXIT_FAILURE);
 | 
				
			||||||
@@ -51,14 +52,10 @@ int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &
 | 
				
			|||||||
  
 | 
					  
 | 
				
			||||||
  // let the number of threads in a block be a multiple of 2, starting from warpSize
 | 
					  // let the number of threads in a block be a multiple of 2, starting from warpSize
 | 
				
			||||||
  threads = warpSize;
 | 
					  threads = warpSize;
 | 
				
			||||||
  if ( threads*sizeofsobj > sharedMemPerBlock ) {
 | 
					 | 
				
			||||||
    std::cout << GridLogError << "The object is too large for the shared memory." << std::endl;
 | 
					 | 
				
			||||||
    return 0;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  while( 2*threads*sizeofsobj < sharedMemPerBlock && 2*threads <= maxThreadsPerBlock ) threads *= 2;
 | 
					  while( 2*threads*sizeofsobj < sharedMemPerBlock && 2*threads <= maxThreadsPerBlock ) threads *= 2;
 | 
				
			||||||
  // keep all the streaming multiprocessors busy
 | 
					  // keep all the streaming multiprocessors busy
 | 
				
			||||||
  blocks = nextPow2(multiProcessorCount);
 | 
					  blocks = nextPow2(multiProcessorCount);
 | 
				
			||||||
  return 1;
 | 
					  
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template <class sobj, class Iterator>
 | 
					template <class sobj, class Iterator>
 | 
				
			||||||
@@ -198,7 +195,7 @@ __global__ void reduceKernel(const vobj *lat, sobj *buffer, Iterator n) {
 | 
				
			|||||||
// Possibly promote to double and sum
 | 
					// Possibly promote to double and sum
 | 
				
			||||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					/////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
template <class vobj>
 | 
					template <class vobj>
 | 
				
			||||||
inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osites) 
 | 
					inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites) 
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  typedef typename vobj::scalar_objectD sobj;
 | 
					  typedef typename vobj::scalar_objectD sobj;
 | 
				
			||||||
  typedef decltype(lat) Iterator;
 | 
					  typedef decltype(lat) Iterator;
 | 
				
			||||||
@@ -207,67 +204,17 @@ inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osi
 | 
				
			|||||||
  Integer size = osites*nsimd;
 | 
					  Integer size = osites*nsimd;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  Integer numThreads, numBlocks;
 | 
					  Integer numThreads, numBlocks;
 | 
				
			||||||
  int ok = getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
 | 
					  getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
 | 
				
			||||||
  assert(ok);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  Integer smemSize = numThreads * sizeof(sobj);
 | 
					  Integer smemSize = numThreads * sizeof(sobj);
 | 
				
			||||||
  // Move out of UVM
 | 
					
 | 
				
			||||||
  // Turns out I had messed up the synchronise after move to compute stream
 | 
					  Vector<sobj> buffer(numBlocks);
 | 
				
			||||||
  // as running this on the default stream fools the synchronise
 | 
					 | 
				
			||||||
  deviceVector<sobj> buffer(numBlocks);
 | 
					 | 
				
			||||||
  sobj *buffer_v = &buffer[0];
 | 
					  sobj *buffer_v = &buffer[0];
 | 
				
			||||||
  sobj result;
 | 
					  
 | 
				
			||||||
  reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
 | 
					  reduceKernel<<< numBlocks, numThreads, smemSize >>>(lat, buffer_v, size);
 | 
				
			||||||
  accelerator_barrier();
 | 
					  accelerator_barrier();
 | 
				
			||||||
  acceleratorCopyFromDevice(buffer_v,&result,sizeof(result));
 | 
					  auto result = buffer_v[0];
 | 
				
			||||||
  return result;
 | 
					  return result;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					 | 
				
			||||||
template <class vobj>
 | 
					 | 
				
			||||||
inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osites)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  typedef typename vobj::vector_type  vector;
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_typeD scalarD;
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_objectD sobj;
 | 
					 | 
				
			||||||
  sobj ret;
 | 
					 | 
				
			||||||
  scalarD *ret_p = (scalarD *)&ret;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  const int words = sizeof(vobj)/sizeof(vector);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  deviceVector<vector> buffer(osites);
 | 
					 | 
				
			||||||
  vector *dat = (vector *)lat;
 | 
					 | 
				
			||||||
  vector *buf = &buffer[0];
 | 
					 | 
				
			||||||
  iScalar<vector> *tbuf =(iScalar<vector> *)  &buffer[0];
 | 
					 | 
				
			||||||
  for(int w=0;w<words;w++) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    accelerator_for(ss,osites,1,{
 | 
					 | 
				
			||||||
	buf[ss] = dat[ss*words+w];
 | 
					 | 
				
			||||||
      });
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    ret_p[w] = sumD_gpu_small(tbuf,osites);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  return ret;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template <class vobj>
 | 
					 | 
				
			||||||
inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_objectD sobj;
 | 
					 | 
				
			||||||
  sobj ret;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  Integer nsimd= vobj::Nsimd();
 | 
					 | 
				
			||||||
  Integer size = osites*nsimd;
 | 
					 | 
				
			||||||
  Integer numThreads, numBlocks;
 | 
					 | 
				
			||||||
  int ok = getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  if ( ok ) {
 | 
					 | 
				
			||||||
    ret = sumD_gpu_small(lat,osites);
 | 
					 | 
				
			||||||
  } else {
 | 
					 | 
				
			||||||
    ret = sumD_gpu_large(lat,osites);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  return ret;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					/////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
// Return as same precision as input performing reduction in double precision though
 | 
					// Return as same precision as input performing reduction in double precision though
 | 
				
			||||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					/////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -280,13 +227,6 @@ inline typename vobj::scalar_object sum_gpu(const vobj *lat, Integer osites)
 | 
				
			|||||||
  return result;
 | 
					  return result;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template <class vobj>
 | 
					
 | 
				
			||||||
inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osites)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					 | 
				
			||||||
  sobj result;
 | 
					 | 
				
			||||||
  result = sumD_gpu_large(lat,osites);
 | 
					 | 
				
			||||||
  return result;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1,92 +0,0 @@
 | 
				
			|||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
// Possibly promote to double and sum
 | 
					 | 
				
			||||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template <class vobj>
 | 
					 | 
				
			||||||
inline typename vobj::scalar_objectD sumD_gpu_tensor(const vobj *lat, Integer osites) 
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_objectD sobjD;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  sobj identity; zeroit(identity);
 | 
					 | 
				
			||||||
  sobj ret; zeroit(ret);
 | 
					 | 
				
			||||||
  Integer nsimd= vobj::Nsimd();
 | 
					 | 
				
			||||||
  { 
 | 
					 | 
				
			||||||
    sycl::buffer<sobj, 1> abuff(&ret, {1});
 | 
					 | 
				
			||||||
    theGridAccelerator->submit([&](sycl::handler &cgh) {
 | 
					 | 
				
			||||||
      auto Reduction = sycl::reduction(abuff,cgh,identity,std::plus<>());
 | 
					 | 
				
			||||||
      cgh.parallel_for(sycl::range<1>{osites},
 | 
					 | 
				
			||||||
                      Reduction,
 | 
					 | 
				
			||||||
                      [=] (sycl::id<1> item, auto &sum) {
 | 
					 | 
				
			||||||
                        auto osite   = item[0];
 | 
					 | 
				
			||||||
                        sum +=Reduce(lat[osite]);
 | 
					 | 
				
			||||||
                      });
 | 
					 | 
				
			||||||
    });
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  sobjD dret; convertType(dret,ret);
 | 
					 | 
				
			||||||
  return dret;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template <class vobj>
 | 
					 | 
				
			||||||
inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osites)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  return sumD_gpu_tensor(lat,osites);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
template <class vobj>
 | 
					 | 
				
			||||||
inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osites)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  return sumD_gpu_large(lat,osites);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template <class vobj>
 | 
					 | 
				
			||||||
inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  return sumD_gpu_large(lat,osites);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
// Return as same precision as input performing reduction in double precision though
 | 
					 | 
				
			||||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
template <class vobj>
 | 
					 | 
				
			||||||
inline typename vobj::scalar_object sum_gpu(const vobj *lat, Integer osites) 
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					 | 
				
			||||||
  sobj result;
 | 
					 | 
				
			||||||
  result = sumD_gpu(lat,osites);
 | 
					 | 
				
			||||||
  return result;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template <class vobj>
 | 
					 | 
				
			||||||
inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osites)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					 | 
				
			||||||
  sobj result;
 | 
					 | 
				
			||||||
  result = sumD_gpu_large(lat,osites);
 | 
					 | 
				
			||||||
  return result;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class Word> Word svm_xor(Word *vec,uint64_t L)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  Word identity;  identity=0;
 | 
					 | 
				
			||||||
  Word ret = 0;
 | 
					 | 
				
			||||||
  { 
 | 
					 | 
				
			||||||
    sycl::buffer<Word, 1> abuff(&ret, {1});
 | 
					 | 
				
			||||||
    theGridAccelerator->submit([&](sycl::handler &cgh) {
 | 
					 | 
				
			||||||
      auto Reduction = sycl::reduction(abuff,cgh,identity,std::bit_xor<>());
 | 
					 | 
				
			||||||
      cgh.parallel_for(sycl::range<1>{L},
 | 
					 | 
				
			||||||
                      Reduction,
 | 
					 | 
				
			||||||
                      [=] (sycl::id<1> index, auto &sum) {
 | 
					 | 
				
			||||||
                        sum ^=vec[index];
 | 
					 | 
				
			||||||
                      });
 | 
					 | 
				
			||||||
    });
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  theGridAccelerator->wait();
 | 
					 | 
				
			||||||
  return ret;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
@@ -152,7 +152,6 @@ public:
 | 
				
			|||||||
#ifdef RNG_FAST_DISCARD
 | 
					#ifdef RNG_FAST_DISCARD
 | 
				
			||||||
  static void Skip(RngEngine &eng,uint64_t site)
 | 
					  static void Skip(RngEngine &eng,uint64_t site)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
#if 0
 | 
					 | 
				
			||||||
    /////////////////////////////////////////////////////////////////////////////////////
 | 
					    /////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
    // Skip by 2^40 elements between successive lattice sites
 | 
					    // Skip by 2^40 elements between successive lattice sites
 | 
				
			||||||
    // This goes by 10^12.
 | 
					    // This goes by 10^12.
 | 
				
			||||||
@@ -180,9 +179,6 @@ public:
 | 
				
			|||||||
    assert((skip >> shift)==site); // check for overflow
 | 
					    assert((skip >> shift)==site); // check for overflow
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    eng.discard(skip);
 | 
					    eng.discard(skip);
 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
    eng.discardhi(site);
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
    //      std::cout << " Engine  " <<site << " state " <<eng<<std::endl;
 | 
					    //      std::cout << " Engine  " <<site << " state " <<eng<<std::endl;
 | 
				
			||||||
  } 
 | 
					  } 
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
@@ -365,14 +361,9 @@ public:
 | 
				
			|||||||
    _bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
 | 
					    _bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
 | 
				
			||||||
    _uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
 | 
					    _uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist)
 | 
					
 | 
				
			||||||
  {
 | 
					  template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist){
 | 
				
			||||||
    if ( l.Grid()->_isCheckerBoarded ) {
 | 
					
 | 
				
			||||||
      Lattice<vobj> tmp(_grid);
 | 
					 | 
				
			||||||
      fill(tmp,dist);
 | 
					 | 
				
			||||||
      pickCheckerboard(l.Checkerboard(),l,tmp);
 | 
					 | 
				
			||||||
      return;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    typedef typename vobj::scalar_object scalar_object;
 | 
					    typedef typename vobj::scalar_object scalar_object;
 | 
				
			||||||
    typedef typename vobj::scalar_type scalar_type;
 | 
					    typedef typename vobj::scalar_type scalar_type;
 | 
				
			||||||
    typedef typename vobj::vector_type vector_type;
 | 
					    typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
@@ -416,7 +407,7 @@ public:
 | 
				
			|||||||
      std::cout << GridLogMessage << "Seed SHA256: " << GridChecksum::sha256_string(seeds) << std::endl;
 | 
					      std::cout << GridLogMessage << "Seed SHA256: " << GridChecksum::sha256_string(seeds) << std::endl;
 | 
				
			||||||
      SeedFixedIntegers(seeds);
 | 
					      SeedFixedIntegers(seeds);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  void SeedFixedIntegers(const std::vector<int> &seeds, int britney=0){
 | 
					  void SeedFixedIntegers(const std::vector<int> &seeds){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // Everyone generates the same seed_seq based on input seeds
 | 
					    // Everyone generates the same seed_seq based on input seeds
 | 
				
			||||||
    CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size());
 | 
					    CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size());
 | 
				
			||||||
@@ -433,29 +424,22 @@ public:
 | 
				
			|||||||
    // MT implementation does not implement fast discard even though
 | 
					    // MT implementation does not implement fast discard even though
 | 
				
			||||||
    // in principle this is possible
 | 
					    // in principle this is possible
 | 
				
			||||||
    ////////////////////////////////////////////////
 | 
					    ////////////////////////////////////////////////
 | 
				
			||||||
    thread_for( lidx, _grid->lSites(), {
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
	int64_t gidx;
 | 
					    // Everybody loops over global volume.
 | 
				
			||||||
 | 
					    thread_for( gidx, _grid->_gsites, {
 | 
				
			||||||
 | 
						// Where is it?
 | 
				
			||||||
 | 
						int rank;
 | 
				
			||||||
	int o_idx;
 | 
						int o_idx;
 | 
				
			||||||
	int i_idx;
 | 
						int i_idx;
 | 
				
			||||||
	int rank;
 | 
					 | 
				
			||||||
	Coordinate pcoor;
 | 
					 | 
				
			||||||
	Coordinate lcoor;
 | 
					 | 
				
			||||||
	Coordinate gcoor;
 | 
					 | 
				
			||||||
	_grid->LocalIndexToLocalCoor(lidx,lcoor);
 | 
					 | 
				
			||||||
	pcoor=_grid->ThisProcessorCoor();
 | 
					 | 
				
			||||||
	_grid->ProcessorCoorLocalCoorToGlobalCoor(pcoor,lcoor,gcoor);
 | 
					 | 
				
			||||||
	_grid->GlobalCoorToGlobalIndex(gcoor,gidx);
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						Coordinate gcoor;
 | 
				
			||||||
 | 
						_grid->GlobalIndexToGlobalCoor(gidx,gcoor);
 | 
				
			||||||
	_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
 | 
						_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
 | 
				
			||||||
	
 | 
						
 | 
				
			||||||
	assert(rank == _grid->ThisRank() );
 | 
						// If this is one of mine we take it
 | 
				
			||||||
	
 | 
						if( rank == _grid->ThisRank() ){
 | 
				
			||||||
	  int l_idx=generator_idx(o_idx,i_idx);
 | 
						  int l_idx=generator_idx(o_idx,i_idx);
 | 
				
			||||||
	  _generators[l_idx] = master_engine;
 | 
						  _generators[l_idx] = master_engine;
 | 
				
			||||||
	if ( britney ) { 
 | 
					 | 
				
			||||||
	  Skip(_generators[l_idx],l_idx); // Skip to next RNG sequence
 | 
					 | 
				
			||||||
	} else { 	
 | 
					 | 
				
			||||||
	  Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
 | 
						  Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1,267 +0,0 @@
 | 
				
			|||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#if defined(GRID_CUDA)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#include <cub/cub.cuh>
 | 
					 | 
				
			||||||
#define gpucub cub
 | 
					 | 
				
			||||||
#define gpuError_t cudaError_t
 | 
					 | 
				
			||||||
#define gpuSuccess cudaSuccess
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#elif defined(GRID_HIP)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#include <hipcub/hipcub.hpp>
 | 
					 | 
				
			||||||
#define gpucub hipcub
 | 
					 | 
				
			||||||
#define gpuError_t hipError_t
 | 
					 | 
				
			||||||
#define gpuSuccess hipSuccess
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#if defined(GRID_CUDA) || defined(GRID_HIP)
 | 
					 | 
				
			||||||
template<class vobj>
 | 
					 | 
				
			||||||
inline void sliceSumReduction_cub_small(const vobj *Data,
 | 
					 | 
				
			||||||
					std::vector<vobj> &lvSum,
 | 
					 | 
				
			||||||
					const int rd,
 | 
					 | 
				
			||||||
					const int e1,
 | 
					 | 
				
			||||||
					const int e2,
 | 
					 | 
				
			||||||
					const int stride,
 | 
					 | 
				
			||||||
					const int ostride,
 | 
					 | 
				
			||||||
					const int Nsimd)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  size_t subvol_size = e1*e2;
 | 
					 | 
				
			||||||
  deviceVector<vobj> reduction_buffer(rd*subvol_size);
 | 
					 | 
				
			||||||
  auto rb_p = &reduction_buffer[0];
 | 
					 | 
				
			||||||
  vobj zero_init;
 | 
					 | 
				
			||||||
  zeroit(zero_init);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  void *temp_storage_array = NULL;
 | 
					 | 
				
			||||||
  size_t temp_storage_bytes = 0;
 | 
					 | 
				
			||||||
  vobj *d_out;
 | 
					 | 
				
			||||||
  int* d_offsets;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  std::vector<int> offsets(rd+1,0);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  for (int i = 0; i < offsets.size(); i++) {
 | 
					 | 
				
			||||||
    offsets[i] = i*subvol_size;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  //Allocate memory for output and offset arrays on device
 | 
					 | 
				
			||||||
  d_out = static_cast<vobj*>(acceleratorAllocDevice(rd*sizeof(vobj)));
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  d_offsets = static_cast<int*>(acceleratorAllocDevice((rd+1)*sizeof(int)));
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  //copy offsets to device
 | 
					 | 
				
			||||||
  acceleratorCopyToDeviceAsynch(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  gpuError_t gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), zero_init, computeStream);
 | 
					 | 
				
			||||||
  if (gpuErr!=gpuSuccess) {
 | 
					 | 
				
			||||||
    std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce (setup)! Error: " << gpuErr <<std::endl;
 | 
					 | 
				
			||||||
    exit(EXIT_FAILURE);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  //allocate memory for temp_storage_array  
 | 
					 | 
				
			||||||
  temp_storage_array = acceleratorAllocDevice(temp_storage_bytes);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  //prepare buffer for reduction
 | 
					 | 
				
			||||||
  //use non-blocking accelerator_for to avoid syncs (ok because we submit to same computeStream)
 | 
					 | 
				
			||||||
  //use 2d accelerator_for to avoid launch latencies found when serially looping over rd 
 | 
					 | 
				
			||||||
  accelerator_for2dNB( s,subvol_size, r,rd, Nsimd,{ 
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    int n = s / e2;
 | 
					 | 
				
			||||||
    int b = s % e2;
 | 
					 | 
				
			||||||
    int so=r*ostride; // base offset for start of plane 
 | 
					 | 
				
			||||||
    int ss= so+n*stride+b;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data[ss]));
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  });
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  //issue segmented reductions in computeStream
 | 
					 | 
				
			||||||
  gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p, d_out, rd, d_offsets, d_offsets+1,::gpucub::Sum(), zero_init, computeStream);
 | 
					 | 
				
			||||||
  if (gpuErr!=gpuSuccess) {
 | 
					 | 
				
			||||||
    std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce! Error: " << gpuErr <<std::endl;
 | 
					 | 
				
			||||||
    exit(EXIT_FAILURE);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  acceleratorCopyFromDeviceAsynch(d_out,&lvSum[0],rd*sizeof(vobj),computeStream);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  //sync after copy
 | 
					 | 
				
			||||||
  accelerator_barrier();
 | 
					 | 
				
			||||||
 
 | 
					 | 
				
			||||||
  acceleratorFreeDevice(temp_storage_array);
 | 
					 | 
				
			||||||
  acceleratorFreeDevice(d_out);
 | 
					 | 
				
			||||||
  acceleratorFreeDevice(d_offsets);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
#endif 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#if defined(GRID_SYCL)
 | 
					 | 
				
			||||||
template<class vobj>
 | 
					 | 
				
			||||||
inline void sliceSumReduction_sycl_small(const vobj *Data,
 | 
					 | 
				
			||||||
					 std::vector <vobj> &lvSum,
 | 
					 | 
				
			||||||
					 const int  &rd,
 | 
					 | 
				
			||||||
					 const int &e1,
 | 
					 | 
				
			||||||
					 const int &e2,
 | 
					 | 
				
			||||||
					 const int &stride,
 | 
					 | 
				
			||||||
					 const int &ostride,
 | 
					 | 
				
			||||||
					 const int &Nsimd)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  size_t subvol_size = e1*e2;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  vobj *mysum = (vobj *) malloc_shared(rd*sizeof(vobj),*theGridAccelerator);
 | 
					 | 
				
			||||||
  vobj vobj_zero;
 | 
					 | 
				
			||||||
  zeroit(vobj_zero);
 | 
					 | 
				
			||||||
  for (int r = 0; r<rd; r++) { 
 | 
					 | 
				
			||||||
    mysum[r] = vobj_zero; 
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  deviceVector<vobj> reduction_buffer(rd*subvol_size);    
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  auto rb_p = &reduction_buffer[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  // autoView(Data_v, Data, AcceleratorRead);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  //prepare reduction buffer 
 | 
					 | 
				
			||||||
  accelerator_for2d( s,subvol_size, r,rd, (size_t)Nsimd,{ 
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
      int n = s / e2;
 | 
					 | 
				
			||||||
      int b = s % e2;
 | 
					 | 
				
			||||||
      int so=r*ostride; // base offset for start of plane 
 | 
					 | 
				
			||||||
      int ss= so+n*stride+b;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data[ss]));
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  });
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  for (int r = 0; r < rd; r++) {
 | 
					 | 
				
			||||||
      theGridAccelerator->submit([&](sycl::handler &cgh) {
 | 
					 | 
				
			||||||
          auto Reduction = sycl::reduction(&mysum[r],std::plus<>());
 | 
					 | 
				
			||||||
          cgh.parallel_for(sycl::range<1>{subvol_size},
 | 
					 | 
				
			||||||
          Reduction,
 | 
					 | 
				
			||||||
          [=](sycl::id<1> item, auto &sum) {
 | 
					 | 
				
			||||||
              auto s = item[0];
 | 
					 | 
				
			||||||
              sum += rb_p[r*subvol_size+s];
 | 
					 | 
				
			||||||
          });
 | 
					 | 
				
			||||||
      });
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
     
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  theGridAccelerator->wait();
 | 
					 | 
				
			||||||
  for (int r = 0; r < rd; r++) {
 | 
					 | 
				
			||||||
    lvSum[r] = mysum[r];
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  free(mysum,*theGridAccelerator);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class vobj>
 | 
					 | 
				
			||||||
inline void sliceSumReduction_large(const vobj *Data,
 | 
					 | 
				
			||||||
				    std::vector<vobj> &lvSum,
 | 
					 | 
				
			||||||
				    const int rd,
 | 
					 | 
				
			||||||
				    const int e1,
 | 
					 | 
				
			||||||
				    const int e2,
 | 
					 | 
				
			||||||
				    const int stride,
 | 
					 | 
				
			||||||
				    const int ostride,
 | 
					 | 
				
			||||||
				    const int Nsimd)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  typedef typename vobj::vector_type vector;
 | 
					 | 
				
			||||||
  const int words = sizeof(vobj)/sizeof(vector);
 | 
					 | 
				
			||||||
  const int osites = rd*e1*e2;
 | 
					 | 
				
			||||||
  deviceVector<vector>buffer(osites);
 | 
					 | 
				
			||||||
  vector *dat = (vector *)Data;
 | 
					 | 
				
			||||||
  vector *buf = &buffer[0];
 | 
					 | 
				
			||||||
  std::vector<vector> lvSum_small(rd);
 | 
					 | 
				
			||||||
  vector *lvSum_ptr = (vector *)&lvSum[0];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  for (int w = 0; w < words; w++) {
 | 
					 | 
				
			||||||
    accelerator_for(ss,osites,1,{
 | 
					 | 
				
			||||||
	    buf[ss] = dat[ss*words+w];
 | 
					 | 
				
			||||||
    });
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    #if defined(GRID_CUDA) || defined(GRID_HIP)
 | 
					 | 
				
			||||||
      sliceSumReduction_cub_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd);
 | 
					 | 
				
			||||||
    #elif defined(GRID_SYCL)
 | 
					 | 
				
			||||||
      sliceSumReduction_sycl_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd);
 | 
					 | 
				
			||||||
    #endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for (int r = 0; r < rd; r++) {
 | 
					 | 
				
			||||||
      lvSum_ptr[w+words*r]=lvSum_small[r];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class vobj>
 | 
					 | 
				
			||||||
inline void sliceSumReduction_gpu(const Lattice<vobj> &Data,
 | 
					 | 
				
			||||||
				  std::vector<vobj> &lvSum,
 | 
					 | 
				
			||||||
				  const int rd,
 | 
					 | 
				
			||||||
				  const int e1,
 | 
					 | 
				
			||||||
				  const int e2,
 | 
					 | 
				
			||||||
				  const int stride,
 | 
					 | 
				
			||||||
				  const int ostride,
 | 
					 | 
				
			||||||
				  const int Nsimd)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  autoView(Data_v, Data, AcceleratorRead); //reduction libraries cannot deal with large vobjs so we split into small/large case.
 | 
					 | 
				
			||||||
    if constexpr (sizeof(vobj) <= 256) { 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      #if defined(GRID_CUDA) || defined(GRID_HIP)
 | 
					 | 
				
			||||||
        sliceSumReduction_cub_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
					 | 
				
			||||||
      #elif defined (GRID_SYCL)
 | 
					 | 
				
			||||||
        sliceSumReduction_sycl_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
					 | 
				
			||||||
      #endif
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    else {
 | 
					 | 
				
			||||||
      sliceSumReduction_large(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class vobj>
 | 
					 | 
				
			||||||
inline void sliceSumReduction_cpu(const Lattice<vobj> &Data,
 | 
					 | 
				
			||||||
				  std::vector<vobj> &lvSum,
 | 
					 | 
				
			||||||
				  const int &rd,
 | 
					 | 
				
			||||||
				  const int &e1,
 | 
					 | 
				
			||||||
				  const int &e2,
 | 
					 | 
				
			||||||
				  const int &stride,
 | 
					 | 
				
			||||||
				  const int &ostride,
 | 
					 | 
				
			||||||
				  const int &Nsimd)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  // sum over reduced dimension planes, breaking out orthog dir
 | 
					 | 
				
			||||||
  // Parallel over orthog direction
 | 
					 | 
				
			||||||
  autoView( Data_v, Data, CpuRead);
 | 
					 | 
				
			||||||
  thread_for( r,rd, {
 | 
					 | 
				
			||||||
    int so=r*ostride; // base offset for start of plane 
 | 
					 | 
				
			||||||
    for(int n=0;n<e1;n++){
 | 
					 | 
				
			||||||
      for(int b=0;b<e2;b++){
 | 
					 | 
				
			||||||
        int ss= so+n*stride+b;
 | 
					 | 
				
			||||||
        lvSum[r]=lvSum[r]+Data_v[ss];
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  });
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data,
 | 
					 | 
				
			||||||
						   std::vector<vobj> &lvSum,
 | 
					 | 
				
			||||||
						   const int &rd,
 | 
					 | 
				
			||||||
						   const int &e1,
 | 
					 | 
				
			||||||
						   const int &e2,
 | 
					 | 
				
			||||||
						   const int &stride,
 | 
					 | 
				
			||||||
						   const int &ostride,
 | 
					 | 
				
			||||||
						   const int &Nsimd) 
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
 | 
					 | 
				
			||||||
  sliceSumReduction_gpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
  sliceSumReduction_cpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
@@ -66,65 +66,6 @@ inline auto TraceIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<
 | 
				
			|||||||
  return ret;
 | 
					  return ret;
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<int N, class Vec>
 | 
					 | 
				
			||||||
Lattice<iScalar<iScalar<iScalar<Vec> > > > Determinant(const Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  GridBase *grid=Umu.Grid();
 | 
					 | 
				
			||||||
  auto lvol = grid->lSites();
 | 
					 | 
				
			||||||
  Lattice<iScalar<iScalar<iScalar<Vec> > > > ret(grid);
 | 
					 | 
				
			||||||
  typedef typename Vec::scalar_type scalar;
 | 
					 | 
				
			||||||
  autoView(Umu_v,Umu,CpuRead);
 | 
					 | 
				
			||||||
  autoView(ret_v,ret,CpuWrite);
 | 
					 | 
				
			||||||
  thread_for(site,lvol,{
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
 | 
					 | 
				
			||||||
    Coordinate lcoor;
 | 
					 | 
				
			||||||
    grid->LocalIndexToLocalCoor(site, lcoor);
 | 
					 | 
				
			||||||
    iScalar<iScalar<iMatrix<scalar, N> > > Us;
 | 
					 | 
				
			||||||
    peekLocalSite(Us, Umu_v, lcoor);
 | 
					 | 
				
			||||||
    for(int i=0;i<N;i++){
 | 
					 | 
				
			||||||
      for(int j=0;j<N;j++){
 | 
					 | 
				
			||||||
	scalar tmp= Us()()(i,j);
 | 
					 | 
				
			||||||
	ComplexD ztmp(real(tmp),imag(tmp));
 | 
					 | 
				
			||||||
	EigenU(i,j)=ztmp;
 | 
					 | 
				
			||||||
      }}
 | 
					 | 
				
			||||||
    ComplexD detD  = EigenU.determinant();
 | 
					 | 
				
			||||||
    typename Vec::scalar_type det(detD.real(),detD.imag());
 | 
					 | 
				
			||||||
    pokeLocalSite(det,ret_v,lcoor);
 | 
					 | 
				
			||||||
  });
 | 
					 | 
				
			||||||
  return ret;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<int N>
 | 
					 | 
				
			||||||
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > Inverse(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  GridBase *grid=Umu.Grid();
 | 
					 | 
				
			||||||
  auto lvol = grid->lSites();
 | 
					 | 
				
			||||||
  Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > ret(grid);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  autoView(Umu_v,Umu,CpuRead);
 | 
					 | 
				
			||||||
  autoView(ret_v,ret,CpuWrite);
 | 
					 | 
				
			||||||
  thread_for(site,lvol,{
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
 | 
					 | 
				
			||||||
    Coordinate lcoor;
 | 
					 | 
				
			||||||
    grid->LocalIndexToLocalCoor(site, lcoor);
 | 
					 | 
				
			||||||
    iScalar<iScalar<iMatrix<ComplexD, N> > > Us;
 | 
					 | 
				
			||||||
    iScalar<iScalar<iMatrix<ComplexD, N> > > Ui;
 | 
					 | 
				
			||||||
    peekLocalSite(Us, Umu_v, lcoor);
 | 
					 | 
				
			||||||
    for(int i=0;i<N;i++){
 | 
					 | 
				
			||||||
      for(int j=0;j<N;j++){
 | 
					 | 
				
			||||||
	EigenU(i,j) = Us()()(i,j);
 | 
					 | 
				
			||||||
      }}
 | 
					 | 
				
			||||||
    Eigen::MatrixXcd EigenUinv = EigenU.inverse();
 | 
					 | 
				
			||||||
    for(int i=0;i<N;i++){
 | 
					 | 
				
			||||||
      for(int j=0;j<N;j++){
 | 
					 | 
				
			||||||
	Ui()()(i,j) = EigenUinv(i,j);
 | 
					 | 
				
			||||||
      }}
 | 
					 | 
				
			||||||
    pokeLocalSite(Ui,ret_v,lcoor);
 | 
					 | 
				
			||||||
  });
 | 
					 | 
				
			||||||
  return ret;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -85,76 +85,6 @@ template<class vobj> inline void setCheckerboard(Lattice<vobj> &full,const Latti
 | 
				
			|||||||
  });
 | 
					  });
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj> inline void acceleratorPickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full, int checker_dim_half=0)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  half.Checkerboard() = cb;
 | 
					 | 
				
			||||||
  autoView(half_v, half, AcceleratorWrite);
 | 
					 | 
				
			||||||
  autoView(full_v, full, AcceleratorRead);
 | 
					 | 
				
			||||||
  Coordinate rdim_full             = full.Grid()->_rdimensions;
 | 
					 | 
				
			||||||
  Coordinate rdim_half             = half.Grid()->_rdimensions;
 | 
					 | 
				
			||||||
  unsigned long ndim_half          = half.Grid()->_ndimension;
 | 
					 | 
				
			||||||
  Coordinate checker_dim_mask_half = half.Grid()->_checker_dim_mask;
 | 
					 | 
				
			||||||
  Coordinate ostride_half          = half.Grid()->_ostride;
 | 
					 | 
				
			||||||
  accelerator_for(ss, full.Grid()->oSites(),full.Grid()->Nsimd(),{
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    Coordinate coor;
 | 
					 | 
				
			||||||
    int cbos;
 | 
					 | 
				
			||||||
    int linear=0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Lexicographic::CoorFromIndex(coor,ss,rdim_full);
 | 
					 | 
				
			||||||
    assert(coor.size()==ndim_half);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int d=0;d<ndim_half;d++){ 
 | 
					 | 
				
			||||||
      if(checker_dim_mask_half[d]) linear += coor[d];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    cbos = (linear&0x1);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if (cbos==cb) {
 | 
					 | 
				
			||||||
      int ssh=0;
 | 
					 | 
				
			||||||
      for(int d=0;d<ndim_half;d++) {
 | 
					 | 
				
			||||||
        if (d == checker_dim_half) ssh += ostride_half[d] * ((coor[d] / 2) % rdim_half[d]);
 | 
					 | 
				
			||||||
        else ssh += ostride_half[d] * (coor[d] % rdim_half[d]);
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      coalescedWrite(half_v[ssh],full_v(ss));
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  });
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
template<class vobj> inline void acceleratorSetCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half, int checker_dim_half=0)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  int cb = half.Checkerboard();
 | 
					 | 
				
			||||||
  autoView(half_v , half, AcceleratorRead);
 | 
					 | 
				
			||||||
  autoView(full_v , full, AcceleratorWrite);
 | 
					 | 
				
			||||||
  Coordinate rdim_full             = full.Grid()->_rdimensions;
 | 
					 | 
				
			||||||
  Coordinate rdim_half             = half.Grid()->_rdimensions;
 | 
					 | 
				
			||||||
  unsigned long ndim_half          = half.Grid()->_ndimension;
 | 
					 | 
				
			||||||
  Coordinate checker_dim_mask_half = half.Grid()->_checker_dim_mask;
 | 
					 | 
				
			||||||
  Coordinate ostride_half          = half.Grid()->_ostride;
 | 
					 | 
				
			||||||
  accelerator_for(ss,full.Grid()->oSites(),full.Grid()->Nsimd(),{
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Coordinate coor;
 | 
					 | 
				
			||||||
    int cbos;
 | 
					 | 
				
			||||||
    int linear=0;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    Lexicographic::CoorFromIndex(coor,ss,rdim_full);
 | 
					 | 
				
			||||||
    assert(coor.size()==ndim_half);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for(int d=0;d<ndim_half;d++){ 
 | 
					 | 
				
			||||||
      if(checker_dim_mask_half[d]) linear += coor[d];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    cbos = (linear&0x1);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if (cbos==cb) {
 | 
					 | 
				
			||||||
      int ssh=0;
 | 
					 | 
				
			||||||
      for(int d=0;d<ndim_half;d++){
 | 
					 | 
				
			||||||
        if (d == checker_dim_half) ssh += ostride_half[d] * ((coor[d] / 2) % rdim_half[d]);
 | 
					 | 
				
			||||||
        else ssh += ostride_half[d] * (coor[d] % rdim_half[d]);
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      coalescedWrite(full_v[ss],half_v(ssh));
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  });
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
// Flexible Type Conversion for internal promotion to double as well as graceful
 | 
					// Flexible Type Conversion for internal promotion to double as well as graceful
 | 
				
			||||||
// treatment of scalar-compatible types
 | 
					// treatment of scalar-compatible types
 | 
				
			||||||
@@ -194,11 +124,11 @@ accelerator_inline void convertType(vComplexD2 & out, const ComplexD & in) {
 | 
				
			|||||||
#endif
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
accelerator_inline void convertType(vComplexF & out, const vComplexD2 & in) {
 | 
					accelerator_inline void convertType(vComplexF & out, const vComplexD2 & in) {
 | 
				
			||||||
  precisionChange(out,in);
 | 
					  out.v = Optimization::PrecisionChange::DtoS(in._internal[0].v,in._internal[1].v);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
accelerator_inline void convertType(vComplexD2 & out, const vComplexF & in) {
 | 
					accelerator_inline void convertType(vComplexD2 & out, const vComplexF & in) {
 | 
				
			||||||
  precisionChange(out,in);
 | 
					  Optimization::PrecisionChange::StoD(in.v,out._internal[0].v,out._internal[1].v);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<typename T1,typename T2>
 | 
					template<typename T1,typename T2>
 | 
				
			||||||
@@ -276,64 +206,20 @@ inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  autoView( coarseData_ , coarseData, AcceleratorWrite);
 | 
					  autoView( coarseData_ , coarseData, AcceleratorWrite);
 | 
				
			||||||
  autoView( ip_         , ip,         AcceleratorWrite);
 | 
					  autoView( ip_         , ip,         AcceleratorWrite);
 | 
				
			||||||
  RealD t_IP=0;
 | 
					 | 
				
			||||||
  RealD t_co=0;
 | 
					 | 
				
			||||||
  RealD t_za=0;
 | 
					 | 
				
			||||||
  for(int v=0;v<nbasis;v++) {
 | 
					  for(int v=0;v<nbasis;v++) {
 | 
				
			||||||
    t_IP-=usecond();
 | 
					 | 
				
			||||||
    blockInnerProductD(ip,Basis[v],fineDataRed); // ip = <basis|fine>
 | 
					    blockInnerProductD(ip,Basis[v],fineDataRed); // ip = <basis|fine>
 | 
				
			||||||
    t_IP+=usecond();
 | 
					 | 
				
			||||||
    t_co-=usecond();
 | 
					 | 
				
			||||||
    accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
 | 
					    accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
 | 
				
			||||||
	convertType(coarseData_[sc](v),ip_[sc]);
 | 
						convertType(coarseData_[sc](v),ip_[sc]);
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
    t_co+=usecond();
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // improve numerical stability of projection
 | 
					    // improve numerical stability of projection
 | 
				
			||||||
    // |fine> = |fine> - <basis|fine> |basis>
 | 
					    // |fine> = |fine> - <basis|fine> |basis>
 | 
				
			||||||
    ip=-ip;
 | 
					    ip=-ip;
 | 
				
			||||||
    t_za-=usecond();
 | 
					 | 
				
			||||||
    blockZAXPY(fineDataRed,ip,Basis[v],fineDataRed); 
 | 
					    blockZAXPY(fineDataRed,ip,Basis[v],fineDataRed); 
 | 
				
			||||||
    t_za+=usecond();
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  //  std::cout << GridLogPerformance << " blockProject : blockInnerProduct :  "<<t_IP<<" us"<<std::endl;
 | 
					 | 
				
			||||||
  //  std::cout << GridLogPerformance << " blockProject : conv              :  "<<t_co<<" us"<<std::endl;
 | 
					 | 
				
			||||||
  //  std::cout << GridLogPerformance << " blockProject : blockZaxpy        :  "<<t_za<<" us"<<std::endl;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
// This only minimises data motion from CPU to GPU
 | 
					 | 
				
			||||||
// there is chance of better implementation that does a vxk loop of inner products to data share
 | 
					 | 
				
			||||||
// at the GPU thread level
 | 
					 | 
				
			||||||
template<class vobj,class CComplex,int nbasis,class VLattice>
 | 
					 | 
				
			||||||
inline void batchBlockProject(std::vector<Lattice<iVector<CComplex,nbasis>>> &coarseData,
 | 
					 | 
				
			||||||
                               const std::vector<Lattice<vobj>> &fineData,
 | 
					 | 
				
			||||||
                               const VLattice &Basis)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  int NBatch = fineData.size();
 | 
					 | 
				
			||||||
  assert(coarseData.size() == NBatch);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  GridBase * fine  = fineData[0].Grid();
 | 
					 | 
				
			||||||
  GridBase * coarse= coarseData[0].Grid();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  Lattice<iScalar<CComplex>> ip(coarse);
 | 
					 | 
				
			||||||
  std::vector<Lattice<vobj>> fineDataCopy = fineData;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  autoView(ip_, ip, AcceleratorWrite);
 | 
					 | 
				
			||||||
  for(int v=0;v<nbasis;v++) {
 | 
					 | 
				
			||||||
    for (int k=0; k<NBatch; k++) {
 | 
					 | 
				
			||||||
      autoView( coarseData_ , coarseData[k], AcceleratorWrite);
 | 
					 | 
				
			||||||
      blockInnerProductD(ip,Basis[v],fineDataCopy[k]); // ip = <basis|fine>
 | 
					 | 
				
			||||||
      accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
 | 
					 | 
				
			||||||
        convertType(coarseData_[sc](v),ip_[sc]);
 | 
					 | 
				
			||||||
      });
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // improve numerical stability of projection
 | 
					 | 
				
			||||||
      // |fine> = |fine> - <basis|fine> |basis>
 | 
					 | 
				
			||||||
      ip=-ip;
 | 
					 | 
				
			||||||
      blockZAXPY(fineDataCopy[k],ip,Basis[v],fineDataCopy[k]); 
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj,class vobj2,class CComplex>
 | 
					template<class vobj,class vobj2,class CComplex>
 | 
				
			||||||
  inline void blockZAXPY(Lattice<vobj> &fineZ,
 | 
					  inline void blockZAXPY(Lattice<vobj> &fineZ,
 | 
				
			||||||
			 const Lattice<CComplex> &coarseA,
 | 
								 const Lattice<CComplex> &coarseA,
 | 
				
			||||||
@@ -408,15 +294,8 @@ template<class vobj,class CComplex>
 | 
				
			|||||||
  Lattice<dotp> coarse_inner(coarse);
 | 
					  Lattice<dotp> coarse_inner(coarse);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Precision promotion
 | 
					  // Precision promotion
 | 
				
			||||||
  RealD t;
 | 
					 | 
				
			||||||
  t=-usecond();
 | 
					 | 
				
			||||||
  fine_inner = localInnerProductD<vobj>(fineX,fineY);
 | 
					  fine_inner = localInnerProductD<vobj>(fineX,fineY);
 | 
				
			||||||
  //  t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : localInnerProductD "<<t<<" us"<<std::endl;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  t=-usecond();
 | 
					 | 
				
			||||||
  blockSum(coarse_inner,fine_inner);
 | 
					  blockSum(coarse_inner,fine_inner);
 | 
				
			||||||
  //  t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : blockSum "<<t<<" us"<<std::endl;
 | 
					 | 
				
			||||||
  t=-usecond();
 | 
					 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    autoView( CoarseInner_  , CoarseInner,AcceleratorWrite);
 | 
					    autoView( CoarseInner_  , CoarseInner,AcceleratorWrite);
 | 
				
			||||||
    autoView( coarse_inner_ , coarse_inner,AcceleratorRead);
 | 
					    autoView( coarse_inner_ , coarse_inner,AcceleratorRead);
 | 
				
			||||||
@@ -424,7 +303,6 @@ template<class vobj,class CComplex>
 | 
				
			|||||||
      convertType(CoarseInner_[ss], TensorRemove(coarse_inner_[ss]));
 | 
					      convertType(CoarseInner_[ss], TensorRemove(coarse_inner_[ss]));
 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  //  t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : convertType "<<t<<" us"<<std::endl;
 | 
					 | 
				
			||||||
 
 | 
					 
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -467,9 +345,6 @@ inline void blockNormalise(Lattice<CComplex> &ip,Lattice<vobj> &fineX)
 | 
				
			|||||||
template<class vobj>
 | 
					template<class vobj>
 | 
				
			||||||
inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData) 
 | 
					inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData) 
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  const int maxsubsec=256;
 | 
					 | 
				
			||||||
  typedef iVector<vobj,maxsubsec> vSubsec;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  GridBase * fine  = fineData.Grid();
 | 
					  GridBase * fine  = fineData.Grid();
 | 
				
			||||||
  GridBase * coarse= coarseData.Grid();
 | 
					  GridBase * coarse= coarseData.Grid();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -489,40 +364,18 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
 | 
				
			|||||||
  autoView( coarseData_ , coarseData, AcceleratorWrite);
 | 
					  autoView( coarseData_ , coarseData, AcceleratorWrite);
 | 
				
			||||||
  autoView( fineData_   , fineData, AcceleratorRead);
 | 
					  autoView( fineData_   , fineData, AcceleratorRead);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  auto coarseData_p  = &coarseData_[0];
 | 
					 | 
				
			||||||
  auto fineData_p    = &fineData_[0];
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  Coordinate fine_rdimensions = fine->_rdimensions;
 | 
					  Coordinate fine_rdimensions = fine->_rdimensions;
 | 
				
			||||||
  Coordinate coarse_rdimensions = coarse->_rdimensions;
 | 
					  Coordinate coarse_rdimensions = coarse->_rdimensions;
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  vobj zz = Zero();
 | 
					  accelerator_for(sc,coarse->oSites(),1,{
 | 
				
			||||||
 | 
					 | 
				
			||||||
  // Somewhat lazy calculation
 | 
					 | 
				
			||||||
  // Find the biggest power of two subsection divisor less than or equal to maxsubsec
 | 
					 | 
				
			||||||
  int subsec=maxsubsec;
 | 
					 | 
				
			||||||
  int subvol;
 | 
					 | 
				
			||||||
  subvol=blockVol/subsec;
 | 
					 | 
				
			||||||
  while(subvol*subsec!=blockVol){
 | 
					 | 
				
			||||||
    subsec = subsec/2;
 | 
					 | 
				
			||||||
    subvol=blockVol/subsec;
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  Lattice<vSubsec> coarseTmp(coarse);
 | 
					 | 
				
			||||||
  autoView( coarseTmp_, coarseTmp, AcceleratorWriteDiscard);
 | 
					 | 
				
			||||||
  auto coarseTmp_p= &coarseTmp_[0];
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  // Sum within subsecs in a first kernel
 | 
					 | 
				
			||||||
  accelerator_for(sce,subsec*coarse->oSites(),vobj::Nsimd(),{
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      int sc=sce/subsec;
 | 
					 | 
				
			||||||
      int e=sce%subsec;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
      // One thread per sub block
 | 
					      // One thread per sub block
 | 
				
			||||||
      Coordinate coor_c(_ndimension);
 | 
					      Coordinate coor_c(_ndimension);
 | 
				
			||||||
      Lexicographic::CoorFromIndex(coor_c,sc,coarse_rdimensions);  // Block coordinate
 | 
					      Lexicographic::CoorFromIndex(coor_c,sc,coarse_rdimensions);  // Block coordinate
 | 
				
			||||||
 | 
					      coarseData_[sc]=Zero();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      for(int sb=0;sb<blockVol;sb++){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      auto cd = coalescedRead(zz);
 | 
					 | 
				
			||||||
      for(int sb=e*subvol;sb<MIN((e+1)*subvol,blockVol);sb++){
 | 
					 | 
				
			||||||
	int sf;
 | 
						int sf;
 | 
				
			||||||
	Coordinate coor_b(_ndimension);
 | 
						Coordinate coor_b(_ndimension);
 | 
				
			||||||
	Coordinate coor_f(_ndimension);
 | 
						Coordinate coor_f(_ndimension);
 | 
				
			||||||
@@ -530,21 +383,10 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
 | 
				
			|||||||
	for(int d=0;d<_ndimension;d++) coor_f[d]=coor_c[d]*block_r[d] + coor_b[d];
 | 
						for(int d=0;d<_ndimension;d++) coor_f[d]=coor_c[d]*block_r[d] + coor_b[d];
 | 
				
			||||||
	Lexicographic::IndexFromCoor(coor_f,sf,fine_rdimensions);
 | 
						Lexicographic::IndexFromCoor(coor_f,sf,fine_rdimensions);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	cd=cd+coalescedRead(fineData_p[sf]);
 | 
						coarseData_[sc]=coarseData_[sc]+fineData_[sf];
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      coalescedWrite(coarseTmp_[sc](e),cd);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    });
 | 
					    });
 | 
				
			||||||
   // Sum across subsecs in a second kernel
 | 
					 | 
				
			||||||
   accelerator_for(sc,coarse->oSites(),vobj::Nsimd(),{
 | 
					 | 
				
			||||||
      auto cd = coalescedRead(coarseTmp_p[sc](0));
 | 
					 | 
				
			||||||
      for(int e=1;e<subsec;e++){
 | 
					 | 
				
			||||||
	cd=cd+coalescedRead(coarseTmp_p[sc](e));
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      coalescedWrite(coarseData_p[sc],cd);
 | 
					 | 
				
			||||||
   });
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  return;
 | 
					  return;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -601,7 +443,7 @@ inline void blockOrthogonalise(Lattice<CComplex> &ip,std::vector<Lattice<vobj> >
 | 
				
			|||||||
  blockOrthonormalize(ip,Basis);
 | 
					  blockOrthonormalize(ip,Basis);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#ifdef GRID_ACCELERATED
 | 
					#if 0
 | 
				
			||||||
// TODO: CPU optimized version here
 | 
					// TODO: CPU optimized version here
 | 
				
			||||||
template<class vobj,class CComplex,int nbasis>
 | 
					template<class vobj,class CComplex,int nbasis>
 | 
				
			||||||
inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
					inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
				
			||||||
@@ -627,37 +469,26 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
				
			|||||||
  autoView( fineData_   , fineData, AcceleratorWrite);
 | 
					  autoView( fineData_   , fineData, AcceleratorWrite);
 | 
				
			||||||
  autoView( coarseData_ , coarseData, AcceleratorRead);
 | 
					  autoView( coarseData_ , coarseData, AcceleratorRead);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  typedef LatticeView<vobj> Vview;
 | 
					 | 
				
			||||||
  std::vector<Vview> AcceleratorVecViewContainer_h; 
 | 
					 | 
				
			||||||
  for(int v=0;v<nbasis;v++) {
 | 
					 | 
				
			||||||
    AcceleratorVecViewContainer_h.push_back(Basis[v].View(AcceleratorRead));
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(nbasis); 
 | 
					 | 
				
			||||||
  acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],nbasis *sizeof(Vview));
 | 
					 | 
				
			||||||
  auto Basis_p = &AcceleratorVecViewContainer[0];
 | 
					 | 
				
			||||||
  // Loop with a cache friendly loop ordering
 | 
					  // Loop with a cache friendly loop ordering
 | 
				
			||||||
  Coordinate frdimensions=fine->_rdimensions;
 | 
					  accelerator_for(sf,fine->oSites(),1,{
 | 
				
			||||||
  Coordinate crdimensions=coarse->_rdimensions;
 | 
					 | 
				
			||||||
  accelerator_for(sf,fine->oSites(),vobj::Nsimd(),{
 | 
					 | 
				
			||||||
    int sc;
 | 
					    int sc;
 | 
				
			||||||
    Coordinate coor_c(_ndimension);
 | 
					    Coordinate coor_c(_ndimension);
 | 
				
			||||||
    Coordinate coor_f(_ndimension);
 | 
					    Coordinate coor_f(_ndimension);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    Lexicographic::CoorFromIndex(coor_f,sf,frdimensions);
 | 
					    Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
 | 
				
			||||||
    for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
 | 
					    for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
 | 
				
			||||||
    Lexicographic::IndexFromCoor(coor_c,sc,crdimensions);
 | 
					    Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    auto sum= coarseData_(sc)(0) *Basis_p[0](sf);
 | 
					    for(int i=0;i<nbasis;i++) {
 | 
				
			||||||
    for(int i=1;i<nbasis;i++) sum = sum + coarseData_(sc)(i)*Basis_p[i](sf);
 | 
					      /*      auto basis_ = Basis[i],  );*/
 | 
				
			||||||
    coalescedWrite(fineData_[sf],sum);
 | 
					      if(i==0) fineData_[sf]=coarseData_[sc](i) *basis_[sf]);
 | 
				
			||||||
  });
 | 
					      else     fineData_[sf]=fineData_[sf]+coarseData_[sc](i)*basis_[sf]);
 | 
				
			||||||
  for(int v=0;v<nbasis;v++) {
 | 
					 | 
				
			||||||
    AcceleratorVecViewContainer_h[v].ViewClose();
 | 
					 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					  });
 | 
				
			||||||
  return;
 | 
					  return;
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
#else
 | 
					#else
 | 
				
			||||||
// CPU version
 | 
					 | 
				
			||||||
template<class vobj,class CComplex,int nbasis,class VLattice>
 | 
					template<class vobj,class CComplex,int nbasis,class VLattice>
 | 
				
			||||||
inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
					inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
				
			||||||
			 Lattice<vobj>   &fineData,
 | 
								 Lattice<vobj>   &fineData,
 | 
				
			||||||
@@ -681,26 +512,6 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
				
			|||||||
}
 | 
					}
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj,class CComplex,int nbasis,class VLattice>
 | 
					 | 
				
			||||||
inline void batchBlockPromote(const std::vector<Lattice<iVector<CComplex,nbasis>>> &coarseData,
 | 
					 | 
				
			||||||
                               std::vector<Lattice<vobj>> &fineData,
 | 
					 | 
				
			||||||
                               const VLattice &Basis)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  int NBatch = coarseData.size();
 | 
					 | 
				
			||||||
  assert(fineData.size() == NBatch);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  GridBase * fine   = fineData[0].Grid();
 | 
					 | 
				
			||||||
  GridBase * coarse = coarseData[0].Grid();
 | 
					 | 
				
			||||||
  for (int k=0; k<NBatch; k++)
 | 
					 | 
				
			||||||
    fineData[k]=Zero();
 | 
					 | 
				
			||||||
  for (int i=0;i<nbasis;i++) {
 | 
					 | 
				
			||||||
    for (int k=0; k<NBatch; k++) {
 | 
					 | 
				
			||||||
      Lattice<iScalar<CComplex>> ip = PeekIndex<0>(coarseData[k],i);
 | 
					 | 
				
			||||||
      blockZAXPY(fineData[k],ip,Basis[i],fineData[k]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
// Useful for precision conversion, or indeed anything where an operator= does a conversion on scalars.
 | 
					// Useful for precision conversion, or indeed anything where an operator= does a conversion on scalars.
 | 
				
			||||||
// Simd layouts need not match since we use peek/poke Local
 | 
					// Simd layouts need not match since we use peek/poke Local
 | 
				
			||||||
template<class vobj,class vvobj>
 | 
					template<class vobj,class vvobj>
 | 
				
			||||||
@@ -744,11 +555,7 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
 | 
				
			|||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					  typedef typename vobj::scalar_type scalar_type;
 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					  typedef typename vobj::vector_type vector_type;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  const int words=sizeof(vobj)/sizeof(vector_type);
 | 
					  static const int words=sizeof(vobj)/sizeof(vector_type);
 | 
				
			||||||
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // checks should guarantee that the operations are local
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  GridBase *Fg = From.Grid();
 | 
					  GridBase *Fg = From.Grid();
 | 
				
			||||||
  GridBase *Tg = To.Grid();
 | 
					  GridBase *Tg = To.Grid();
 | 
				
			||||||
@@ -764,186 +571,43 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
 | 
				
			|||||||
    assert(Fg->_processors[d]  == Tg->_processors[d]);
 | 
					    assert(Fg->_processors[d]  == Tg->_processors[d]);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  ///////////////////////////////////////////////////////////
 | 
					  // the above should guarantee that the operations are local
 | 
				
			||||||
  // do the index calc on the GPU
 | 
					  Coordinate ldf = Fg->_ldimensions;
 | 
				
			||||||
  ///////////////////////////////////////////////////////////
 | 
					  Coordinate rdf = Fg->_rdimensions;
 | 
				
			||||||
  Coordinate f_ostride = Fg->_ostride;
 | 
					  Coordinate isf = Fg->_istride;
 | 
				
			||||||
  Coordinate f_istride = Fg->_istride;
 | 
					  Coordinate osf = Fg->_ostride;
 | 
				
			||||||
  Coordinate f_rdimensions = Fg->_rdimensions;
 | 
					  Coordinate rdt = Tg->_rdimensions;
 | 
				
			||||||
  Coordinate t_ostride = Tg->_ostride;
 | 
					  Coordinate ist = Tg->_istride;
 | 
				
			||||||
  Coordinate t_istride = Tg->_istride;
 | 
					  Coordinate ost = Tg->_ostride;
 | 
				
			||||||
  Coordinate t_rdimensions = Tg->_rdimensions;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  size_t nsite = 1;
 | 
					  autoView( t_v , To, AcceleratorWrite);
 | 
				
			||||||
  for(int i=0;i<nd;i++) nsite *= RegionSize[i];
 | 
					  autoView( f_v , From, AcceleratorRead);
 | 
				
			||||||
 | 
					  accelerator_for(idx,Fg->lSites(),1,{
 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					    sobj s;
 | 
				
			||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					    Coordinate Fcoor(nd);
 | 
				
			||||||
 | 
					    Coordinate Tcoor(nd);
 | 
				
			||||||
  autoView(from_v,From,AcceleratorRead);
 | 
					    Lexicographic::CoorFromIndex(Fcoor,idx,ldf);
 | 
				
			||||||
  autoView(to_v,To,AcceleratorWrite);
 | 
					    int in_region=1;
 | 
				
			||||||
 | 
					    for(int d=0;d<nd;d++){
 | 
				
			||||||
  accelerator_for(idx,nsite,1,{
 | 
					      if ( (Fcoor[d] < FromLowerLeft[d]) || (Fcoor[d]>=FromLowerLeft[d]+RegionSize[d]) ){ 
 | 
				
			||||||
 | 
						in_region=0;
 | 
				
			||||||
      Coordinate from_coor, to_coor, base;
 | 
					 | 
				
			||||||
      Lexicographic::CoorFromIndex(base,idx,RegionSize);
 | 
					 | 
				
			||||||
      for(int i=0;i<nd;i++){
 | 
					 | 
				
			||||||
	from_coor[i] = base[i] + FromLowerLeft[i];
 | 
					 | 
				
			||||||
	to_coor[i] = base[i] + ToLowerLeft[i];
 | 
					 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
      int from_oidx = 0; for(int d=0;d<nd;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
 | 
					      Tcoor[d] = ToLowerLeft[d]+ Fcoor[d]-FromLowerLeft[d];
 | 
				
			||||||
      int from_lane = 0; for(int d=0;d<nd;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
 | 
					    }
 | 
				
			||||||
      int to_oidx   = 0; for(int d=0;d<nd;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
 | 
					    if (in_region) {
 | 
				
			||||||
      int to_lane   = 0; for(int d=0;d<nd;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
 | 
					      Integer idx_f = 0; for(int d=0;d<nd;d++) idx_f+=isf[d]*(Fcoor[d]/rdf[d]);
 | 
				
			||||||
 | 
					      Integer idx_t = 0; for(int d=0;d<nd;d++) idx_t+=ist[d]*(Tcoor[d]/rdt[d]);
 | 
				
			||||||
      const vector_type* from = (const vector_type *)&from_v[from_oidx];
 | 
					      Integer odx_f = 0; for(int d=0;d<nd;d++) odx_f+=osf[d]*(Fcoor[d]%rdf[d]);
 | 
				
			||||||
      vector_type* to = (vector_type *)&to_v[to_oidx];
 | 
					      Integer odx_t = 0; for(int d=0;d<nd;d++) odx_t+=ost[d]*(Tcoor[d]%rdt[d]);
 | 
				
			||||||
      
 | 
					      scalar_type * fp = (scalar_type *)&f_v[odx_f];
 | 
				
			||||||
      scalar_type stmp;
 | 
					      scalar_type * tp = (scalar_type *)&t_v[odx_t];
 | 
				
			||||||
      for(int w=0;w<words;w++){
 | 
					      for(int w=0;w<words;w++){
 | 
				
			||||||
	stmp = getlane(from[w], from_lane);
 | 
						tp[idx_t+w*Nsimd] = fp[idx_f+w*Nsimd];  // FIXME IF RRII layout, type pun no worke
 | 
				
			||||||
	putlane(to[w], stmp, to_lane);
 | 
					      }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
  });
 | 
					  });
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj>
 | 
					 | 
				
			||||||
void InsertSliceFast(const Lattice<vobj> &From,Lattice<vobj> & To,int slice, int orthog)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  const int words=sizeof(vobj)/sizeof(vector_type);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // checks should guarantee that the operations are local
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  GridBase *Fg = From.Grid();
 | 
					 | 
				
			||||||
  GridBase *Tg = To.Grid();
 | 
					 | 
				
			||||||
  assert(!Fg->_isCheckerBoarded);
 | 
					 | 
				
			||||||
  assert(!Tg->_isCheckerBoarded);
 | 
					 | 
				
			||||||
  int Nsimd = Fg->Nsimd();
 | 
					 | 
				
			||||||
  int nF = Fg->_ndimension;
 | 
					 | 
				
			||||||
  int nT = Tg->_ndimension;
 | 
					 | 
				
			||||||
  assert(nF+1 == nT);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ///////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // do the index calc on the GPU
 | 
					 | 
				
			||||||
  ///////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  Coordinate f_ostride = Fg->_ostride;
 | 
					 | 
				
			||||||
  Coordinate f_istride = Fg->_istride;
 | 
					 | 
				
			||||||
  Coordinate f_rdimensions = Fg->_rdimensions;
 | 
					 | 
				
			||||||
  Coordinate t_ostride = Tg->_ostride;
 | 
					 | 
				
			||||||
  Coordinate t_istride = Tg->_istride;
 | 
					 | 
				
			||||||
  Coordinate t_rdimensions = Tg->_rdimensions;
 | 
					 | 
				
			||||||
  Coordinate RegionSize = Fg->_ldimensions;
 | 
					 | 
				
			||||||
  size_t nsite = 1;
 | 
					 | 
				
			||||||
  for(int i=0;i<nF;i++) nsite *= RegionSize[i]; // whole volume of lower dim grid
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  autoView(from_v,From,AcceleratorRead);
 | 
					 | 
				
			||||||
  autoView(to_v,To,AcceleratorWrite);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  accelerator_for(idx,nsite,1,{
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      Coordinate from_coor(nF), to_coor(nT);
 | 
					 | 
				
			||||||
      Lexicographic::CoorFromIndex(from_coor,idx,RegionSize);
 | 
					 | 
				
			||||||
      int j=0;
 | 
					 | 
				
			||||||
      for(int i=0;i<nT;i++){
 | 
					 | 
				
			||||||
	if ( i!=orthog ) { 
 | 
					 | 
				
			||||||
	  to_coor[i] = from_coor[j];
 | 
					 | 
				
			||||||
	  j++;
 | 
					 | 
				
			||||||
	} else {
 | 
					 | 
				
			||||||
	  to_coor[i] = slice;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      int from_oidx = 0; for(int d=0;d<nF;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
 | 
					 | 
				
			||||||
      int from_lane = 0; for(int d=0;d<nF;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
 | 
					 | 
				
			||||||
      int to_oidx   = 0; for(int d=0;d<nT;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
 | 
					 | 
				
			||||||
      int to_lane   = 0; for(int d=0;d<nT;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      const vector_type* from = (const vector_type *)&from_v[from_oidx];
 | 
					 | 
				
			||||||
      vector_type* to = (vector_type *)&to_v[to_oidx];
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      scalar_type stmp;
 | 
					 | 
				
			||||||
      for(int w=0;w<words;w++){
 | 
					 | 
				
			||||||
	stmp = getlane(from[w], from_lane);
 | 
					 | 
				
			||||||
	putlane(to[w], stmp, to_lane);
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
  });
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class vobj>
 | 
					 | 
				
			||||||
void ExtractSliceFast(Lattice<vobj> &To,const Lattice<vobj> & From,int slice, int orthog)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  const int words=sizeof(vobj)/sizeof(vector_type);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // checks should guarantee that the operations are local
 | 
					 | 
				
			||||||
  //////////////////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  GridBase *Fg = From.Grid();
 | 
					 | 
				
			||||||
  GridBase *Tg = To.Grid();
 | 
					 | 
				
			||||||
  assert(!Fg->_isCheckerBoarded);
 | 
					 | 
				
			||||||
  assert(!Tg->_isCheckerBoarded);
 | 
					 | 
				
			||||||
  int Nsimd = Fg->Nsimd();
 | 
					 | 
				
			||||||
  int nF = Fg->_ndimension;
 | 
					 | 
				
			||||||
  int nT = Tg->_ndimension;
 | 
					 | 
				
			||||||
  assert(nT+1 == nF);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ///////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  // do the index calc on the GPU
 | 
					 | 
				
			||||||
  ///////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
  Coordinate f_ostride = Fg->_ostride;
 | 
					 | 
				
			||||||
  Coordinate f_istride = Fg->_istride;
 | 
					 | 
				
			||||||
  Coordinate f_rdimensions = Fg->_rdimensions;
 | 
					 | 
				
			||||||
  Coordinate t_ostride = Tg->_ostride;
 | 
					 | 
				
			||||||
  Coordinate t_istride = Tg->_istride;
 | 
					 | 
				
			||||||
  Coordinate t_rdimensions = Tg->_rdimensions;
 | 
					 | 
				
			||||||
  Coordinate RegionSize = Tg->_ldimensions;
 | 
					 | 
				
			||||||
  size_t nsite = 1;
 | 
					 | 
				
			||||||
  for(int i=0;i<nT;i++) nsite *= RegionSize[i]; // whole volume of lower dim grid
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  autoView(from_v,From,AcceleratorRead);
 | 
					 | 
				
			||||||
  autoView(to_v,To,AcceleratorWrite);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  accelerator_for(idx,nsite,1,{
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      Coordinate from_coor(nF), to_coor(nT);
 | 
					 | 
				
			||||||
      Lexicographic::CoorFromIndex(to_coor,idx,RegionSize);
 | 
					 | 
				
			||||||
      int j=0;
 | 
					 | 
				
			||||||
      for(int i=0;i<nF;i++){
 | 
					 | 
				
			||||||
	if ( i!=orthog ) { 
 | 
					 | 
				
			||||||
	  from_coor[i] = to_coor[j];
 | 
					 | 
				
			||||||
	  j++;
 | 
					 | 
				
			||||||
	} else {
 | 
					 | 
				
			||||||
	  from_coor[i] = slice;
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      int from_oidx = 0; for(int d=0;d<nF;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
 | 
					 | 
				
			||||||
      int from_lane = 0; for(int d=0;d<nF;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
 | 
					 | 
				
			||||||
      int to_oidx   = 0; for(int d=0;d<nT;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
 | 
					 | 
				
			||||||
      int to_lane   = 0; for(int d=0;d<nT;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      const vector_type* from = (const vector_type *)&from_v[from_oidx];
 | 
					 | 
				
			||||||
      vector_type* to = (vector_type *)&to_v[to_oidx];
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
      scalar_type stmp;
 | 
					 | 
				
			||||||
      for(int w=0;w<words;w++){
 | 
					 | 
				
			||||||
	stmp = getlane(from[w], from_lane);
 | 
					 | 
				
			||||||
	putlane(to[w], stmp, to_lane);
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
  });
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj>
 | 
					template<class vobj>
 | 
				
			||||||
void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice, int orthog)
 | 
					void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice, int orthog)
 | 
				
			||||||
@@ -981,14 +645,8 @@ void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice
 | 
				
			|||||||
    hcoor[orthog] = slice;
 | 
					    hcoor[orthog] = slice;
 | 
				
			||||||
    for(int d=0;d<nh;d++){
 | 
					    for(int d=0;d<nh;d++){
 | 
				
			||||||
      if ( d!=orthog ) { 
 | 
					      if ( d!=orthog ) { 
 | 
				
			||||||
	hcoor[d]=lcoor[ddl];
 | 
						hcoor[d]=lcoor[ddl++];
 | 
				
			||||||
	if ( hg->_checker_dim == d ) {
 | 
					 | 
				
			||||||
	  hcoor[d]=hcoor[d]*2; // factor in the full coor for peekLocalSite
 | 
					 | 
				
			||||||
	  lcoor[ddl]=lcoor[ddl]*2; // factor in the full coor for peekLocalSite
 | 
					 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
	ddl++;
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    peekLocalSite(s,lowDimv,lcoor);
 | 
					    peekLocalSite(s,lowDimv,lcoor);
 | 
				
			||||||
    pokeLocalSite(s,higherDimv,hcoor);
 | 
					    pokeLocalSite(s,higherDimv,hcoor);
 | 
				
			||||||
@@ -1009,7 +667,6 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
 | 
				
			|||||||
  assert(orthog<nh);
 | 
					  assert(orthog<nh);
 | 
				
			||||||
  assert(orthog>=0);
 | 
					  assert(orthog>=0);
 | 
				
			||||||
  assert(hg->_processors[orthog]==1);
 | 
					  assert(hg->_processors[orthog]==1);
 | 
				
			||||||
  lowDim.Checkerboard() = higherDim.Checkerboard();
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  int dl; dl = 0;
 | 
					  int dl; dl = 0;
 | 
				
			||||||
  for(int d=0;d<nh;d++){
 | 
					  for(int d=0;d<nh;d++){
 | 
				
			||||||
@@ -1027,16 +684,11 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
 | 
				
			|||||||
    Coordinate lcoor(nl);
 | 
					    Coordinate lcoor(nl);
 | 
				
			||||||
    Coordinate hcoor(nh);
 | 
					    Coordinate hcoor(nh);
 | 
				
			||||||
    lg->LocalIndexToLocalCoor(idx,lcoor);
 | 
					    lg->LocalIndexToLocalCoor(idx,lcoor);
 | 
				
			||||||
    hcoor[orthog] = slice;
 | 
					 | 
				
			||||||
    int ddl=0;
 | 
					    int ddl=0;
 | 
				
			||||||
 | 
					    hcoor[orthog] = slice;
 | 
				
			||||||
    for(int d=0;d<nh;d++){
 | 
					    for(int d=0;d<nh;d++){
 | 
				
			||||||
      if ( d!=orthog ) { 
 | 
					      if ( d!=orthog ) { 
 | 
				
			||||||
	hcoor[d]=lcoor[ddl];
 | 
						hcoor[d]=lcoor[ddl++];
 | 
				
			||||||
	if ( hg->_checker_dim == d ) {
 | 
					 | 
				
			||||||
	  hcoor[d]=hcoor[d]*2;     // factor in the full gridd coor for peekLocalSite
 | 
					 | 
				
			||||||
	  lcoor[ddl]=lcoor[ddl]*2; // factor in the full coor for peekLocalSite
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	ddl++;
 | 
					 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    peekLocalSite(s,higherDimv,hcoor);
 | 
					    peekLocalSite(s,higherDimv,hcoor);
 | 
				
			||||||
@@ -1045,7 +697,7 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
//Can I implement with local copyregion??
 | 
					
 | 
				
			||||||
template<class vobj>
 | 
					template<class vobj>
 | 
				
			||||||
void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
 | 
					void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
@@ -1066,23 +718,66 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
 | 
				
			|||||||
    assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
 | 
					    assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  Coordinate sz = lg->_ldimensions;
 | 
					
 | 
				
			||||||
  sz[orthog]=1;
 | 
					  // the above should guarantee that the operations are local
 | 
				
			||||||
  Coordinate f_ll(nl,0); f_ll[orthog]=slice_lo;
 | 
					  autoView(lowDimv,lowDim,CpuRead);
 | 
				
			||||||
  Coordinate t_ll(nh,0); t_ll[orthog]=slice_hi;
 | 
					  autoView(higherDimv,higherDim,CpuWrite);
 | 
				
			||||||
  localCopyRegion(lowDim,higherDim,f_ll,t_ll,sz);
 | 
					  thread_for(idx,lg->lSites(),{
 | 
				
			||||||
 | 
					    sobj s;
 | 
				
			||||||
 | 
					    Coordinate lcoor(nl);
 | 
				
			||||||
 | 
					    Coordinate hcoor(nh);
 | 
				
			||||||
 | 
					    lg->LocalIndexToLocalCoor(idx,lcoor);
 | 
				
			||||||
 | 
					    if( lcoor[orthog] == slice_lo ) { 
 | 
				
			||||||
 | 
					      hcoor=lcoor;
 | 
				
			||||||
 | 
					      hcoor[orthog] = slice_hi;
 | 
				
			||||||
 | 
					      peekLocalSite(s,lowDimv,lcoor);
 | 
				
			||||||
 | 
					      pokeLocalSite(s,higherDimv,hcoor);
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  });
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj>
 | 
					template<class vobj>
 | 
				
			||||||
void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
 | 
					void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  InsertSliceLocal(higherDim,lowDim,slice_hi,slice_lo,orthog);
 | 
					  typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  GridBase *lg = lowDim.Grid();
 | 
				
			||||||
 | 
					  GridBase *hg = higherDim.Grid();
 | 
				
			||||||
 | 
					  int nl = lg->_ndimension;
 | 
				
			||||||
 | 
					  int nh = hg->_ndimension;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  assert(nl == nh);
 | 
				
			||||||
 | 
					  assert(orthog<nh);
 | 
				
			||||||
 | 
					  assert(orthog>=0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  for(int d=0;d<nh;d++){
 | 
				
			||||||
 | 
					    if ( d!=orthog ) {
 | 
				
			||||||
 | 
					    assert(lg->_processors[d]  == hg->_processors[d]);
 | 
				
			||||||
 | 
					    assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  // the above should guarantee that the operations are local
 | 
				
			||||||
 | 
					  autoView(lowDimv,lowDim,CpuWrite);
 | 
				
			||||||
 | 
					  autoView(higherDimv,higherDim,CpuRead);
 | 
				
			||||||
 | 
					  thread_for(idx,lg->lSites(),{
 | 
				
			||||||
 | 
					    sobj s;
 | 
				
			||||||
 | 
					    Coordinate lcoor(nl);
 | 
				
			||||||
 | 
					    Coordinate hcoor(nh);
 | 
				
			||||||
 | 
					    lg->LocalIndexToLocalCoor(idx,lcoor);
 | 
				
			||||||
 | 
					    if( lcoor[orthog] == slice_lo ) { 
 | 
				
			||||||
 | 
					      hcoor=lcoor;
 | 
				
			||||||
 | 
					      hcoor[orthog] = slice_hi;
 | 
				
			||||||
 | 
					      peekLocalSite(s,higherDimv,hcoor);
 | 
				
			||||||
 | 
					      pokeLocalSite(s,lowDimv,lcoor);
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  });
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class vobj>
 | 
					template<class vobj>
 | 
				
			||||||
void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine)
 | 
					void Replicate(Lattice<vobj> &coarse,Lattice<vobj> & fine)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					  typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -1103,7 +798,7 @@ void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  Coordinate fcoor(nd);
 | 
					  Coordinate fcoor(nd);
 | 
				
			||||||
  Coordinate ccoor(nd);
 | 
					  Coordinate ccoor(nd);
 | 
				
			||||||
  for(int64_t g=0;g<fg->gSites();g++){
 | 
					  for(int g=0;g<fg->gSites();g++){
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    fg->GlobalIndexToGlobalCoor(g,fcoor);
 | 
					    fg->GlobalIndexToGlobalCoor(g,fcoor);
 | 
				
			||||||
    for(int d=0;d<nd;d++){
 | 
					    for(int d=0;d<nd;d++){
 | 
				
			||||||
@@ -1307,27 +1002,9 @@ vectorizeFromRevLexOrdArray( std::vector<sobj> &in, Lattice<vobj> &out)
 | 
				
			|||||||
  });
 | 
					  });
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
//Very fast precision change. Requires in/out objects to reside on same Grid (e.g. by using double2 for the double-precision field)
 | 
					//Convert a Lattice from one precision to another
 | 
				
			||||||
template<class VobjOut, class VobjIn>
 | 
					template<class VobjOut, class VobjIn>
 | 
				
			||||||
void precisionChangeFast(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
 | 
					void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  typedef typename VobjOut::vector_type Vout;
 | 
					 | 
				
			||||||
  typedef typename VobjIn::vector_type Vin;
 | 
					 | 
				
			||||||
  const int N = sizeof(VobjOut)/sizeof(Vout);
 | 
					 | 
				
			||||||
  conformable(out.Grid(),in.Grid());
 | 
					 | 
				
			||||||
  out.Checkerboard() = in.Checkerboard();
 | 
					 | 
				
			||||||
  int nsimd = out.Grid()->Nsimd();
 | 
					 | 
				
			||||||
  autoView( out_v  , out, AcceleratorWrite);
 | 
					 | 
				
			||||||
  autoView(  in_v ,   in, AcceleratorRead);
 | 
					 | 
				
			||||||
  accelerator_for(idx,out.Grid()->oSites(),1,{
 | 
					 | 
				
			||||||
      Vout *vout = (Vout *)&out_v[idx];
 | 
					 | 
				
			||||||
      Vin  *vin  = (Vin  *)&in_v[idx];
 | 
					 | 
				
			||||||
      precisionChange(vout,vin,N);
 | 
					 | 
				
			||||||
  });
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
//Convert a Lattice from one precision to another (original, slow implementation)
 | 
					 | 
				
			||||||
template<class VobjOut, class VobjIn>
 | 
					 | 
				
			||||||
void precisionChangeOrig(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
 | 
					 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  assert(out.Grid()->Nd() == in.Grid()->Nd());
 | 
					  assert(out.Grid()->Nd() == in.Grid()->Nd());
 | 
				
			||||||
  for(int d=0;d<out.Grid()->Nd();d++){
 | 
					  for(int d=0;d<out.Grid()->Nd();d++){
 | 
				
			||||||
@@ -1342,7 +1019,7 @@ void precisionChangeOrig(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  int ndim = out.Grid()->Nd();
 | 
					  int ndim = out.Grid()->Nd();
 | 
				
			||||||
  int out_nsimd = out_grid->Nsimd();
 | 
					  int out_nsimd = out_grid->Nsimd();
 | 
				
			||||||
  int in_nsimd = in_grid->Nsimd();
 | 
					    
 | 
				
			||||||
  std::vector<Coordinate > out_icoor(out_nsimd);
 | 
					  std::vector<Coordinate > out_icoor(out_nsimd);
 | 
				
			||||||
      
 | 
					      
 | 
				
			||||||
  for(int lane=0; lane < out_nsimd; lane++){
 | 
					  for(int lane=0; lane < out_nsimd; lane++){
 | 
				
			||||||
@@ -1373,128 +1050,6 @@ void precisionChangeOrig(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
 | 
				
			|||||||
  });
 | 
					  });
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
//The workspace for a precision change operation allowing for the reuse of the mapping to save time on subsequent calls
 | 
					 | 
				
			||||||
class precisionChangeWorkspace{
 | 
					 | 
				
			||||||
  std::pair<Integer,Integer>* fmap_device; //device pointer
 | 
					 | 
				
			||||||
  //maintain grids for checking
 | 
					 | 
				
			||||||
  GridBase* _out_grid;
 | 
					 | 
				
			||||||
  GridBase* _in_grid;
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  precisionChangeWorkspace(GridBase *out_grid, GridBase *in_grid): _out_grid(out_grid), _in_grid(in_grid){
 | 
					 | 
				
			||||||
    //Build a map between the sites and lanes of the output field and the input field as we cannot use the Grids on the device
 | 
					 | 
				
			||||||
    assert(out_grid->Nd() == in_grid->Nd());
 | 
					 | 
				
			||||||
    for(int d=0;d<out_grid->Nd();d++){
 | 
					 | 
				
			||||||
      assert(out_grid->FullDimensions()[d] == in_grid->FullDimensions()[d]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    int Nsimd_out = out_grid->Nsimd();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<Coordinate> out_icorrs(out_grid->Nsimd()); //reuse these
 | 
					 | 
				
			||||||
    for(int lane=0; lane < out_grid->Nsimd(); lane++)
 | 
					 | 
				
			||||||
      out_grid->iCoorFromIindex(out_icorrs[lane], lane);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
    std::vector<std::pair<Integer,Integer> > fmap_host(out_grid->lSites()); //lsites = osites*Nsimd
 | 
					 | 
				
			||||||
    thread_for(out_oidx,out_grid->oSites(),{
 | 
					 | 
				
			||||||
	Coordinate out_ocorr; 
 | 
					 | 
				
			||||||
	out_grid->oCoorFromOindex(out_ocorr, out_oidx);
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
	Coordinate lcorr; //the local coordinate (common to both in and out as full coordinate)
 | 
					 | 
				
			||||||
	for(int out_lane=0; out_lane < Nsimd_out; out_lane++){
 | 
					 | 
				
			||||||
	  out_grid->InOutCoorToLocalCoor(out_ocorr, out_icorrs[out_lane], lcorr);
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	  //int in_oidx = in_grid->oIndex(lcorr), in_lane = in_grid->iIndex(lcorr);
 | 
					 | 
				
			||||||
	  //Note oIndex and OcorrFromOindex (and same for iIndex) are not inverse for checkerboarded lattice, the former coordinates being defined on the full lattice and the latter on the reduced lattice
 | 
					 | 
				
			||||||
	  //Until this is fixed we need to circumvent the problem locally. Here I will use the coordinates defined on the reduced lattice for simplicity
 | 
					 | 
				
			||||||
	  int in_oidx = 0, in_lane = 0;
 | 
					 | 
				
			||||||
	  for(int d=0;d<in_grid->_ndimension;d++){
 | 
					 | 
				
			||||||
	    in_oidx += in_grid->_ostride[d] * ( lcorr[d] % in_grid->_rdimensions[d] );
 | 
					 | 
				
			||||||
	    in_lane += in_grid->_istride[d] * ( lcorr[d] / in_grid->_rdimensions[d] );
 | 
					 | 
				
			||||||
	  }
 | 
					 | 
				
			||||||
	  fmap_host[out_lane + Nsimd_out*out_oidx] = std::pair<Integer,Integer>( in_oidx, in_lane );
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      });
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //Copy the map to the device (if we had a way to tell if an accelerator is in use we could avoid this copy for CPU-only machines)
 | 
					 | 
				
			||||||
    size_t fmap_bytes = out_grid->lSites() * sizeof(std::pair<Integer,Integer>);
 | 
					 | 
				
			||||||
    fmap_device = (std::pair<Integer,Integer>*)acceleratorAllocDevice(fmap_bytes);
 | 
					 | 
				
			||||||
    acceleratorCopyToDevice(fmap_host.data(), fmap_device, fmap_bytes); 
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  //Prevent moving or copying
 | 
					 | 
				
			||||||
  precisionChangeWorkspace(const precisionChangeWorkspace &r) = delete;
 | 
					 | 
				
			||||||
  precisionChangeWorkspace(precisionChangeWorkspace &&r) = delete;
 | 
					 | 
				
			||||||
  precisionChangeWorkspace &operator=(const precisionChangeWorkspace &r) = delete;
 | 
					 | 
				
			||||||
  precisionChangeWorkspace &operator=(precisionChangeWorkspace &&r) = delete;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  std::pair<Integer,Integer> const* getMap() const{ return fmap_device; }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  void checkGrids(GridBase* out, GridBase* in) const{
 | 
					 | 
				
			||||||
    conformable(out, _out_grid);
 | 
					 | 
				
			||||||
    conformable(in, _in_grid);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  ~precisionChangeWorkspace(){
 | 
					 | 
				
			||||||
    acceleratorFreeDevice(fmap_device);
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
//We would like to use precisionChangeFast when possible. However usage of this requires the Grids to be the same (runtime check)
 | 
					 | 
				
			||||||
//*and* the precisionChange(VobjOut::vector_type, VobjIn, int) function to be defined for the types; this requires an extra compile-time check which we do using some SFINAE trickery
 | 
					 | 
				
			||||||
template<class VobjOut, class VobjIn>
 | 
					 | 
				
			||||||
auto _precisionChangeFastWrap(Lattice<VobjOut> &out, const Lattice<VobjIn> &in, int dummy)->decltype( precisionChange( ((typename VobjOut::vector_type*)0), ((typename VobjIn::vector_type*)0), 1), int()){
 | 
					 | 
				
			||||||
  if(out.Grid() == in.Grid()){
 | 
					 | 
				
			||||||
    precisionChangeFast(out,in);
 | 
					 | 
				
			||||||
    return 1;
 | 
					 | 
				
			||||||
  }else{
 | 
					 | 
				
			||||||
    return 0;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
template<class VobjOut, class VobjIn>
 | 
					 | 
				
			||||||
int _precisionChangeFastWrap(Lattice<VobjOut> &out, const Lattice<VobjIn> &in, long dummy){ //note long here is intentional; it means the above is preferred if available
 | 
					 | 
				
			||||||
  return 0;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
//Convert a lattice of one precision to another. Much faster than original implementation but requires a pregenerated workspace
 | 
					 | 
				
			||||||
//which contains the mapping data.
 | 
					 | 
				
			||||||
template<class VobjOut, class VobjIn>
 | 
					 | 
				
			||||||
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in, const precisionChangeWorkspace &workspace){
 | 
					 | 
				
			||||||
  if(_precisionChangeFastWrap(out,in,0)) return;
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  static_assert( std::is_same<typename VobjOut::scalar_typeD, typename VobjIn::scalar_typeD>::value == 1, "precisionChange: tensor types must be the same" ); //if tensor types are same the DoublePrecision type must be the same
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  out.Checkerboard() = in.Checkerboard();
 | 
					 | 
				
			||||||
  constexpr int Nsimd_out = VobjOut::Nsimd();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  workspace.checkGrids(out.Grid(),in.Grid());
 | 
					 | 
				
			||||||
  std::pair<Integer,Integer> const* fmap_device = workspace.getMap();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  //Do the copy/precision change
 | 
					 | 
				
			||||||
  autoView( out_v , out, AcceleratorWrite);
 | 
					 | 
				
			||||||
  autoView( in_v , in, AcceleratorRead);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  accelerator_for(out_oidx, out.Grid()->oSites(), 1,{
 | 
					 | 
				
			||||||
      std::pair<Integer,Integer> const* fmap_osite = fmap_device + out_oidx*Nsimd_out;
 | 
					 | 
				
			||||||
      for(int out_lane=0; out_lane < Nsimd_out; out_lane++){      
 | 
					 | 
				
			||||||
	int in_oidx = fmap_osite[out_lane].first;
 | 
					 | 
				
			||||||
	int in_lane = fmap_osite[out_lane].second;
 | 
					 | 
				
			||||||
	copyLane(out_v[out_oidx], out_lane, in_v[in_oidx], in_lane);
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    });
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
//Convert a Lattice from one precision to another. Much faster than original implementation but slower than precisionChangeFast
 | 
					 | 
				
			||||||
//or precisionChange called with pregenerated workspace, as it needs to internally generate the workspace on the host and copy to device
 | 
					 | 
				
			||||||
template<class VobjOut, class VobjIn>
 | 
					 | 
				
			||||||
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in){
 | 
					 | 
				
			||||||
  if(_precisionChangeFastWrap(out,in,0)) return;   
 | 
					 | 
				
			||||||
  precisionChangeWorkspace workspace(out.Grid(), in.Grid());
 | 
					 | 
				
			||||||
  precisionChange(out, in, workspace);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
////////////////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
// Communicate between grids
 | 
					// Communicate between grids
 | 
				
			||||||
////////////////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
@@ -1789,35 +1344,5 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj>   & split)
 | 
				
			|||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
//////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
// Faster but less accurate blockProject
 | 
					 | 
				
			||||||
//////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
template<class vobj,class CComplex,int nbasis,class VLattice>
 | 
					 | 
				
			||||||
inline void blockProjectFast(Lattice<iVector<CComplex,nbasis > > &coarseData,
 | 
					 | 
				
			||||||
			     const             Lattice<vobj>   &fineData,
 | 
					 | 
				
			||||||
			     const VLattice &Basis)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  GridBase * fine  = fineData.Grid();
 | 
					 | 
				
			||||||
  GridBase * coarse= coarseData.Grid();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  Lattice<iScalar<CComplex> > ip(coarse);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  autoView( coarseData_ , coarseData, AcceleratorWrite);
 | 
					 | 
				
			||||||
  autoView( ip_         , ip,         AcceleratorWrite);
 | 
					 | 
				
			||||||
  RealD t_IP=0;
 | 
					 | 
				
			||||||
  RealD t_co=0;
 | 
					 | 
				
			||||||
  for(int v=0;v<nbasis;v++) {
 | 
					 | 
				
			||||||
    t_IP-=usecond();
 | 
					 | 
				
			||||||
    blockInnerProductD(ip,Basis[v],fineData); 
 | 
					 | 
				
			||||||
    t_IP+=usecond();
 | 
					 | 
				
			||||||
    t_co-=usecond();
 | 
					 | 
				
			||||||
    accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
 | 
					 | 
				
			||||||
	convertType(coarseData_[sc](v),ip_[sc]);
 | 
					 | 
				
			||||||
      });
 | 
					 | 
				
			||||||
    t_co+=usecond();
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					NAMESPACE_END(Grid);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -45,7 +45,6 @@ public:
 | 
				
			|||||||
  };
 | 
					  };
 | 
				
			||||||
  // Host only
 | 
					  // Host only
 | 
				
			||||||
  GridBase * getGrid(void) const { return _grid; };
 | 
					  GridBase * getGrid(void) const { return _grid; };
 | 
				
			||||||
  vobj* getHostPointer(void) const { return _odata; };
 | 
					 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
/////////////////////////////////////////////////////////////////////////////////////////
 | 
					/////////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1,601 +0,0 @@
 | 
				
			|||||||
/*************************************************************************************
 | 
					 | 
				
			||||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Source file: ./lib/lattice/PaddedCell.h
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Copyright (C) 2019
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Author: Peter Boyle pboyle@bnl.gov
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					 | 
				
			||||||
    the Free Software Foundation; either version 2 of the License, or
 | 
					 | 
				
			||||||
    (at your option) any later version.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    This program is distributed in the hope that it will be useful,
 | 
					 | 
				
			||||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					 | 
				
			||||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					 | 
				
			||||||
    GNU General Public License for more details.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    You should have received a copy of the GNU General Public License along
 | 
					 | 
				
			||||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
					 | 
				
			||||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
					 | 
				
			||||||
*************************************************************************************/
 | 
					 | 
				
			||||||
/*  END LEGAL */
 | 
					 | 
				
			||||||
#pragma once
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#include<Grid/cshift/Cshift.h>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_BEGIN(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
//Allow the user to specify how the C-shift is performed, e.g. to respect the appropriate boundary conditions
 | 
					 | 
				
			||||||
template<typename vobj>
 | 
					 | 
				
			||||||
struct CshiftImplBase{
 | 
					 | 
				
			||||||
  virtual Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const = 0;
 | 
					 | 
				
			||||||
  virtual ~CshiftImplBase(){}
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
template<typename vobj>
 | 
					 | 
				
			||||||
struct CshiftImplDefault: public CshiftImplBase<vobj>{
 | 
					 | 
				
			||||||
  Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const override{ return Grid::Cshift(in,dir,shift); }
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
template<typename Gimpl>
 | 
					 | 
				
			||||||
struct CshiftImplGauge: public CshiftImplBase<typename Gimpl::GaugeLinkField::vector_object>{
 | 
					 | 
				
			||||||
  typename Gimpl::GaugeLinkField Cshift(const typename Gimpl::GaugeLinkField &in, int dir, int shift) const override{ return Gimpl::CshiftLink(in,dir,shift); }
 | 
					 | 
				
			||||||
};  
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/*
 | 
					 | 
				
			||||||
 *
 | 
					 | 
				
			||||||
 * TODO: 
 | 
					 | 
				
			||||||
 *  -- address elementsof vobj via thread block in Scatter/Gather
 | 
					 | 
				
			||||||
 *  -- overlap comms with motion in Face_exchange
 | 
					 | 
				
			||||||
 *
 | 
					 | 
				
			||||||
 */
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class vobj> inline void ScatterSlice(const deviceVector<vobj> &buf,
 | 
					 | 
				
			||||||
					      Lattice<vobj> &lat,
 | 
					 | 
				
			||||||
					      int x,
 | 
					 | 
				
			||||||
					      int dim,
 | 
					 | 
				
			||||||
					      int offset=0)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  const int Nsimd=vobj::Nsimd();
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  GridBase *grid = lat.Grid();
 | 
					 | 
				
			||||||
  Coordinate simd = grid->_simd_layout;
 | 
					 | 
				
			||||||
  int Nd          = grid->Nd();
 | 
					 | 
				
			||||||
  int block       = grid->_slice_block[dim];
 | 
					 | 
				
			||||||
  int stride      = grid->_slice_stride[dim];
 | 
					 | 
				
			||||||
  int nblock      = grid->_slice_nblock[dim];
 | 
					 | 
				
			||||||
  int rd          = grid->_rdimensions[dim];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int ox = x%rd;
 | 
					 | 
				
			||||||
  int ix = x/rd;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int isites = 1; for(int d=0;d<Nd;d++) if( d!=dim) isites*=simd[d];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  Coordinate rsimd= simd;  rsimd[dim]=1; // maybe reduce Nsimd
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int rNsimd = 1; for(int d=0;d<Nd;d++) rNsimd*=rsimd[d];
 | 
					 | 
				
			||||||
  int rNsimda= Nsimd/simd[dim]; // should be equal
 | 
					 | 
				
			||||||
  assert(rNsimda==rNsimd);
 | 
					 | 
				
			||||||
  int face_ovol=block*nblock;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  //  assert(buf.size()==face_ovol*rNsimd);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /*This will work GPU ONLY unless rNsimd is put in the lexico index*/
 | 
					 | 
				
			||||||
  //Let's make it work on GPU and then make a special accelerator_for that
 | 
					 | 
				
			||||||
  //doesn't hide the SIMD direction and keeps explicit in the threadIdx
 | 
					 | 
				
			||||||
  //for cross platform
 | 
					 | 
				
			||||||
  // FIXME -- can put internal indices into thread loop
 | 
					 | 
				
			||||||
  auto buf_p = & buf[0];
 | 
					 | 
				
			||||||
  autoView(lat_v, lat, AcceleratorWrite);
 | 
					 | 
				
			||||||
  accelerator_for(ss, face_ovol/simd[dim],Nsimd,{
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // scalar layout won't coalesce
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
      {
 | 
					 | 
				
			||||||
	int blane=acceleratorSIMTlane(Nsimd); // buffer lane
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
      for(int blane=0;blane<Nsimd;blane++) {
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
	int olane=blane%rNsimd;               // reduced lattice lane
 | 
					 | 
				
			||||||
	int obit =blane/rNsimd;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	///////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	// osite -- potentially one bit from simd in the buffer: (ss<<1)|obit
 | 
					 | 
				
			||||||
	///////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
	int ssp = ss*simd[dim]+obit;
 | 
					 | 
				
			||||||
	int b    = ssp%block;
 | 
					 | 
				
			||||||
	int n    = ssp/block;
 | 
					 | 
				
			||||||
	int osite= b+n*stride + ox*block;
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	////////////////////////////////////////////
 | 
					 | 
				
			||||||
	// isite -- map lane within buffer to lane within lattice
 | 
					 | 
				
			||||||
	////////////////////////////////////////////
 | 
					 | 
				
			||||||
	Coordinate icoor;
 | 
					 | 
				
			||||||
	int lane;
 | 
					 | 
				
			||||||
	Lexicographic::CoorFromIndex(icoor,olane,rsimd);
 | 
					 | 
				
			||||||
	icoor[dim]=ix;
 | 
					 | 
				
			||||||
	Lexicographic::IndexFromCoor(icoor,lane,simd);
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	///////////////////////////////////////////
 | 
					 | 
				
			||||||
	// Transfer into lattice - will coalesce
 | 
					 | 
				
			||||||
	///////////////////////////////////////////
 | 
					 | 
				
			||||||
	//	sobj obj = extractLane(blane,buf_p[ss+offset]);
 | 
					 | 
				
			||||||
	//	insertLane(lane,lat_v[osite],obj);
 | 
					 | 
				
			||||||
	const int words=sizeof(vobj)/sizeof(vector_type);
 | 
					 | 
				
			||||||
	vector_type * from = (vector_type *)&buf_p[ss+offset];
 | 
					 | 
				
			||||||
	vector_type * to   = (vector_type *)&lat_v[osite];
 | 
					 | 
				
			||||||
	scalar_type stmp;
 | 
					 | 
				
			||||||
	for(int w=0;w<words;w++){
 | 
					 | 
				
			||||||
	  stmp = getlane(from[w], blane);
 | 
					 | 
				
			||||||
	  putlane(to[w], stmp, lane);
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
  });
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
template<class vobj> inline void GatherSlice(deviceVector<vobj> &buf,
 | 
					 | 
				
			||||||
					     const Lattice<vobj> &lat,
 | 
					 | 
				
			||||||
					     int x,
 | 
					 | 
				
			||||||
					     int dim,
 | 
					 | 
				
			||||||
					     int offset=0)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
  const int Nsimd=vobj::Nsimd();
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_object sobj;
 | 
					 | 
				
			||||||
  typedef typename vobj::scalar_type scalar_type;
 | 
					 | 
				
			||||||
  typedef typename vobj::vector_type vector_type;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  autoView(lat_v, lat, AcceleratorRead);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  GridBase *grid = lat.Grid();
 | 
					 | 
				
			||||||
  Coordinate simd = grid->_simd_layout;
 | 
					 | 
				
			||||||
  int Nd          = grid->Nd();
 | 
					 | 
				
			||||||
  int block       = grid->_slice_block[dim];
 | 
					 | 
				
			||||||
  int stride      = grid->_slice_stride[dim];
 | 
					 | 
				
			||||||
  int nblock      = grid->_slice_nblock[dim];
 | 
					 | 
				
			||||||
  int rd          = grid->_rdimensions[dim];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int ox = x%rd;
 | 
					 | 
				
			||||||
  int ix = x/rd;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int isites = 1; for(int d=0;d<Nd;d++) if( d!=dim) isites*=simd[d];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  Coordinate rsimd= simd;  rsimd[dim]=1; // maybe reduce Nsimd
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int rNsimd = 1; for(int d=0;d<Nd;d++) rNsimd*=rsimd[d];
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  int face_ovol=block*nblock;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  //  assert(buf.size()==face_ovol*rNsimd);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  /*This will work GPU ONLY unless rNsimd is put in the lexico index*/
 | 
					 | 
				
			||||||
  //Let's make it work on GPU and then make a special accelerator_for that
 | 
					 | 
				
			||||||
  //doesn't hide the SIMD direction and keeps explicit in the threadIdx
 | 
					 | 
				
			||||||
  //for cross platform
 | 
					 | 
				
			||||||
  //For CPU perhaps just run a loop over Nsimd
 | 
					 | 
				
			||||||
  auto buf_p = & buf[0];
 | 
					 | 
				
			||||||
  accelerator_for(ss, face_ovol/simd[dim],Nsimd,{
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // scalar layout won't coalesce
 | 
					 | 
				
			||||||
#ifdef GRID_SIMT
 | 
					 | 
				
			||||||
      {
 | 
					 | 
				
			||||||
	int blane=acceleratorSIMTlane(Nsimd); // buffer lane
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
      for(int blane=0;blane<Nsimd;blane++) {
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
	int olane=blane%rNsimd;               // reduced lattice lane
 | 
					 | 
				
			||||||
	int obit =blane/rNsimd;
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	////////////////////////////////////////////
 | 
					 | 
				
			||||||
	// osite
 | 
					 | 
				
			||||||
	////////////////////////////////////////////
 | 
					 | 
				
			||||||
	int ssp = ss*simd[dim]+obit;
 | 
					 | 
				
			||||||
	int b    = ssp%block;
 | 
					 | 
				
			||||||
	int n    = ssp/block;
 | 
					 | 
				
			||||||
	int osite= b+n*stride + ox*block;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	////////////////////////////////////////////
 | 
					 | 
				
			||||||
	// isite -- map lane within buffer to lane within lattice
 | 
					 | 
				
			||||||
	////////////////////////////////////////////
 | 
					 | 
				
			||||||
	Coordinate icoor;
 | 
					 | 
				
			||||||
	int lane;
 | 
					 | 
				
			||||||
	Lexicographic::CoorFromIndex(icoor,olane,rsimd);
 | 
					 | 
				
			||||||
	icoor[dim]=ix;
 | 
					 | 
				
			||||||
	Lexicographic::IndexFromCoor(icoor,lane,simd);
 | 
					 | 
				
			||||||
	
 | 
					 | 
				
			||||||
	///////////////////////////////////////////
 | 
					 | 
				
			||||||
	// Take out of lattice
 | 
					 | 
				
			||||||
	///////////////////////////////////////////
 | 
					 | 
				
			||||||
	//	sobj obj = extractLane(lane,lat_v[osite]);
 | 
					 | 
				
			||||||
	//	insertLane(blane,buf_p[ss+offset],obj);
 | 
					 | 
				
			||||||
	const int words=sizeof(vobj)/sizeof(vector_type);
 | 
					 | 
				
			||||||
	vector_type * to    = (vector_type *)&buf_p[ss+offset];
 | 
					 | 
				
			||||||
	vector_type * from  = (vector_type *)&lat_v[osite];
 | 
					 | 
				
			||||||
	scalar_type stmp;
 | 
					 | 
				
			||||||
	for(int w=0;w<words;w++){
 | 
					 | 
				
			||||||
	  stmp = getlane(from[w], lane);
 | 
					 | 
				
			||||||
	  putlane(to[w], stmp, blane);
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
  });
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
class PaddedCell {
 | 
					 | 
				
			||||||
public:
 | 
					 | 
				
			||||||
  GridCartesian * unpadded_grid;
 | 
					 | 
				
			||||||
  int dims;
 | 
					 | 
				
			||||||
  int depth;
 | 
					 | 
				
			||||||
  std::vector<GridCartesian *> grids;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ~PaddedCell()
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    DeleteGrids();
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  PaddedCell(int _depth,GridCartesian *_grid)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    unpadded_grid = _grid;
 | 
					 | 
				
			||||||
    depth=_depth;
 | 
					 | 
				
			||||||
    dims=_grid->Nd();
 | 
					 | 
				
			||||||
    AllocateGrids();
 | 
					 | 
				
			||||||
    Coordinate local     =unpadded_grid->LocalDimensions();
 | 
					 | 
				
			||||||
    Coordinate procs     =unpadded_grid->ProcessorGrid();
 | 
					 | 
				
			||||||
    for(int d=0;d<dims;d++){
 | 
					 | 
				
			||||||
      if ( procs[d] > 1 ) assert(local[d]>=depth);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  void DeleteGrids(void)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    Coordinate processors=unpadded_grid->_processors;
 | 
					 | 
				
			||||||
    for(int d=0;d<grids.size();d++){
 | 
					 | 
				
			||||||
      if ( processors[d] > 1 ) { 
 | 
					 | 
				
			||||||
	delete grids[d];
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    grids.resize(0);
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  void AllocateGrids(void)
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    Coordinate local     =unpadded_grid->LocalDimensions();
 | 
					 | 
				
			||||||
    Coordinate simd      =unpadded_grid->_simd_layout;
 | 
					 | 
				
			||||||
    Coordinate processors=unpadded_grid->_processors;
 | 
					 | 
				
			||||||
    Coordinate plocal    =unpadded_grid->LocalDimensions();
 | 
					 | 
				
			||||||
    Coordinate global(dims);
 | 
					 | 
				
			||||||
    GridCartesian *old_grid = unpadded_grid;
 | 
					 | 
				
			||||||
    // expand up one dim at a time
 | 
					 | 
				
			||||||
    for(int d=0;d<dims;d++){
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      if ( processors[d] > 1 ) { 
 | 
					 | 
				
			||||||
	plocal[d] += 2*depth; 
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
	for(int d=0;d<dims;d++){
 | 
					 | 
				
			||||||
	  global[d] = plocal[d]*processors[d];
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	old_grid = new GridCartesian(global,simd,processors);
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      grids.push_back(old_grid);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
  };
 | 
					 | 
				
			||||||
  template<class vobj>
 | 
					 | 
				
			||||||
  inline Lattice<vobj> Extract(const Lattice<vobj> &in) const
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    Coordinate processors=unpadded_grid->_processors;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Lattice<vobj> out(unpadded_grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Coordinate local     =unpadded_grid->LocalDimensions();
 | 
					 | 
				
			||||||
    // depends on the MPI spread      
 | 
					 | 
				
			||||||
    Coordinate fll(dims,depth);
 | 
					 | 
				
			||||||
    Coordinate tll(dims,0); // depends on the MPI spread
 | 
					 | 
				
			||||||
    for(int d=0;d<dims;d++){
 | 
					 | 
				
			||||||
      if( processors[d]==1 ) fll[d]=0;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    localCopyRegion(in,out,fll,tll,local);
 | 
					 | 
				
			||||||
    return out;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  template<class vobj>
 | 
					 | 
				
			||||||
  inline Lattice<vobj> Exchange(const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    GridBase *old_grid = in.Grid();
 | 
					 | 
				
			||||||
    int dims = old_grid->Nd();
 | 
					 | 
				
			||||||
    Lattice<vobj> tmp = in;
 | 
					 | 
				
			||||||
    for(int d=0;d<dims;d++){
 | 
					 | 
				
			||||||
      tmp = Expand(d,tmp,cshift); // rvalue && assignment
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    return tmp;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  template<class vobj>
 | 
					 | 
				
			||||||
  inline Lattice<vobj> ExchangePeriodic(const Lattice<vobj> &in) const
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    GridBase *old_grid = in.Grid();
 | 
					 | 
				
			||||||
    int dims = old_grid->Nd();
 | 
					 | 
				
			||||||
    Lattice<vobj> tmp = in;
 | 
					 | 
				
			||||||
    for(int d=0;d<dims;d++){
 | 
					 | 
				
			||||||
      tmp = ExpandPeriodic(d,tmp); // rvalue && assignment
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    return tmp;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  // expand up one dim at a time
 | 
					 | 
				
			||||||
  template<class vobj>
 | 
					 | 
				
			||||||
  inline Lattice<vobj> Expand(int dim, const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    Coordinate processors=unpadded_grid->_processors;
 | 
					 | 
				
			||||||
    GridBase *old_grid = in.Grid();
 | 
					 | 
				
			||||||
    GridCartesian *new_grid = grids[dim];//These are new grids
 | 
					 | 
				
			||||||
    Lattice<vobj>  padded(new_grid);
 | 
					 | 
				
			||||||
    Lattice<vobj> shifted(old_grid);    
 | 
					 | 
				
			||||||
    Coordinate local     =old_grid->LocalDimensions();
 | 
					 | 
				
			||||||
    Coordinate plocal    =new_grid->LocalDimensions();
 | 
					 | 
				
			||||||
    if(dim==0) conformable(old_grid,unpadded_grid);
 | 
					 | 
				
			||||||
    else       conformable(old_grid,grids[dim-1]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    double tins=0, tshift=0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int islocal = 0 ;
 | 
					 | 
				
			||||||
    if ( processors[dim] == 1 ) islocal = 1;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if ( islocal ) {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      // replace with a copy and maybe grid swizzle
 | 
					 | 
				
			||||||
      // return in;??
 | 
					 | 
				
			||||||
      double t = usecond();
 | 
					 | 
				
			||||||
      padded = in;
 | 
					 | 
				
			||||||
      tins += usecond() - t;
 | 
					 | 
				
			||||||
      
 | 
					 | 
				
			||||||
    } else {
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      //////////////////////////////////////////////
 | 
					 | 
				
			||||||
      // Replace sequence with
 | 
					 | 
				
			||||||
      // ---------------------
 | 
					 | 
				
			||||||
      // (i) Gather high face(s); start comms
 | 
					 | 
				
			||||||
      // (ii) Gather low  face(s); start comms
 | 
					 | 
				
			||||||
      // (iii) Copy middle bit with localCopyRegion
 | 
					 | 
				
			||||||
      // (iv) Complete high face(s), insert slice(s)
 | 
					 | 
				
			||||||
      // (iv) Complete low  face(s), insert slice(s)
 | 
					 | 
				
			||||||
      //////////////////////////////////////////////
 | 
					 | 
				
			||||||
      // Middle bit
 | 
					 | 
				
			||||||
      double t = usecond();
 | 
					 | 
				
			||||||
      for(int x=0;x<local[dim];x++){
 | 
					 | 
				
			||||||
	InsertSliceLocal(in,padded,x,depth+x,dim);
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      tins += usecond() - t;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
      // High bit
 | 
					 | 
				
			||||||
      t = usecond();
 | 
					 | 
				
			||||||
      shifted = cshift.Cshift(in,dim,depth);
 | 
					 | 
				
			||||||
      tshift += usecond() - t;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      t=usecond();
 | 
					 | 
				
			||||||
      for(int x=0;x<depth;x++){
 | 
					 | 
				
			||||||
	InsertSliceLocal(shifted,padded,local[dim]-depth+x,depth+local[dim]+x,dim);
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      tins += usecond() - t;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
      // Low bit
 | 
					 | 
				
			||||||
      t = usecond();
 | 
					 | 
				
			||||||
      shifted = cshift.Cshift(in,dim,-depth);
 | 
					 | 
				
			||||||
      tshift += usecond() - t;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
      t = usecond();
 | 
					 | 
				
			||||||
      for(int x=0;x<depth;x++){
 | 
					 | 
				
			||||||
	InsertSliceLocal(shifted,padded,x,x,dim);
 | 
					 | 
				
			||||||
      }
 | 
					 | 
				
			||||||
      tins += usecond() - t;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PaddedCell::Expand timings: cshift:" << tshift/1000 << "ms, insert-slice:" << tins/1000 << "ms" << std::endl;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    return padded;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  template<class vobj>
 | 
					 | 
				
			||||||
  inline Lattice<vobj> ExpandPeriodic(int dim, const Lattice<vobj> &in) const
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    Coordinate processors=unpadded_grid->_processors;
 | 
					 | 
				
			||||||
    GridBase *old_grid = in.Grid();
 | 
					 | 
				
			||||||
    GridCartesian *new_grid = grids[dim];//These are new grids
 | 
					 | 
				
			||||||
    Lattice<vobj>  padded(new_grid);
 | 
					 | 
				
			||||||
    //    Lattice<vobj> shifted(old_grid);    
 | 
					 | 
				
			||||||
    Coordinate local     =old_grid->LocalDimensions();
 | 
					 | 
				
			||||||
    Coordinate plocal    =new_grid->LocalDimensions();
 | 
					 | 
				
			||||||
    if(dim==0) conformable(old_grid,unpadded_grid);
 | 
					 | 
				
			||||||
    else       conformable(old_grid,grids[dim-1]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //    std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl;
 | 
					 | 
				
			||||||
    double tins=0, tshift=0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int islocal = 0 ;
 | 
					 | 
				
			||||||
    if ( processors[dim] == 1 ) islocal = 1;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if ( islocal ) {
 | 
					 | 
				
			||||||
      padded=in; // slightly different interface could avoid a copy operation
 | 
					 | 
				
			||||||
    } else {
 | 
					 | 
				
			||||||
      Face_exchange(in,padded,dim,depth);
 | 
					 | 
				
			||||||
      return padded;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    return padded;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  template<class vobj>
 | 
					 | 
				
			||||||
  void Face_exchange(const Lattice<vobj> &from,
 | 
					 | 
				
			||||||
		     Lattice<vobj> &to,
 | 
					 | 
				
			||||||
		     int dimension,int depth) const
 | 
					 | 
				
			||||||
  {
 | 
					 | 
				
			||||||
    typedef typename vobj::vector_type vector_type;
 | 
					 | 
				
			||||||
    typedef typename vobj::scalar_type scalar_type;
 | 
					 | 
				
			||||||
    typedef typename vobj::scalar_object sobj;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    RealD t_gather=0.0;
 | 
					 | 
				
			||||||
    RealD t_scatter=0.0;
 | 
					 | 
				
			||||||
    RealD t_comms=0.0;
 | 
					 | 
				
			||||||
    RealD t_copy=0.0;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    //    std::cout << GridLogMessage << "dimension " <<dimension<<std::endl;
 | 
					 | 
				
			||||||
    //    DumpSliceNorm(std::string("Face_exchange from"),from,dimension);
 | 
					 | 
				
			||||||
    GridBase *grid=from.Grid();
 | 
					 | 
				
			||||||
    GridBase *new_grid=to.Grid();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Coordinate lds = from.Grid()->_ldimensions;
 | 
					 | 
				
			||||||
    Coordinate nlds=   to.Grid()->_ldimensions;
 | 
					 | 
				
			||||||
    Coordinate simd= from.Grid()->_simd_layout;
 | 
					 | 
				
			||||||
    int ld    = lds[dimension];
 | 
					 | 
				
			||||||
    int nld   = to.Grid()->_ldimensions[dimension];
 | 
					 | 
				
			||||||
    const int Nsimd = vobj::Nsimd();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    assert(depth<=lds[dimension]); // A must be on neighbouring node
 | 
					 | 
				
			||||||
    assert(depth>0);   // A caller bug if zero
 | 
					 | 
				
			||||||
    assert(ld+2*depth==nld);
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Face size and byte calculations
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    int buffer_size = 1;
 | 
					 | 
				
			||||||
    for(int d=0;d<lds.size();d++){
 | 
					 | 
				
			||||||
      if ( d!= dimension) buffer_size=buffer_size*lds[d];
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    buffer_size = buffer_size  / Nsimd;
 | 
					 | 
				
			||||||
    int rNsimd = Nsimd / simd[dimension];
 | 
					 | 
				
			||||||
    assert( buffer_size == from.Grid()->_slice_nblock[dimension]*from.Grid()->_slice_block[dimension] / simd[dimension]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    static deviceVector<vobj> send_buf; 
 | 
					 | 
				
			||||||
    static deviceVector<vobj> recv_buf;
 | 
					 | 
				
			||||||
    send_buf.resize(buffer_size*2*depth);    
 | 
					 | 
				
			||||||
    recv_buf.resize(buffer_size*2*depth);
 | 
					 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
    static hostVector<vobj> hsend_buf; 
 | 
					 | 
				
			||||||
    static hostVector<vobj> hrecv_buf;
 | 
					 | 
				
			||||||
    hsend_buf.resize(buffer_size*2*depth);    
 | 
					 | 
				
			||||||
    hrecv_buf.resize(buffer_size*2*depth);
 | 
					 | 
				
			||||||
#endif    
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::vector<MpiCommsRequest_t> fwd_req;   
 | 
					 | 
				
			||||||
    std::vector<MpiCommsRequest_t> bwd_req;   
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int words = buffer_size;
 | 
					 | 
				
			||||||
    int bytes = words * sizeof(vobj);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Communication coords
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    int comm_proc = 1;
 | 
					 | 
				
			||||||
    int xmit_to_rank;
 | 
					 | 
				
			||||||
    int recv_from_rank;
 | 
					 | 
				
			||||||
    grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Gather all surface terms up to depth "d"
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    RealD t;
 | 
					 | 
				
			||||||
    RealD t_tot=-usecond();
 | 
					 | 
				
			||||||
    int plane=0;
 | 
					 | 
				
			||||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
					 | 
				
			||||||
      int tag = d*1024 + dimension*2+0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      t=usecond();
 | 
					 | 
				
			||||||
      GatherSlice(send_buf,from,d,dimension,plane*buffer_size); plane++;
 | 
					 | 
				
			||||||
      t_gather+=usecond()-t;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      t=usecond();
 | 
					 | 
				
			||||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
      grid->SendToRecvFromBegin(fwd_req,
 | 
					 | 
				
			||||||
				(void *)&send_buf[d*buffer_size], xmit_to_rank,
 | 
					 | 
				
			||||||
				(void *)&recv_buf[d*buffer_size], recv_from_rank, bytes, tag);
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
      acceleratorCopyFromDevice(&send_buf[d*buffer_size],&hsend_buf[d*buffer_size],bytes);
 | 
					 | 
				
			||||||
      grid->SendToRecvFromBegin(fwd_req,
 | 
					 | 
				
			||||||
				(void *)&hsend_buf[d*buffer_size], xmit_to_rank,
 | 
					 | 
				
			||||||
				(void *)&hrecv_buf[d*buffer_size], recv_from_rank, bytes, tag);
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
      t_comms+=usecond()-t;
 | 
					 | 
				
			||||||
     }
 | 
					 | 
				
			||||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
					 | 
				
			||||||
      int tag = d*1024 + dimension*2+1;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      t=usecond();
 | 
					 | 
				
			||||||
      GatherSlice(send_buf,from,ld-depth+d,dimension,plane*buffer_size); plane++;
 | 
					 | 
				
			||||||
      t_gather+= usecond() - t;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      t=usecond();
 | 
					 | 
				
			||||||
#ifdef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
      grid->SendToRecvFromBegin(bwd_req,
 | 
					 | 
				
			||||||
				(void *)&send_buf[(d+depth)*buffer_size], recv_from_rank,
 | 
					 | 
				
			||||||
				(void *)&recv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag);
 | 
					 | 
				
			||||||
#else
 | 
					 | 
				
			||||||
      acceleratorCopyFromDevice(&send_buf[(d+depth)*buffer_size],&hsend_buf[(d+depth)*buffer_size],bytes);
 | 
					 | 
				
			||||||
      grid->SendToRecvFromBegin(bwd_req,
 | 
					 | 
				
			||||||
				(void *)&hsend_buf[(d+depth)*buffer_size], recv_from_rank,
 | 
					 | 
				
			||||||
				(void *)&hrecv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag);
 | 
					 | 
				
			||||||
#endif      
 | 
					 | 
				
			||||||
      t_comms+=usecond()-t;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Copy interior -- overlap this with comms
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    int Nd = new_grid->Nd();
 | 
					 | 
				
			||||||
    Coordinate LL(Nd,0);
 | 
					 | 
				
			||||||
    Coordinate sz = grid->_ldimensions;
 | 
					 | 
				
			||||||
    Coordinate toLL(Nd,0);
 | 
					 | 
				
			||||||
    toLL[dimension]=depth;
 | 
					 | 
				
			||||||
    t=usecond();
 | 
					 | 
				
			||||||
    localCopyRegion(from,to,LL,toLL,sz);
 | 
					 | 
				
			||||||
    t_copy= usecond() - t;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    // Scatter all faces
 | 
					 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////////////
 | 
					 | 
				
			||||||
    plane=0;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    t=usecond();
 | 
					 | 
				
			||||||
    grid->CommsComplete(fwd_req);
 | 
					 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
					 | 
				
			||||||
      acceleratorCopyToDevice(&hrecv_buf[d*buffer_size],&recv_buf[d*buffer_size],bytes);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
    t_comms+= usecond() - t;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    t=usecond();
 | 
					 | 
				
			||||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
					 | 
				
			||||||
      ScatterSlice(recv_buf,to,nld-depth+d,dimension,plane*buffer_size); plane++;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    t_scatter= usecond() - t;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    t=usecond();
 | 
					 | 
				
			||||||
    grid->CommsComplete(bwd_req);
 | 
					 | 
				
			||||||
#ifndef ACCELERATOR_AWARE_MPI
 | 
					 | 
				
			||||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
					 | 
				
			||||||
      acceleratorCopyToDevice(&hrecv_buf[(d+depth)*buffer_size],&recv_buf[(d+depth)*buffer_size],bytes);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
#endif
 | 
					 | 
				
			||||||
    t_comms+= usecond() - t;
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    t=usecond();
 | 
					 | 
				
			||||||
    for ( int d=0;d < depth ; d ++ ) {
 | 
					 | 
				
			||||||
      ScatterSlice(recv_buf,to,d,dimension,plane*buffer_size); plane++;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    t_scatter+= usecond() - t;
 | 
					 | 
				
			||||||
    t_tot+=usecond();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: gather :" << t_gather/1000  << "ms"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: scatter:" << t_scatter/1000   << "ms"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: copy   :" << t_copy/1000      << "ms"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: comms  :" << t_comms/1000     << "ms"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: total  :" << t_tot/1000     << "ms"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: gather :" << depth*4.0*bytes/t_gather << "MB/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: scatter:" << depth*4.0*bytes/t_scatter<< "MB/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: comms  :" << (RealD)4.0*bytes/t_comms   << "MB/s"<<std::endl;
 | 
					 | 
				
			||||||
    std::cout << GridLogPerformance << "PaddedCell::Expand new timings: face bytes  :" << depth*bytes/1e6 << "MB"<<std::endl;
 | 
					 | 
				
			||||||
  }
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
NAMESPACE_END(Grid);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
@@ -65,40 +65,29 @@ GridLogger GridLogSolver (1, "Solver", GridLogColours, "NORMAL");
 | 
				
			|||||||
GridLogger GridLogError  (1, "Error" , GridLogColours, "RED");
 | 
					GridLogger GridLogError  (1, "Error" , GridLogColours, "RED");
 | 
				
			||||||
GridLogger GridLogWarning(1, "Warning", GridLogColours, "YELLOW");
 | 
					GridLogger GridLogWarning(1, "Warning", GridLogColours, "YELLOW");
 | 
				
			||||||
GridLogger GridLogMessage(1, "Message", GridLogColours, "NORMAL");
 | 
					GridLogger GridLogMessage(1, "Message", GridLogColours, "NORMAL");
 | 
				
			||||||
GridLogger GridLogMemory (1, "Memory", GridLogColours, "NORMAL");
 | 
					 | 
				
			||||||
GridLogger GridLogTracing(1, "Tracing", GridLogColours, "NORMAL");
 | 
					 | 
				
			||||||
GridLogger GridLogDebug  (1, "Debug", GridLogColours, "PURPLE");
 | 
					GridLogger GridLogDebug  (1, "Debug", GridLogColours, "PURPLE");
 | 
				
			||||||
GridLogger GridLogPerformance(1, "Performance", GridLogColours, "GREEN");
 | 
					GridLogger GridLogPerformance(1, "Performance", GridLogColours, "GREEN");
 | 
				
			||||||
GridLogger GridLogDslash     (1, "Dslash", GridLogColours, "BLUE");
 | 
					 | 
				
			||||||
GridLogger GridLogIterative  (1, "Iterative", GridLogColours, "BLUE");
 | 
					GridLogger GridLogIterative  (1, "Iterative", GridLogColours, "BLUE");
 | 
				
			||||||
GridLogger GridLogIntegrator (1, "Integrator", GridLogColours, "BLUE");
 | 
					GridLogger GridLogIntegrator (1, "Integrator", GridLogColours, "BLUE");
 | 
				
			||||||
GridLogger GridLogHMC (1, "HMC", GridLogColours, "BLUE");
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
void GridLogConfigure(std::vector<std::string> &logstreams) {
 | 
					void GridLogConfigure(std::vector<std::string> &logstreams) {
 | 
				
			||||||
  GridLogError.Active(1);
 | 
					  GridLogError.Active(0);
 | 
				
			||||||
  GridLogWarning.Active(0);
 | 
					  GridLogWarning.Active(0);
 | 
				
			||||||
  GridLogMessage.Active(1); // at least the messages should be always on
 | 
					  GridLogMessage.Active(1); // at least the messages should be always on
 | 
				
			||||||
  GridLogMemory.Active(0); 
 | 
					 | 
				
			||||||
  GridLogTracing.Active(0); 
 | 
					 | 
				
			||||||
  GridLogIterative.Active(0);
 | 
					  GridLogIterative.Active(0);
 | 
				
			||||||
  GridLogDebug.Active(0);
 | 
					  GridLogDebug.Active(0);
 | 
				
			||||||
  GridLogPerformance.Active(0);
 | 
					  GridLogPerformance.Active(0);
 | 
				
			||||||
  GridLogDslash.Active(0);
 | 
					 | 
				
			||||||
  GridLogIntegrator.Active(1);
 | 
					  GridLogIntegrator.Active(1);
 | 
				
			||||||
  GridLogColours.Active(0);
 | 
					  GridLogColours.Active(0);
 | 
				
			||||||
  GridLogHMC.Active(1);
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  for (int i = 0; i < logstreams.size(); i++) {
 | 
					  for (int i = 0; i < logstreams.size(); i++) {
 | 
				
			||||||
    if (logstreams[i] == std::string("Tracing"))     GridLogTracing.Active(1);
 | 
					    if (logstreams[i] == std::string("Error"))       GridLogError.Active(1);
 | 
				
			||||||
    if (logstreams[i] == std::string("Memory"))      GridLogMemory.Active(1);
 | 
					 | 
				
			||||||
    if (logstreams[i] == std::string("Warning"))     GridLogWarning.Active(1);
 | 
					    if (logstreams[i] == std::string("Warning"))     GridLogWarning.Active(1);
 | 
				
			||||||
    if (logstreams[i] == std::string("NoMessage"))   GridLogMessage.Active(0);
 | 
					    if (logstreams[i] == std::string("NoMessage"))   GridLogMessage.Active(0);
 | 
				
			||||||
    if (logstreams[i] == std::string("Iterative"))   GridLogIterative.Active(1);
 | 
					    if (logstreams[i] == std::string("Iterative"))   GridLogIterative.Active(1);
 | 
				
			||||||
    if (logstreams[i] == std::string("Debug"))       GridLogDebug.Active(1);
 | 
					    if (logstreams[i] == std::string("Debug"))       GridLogDebug.Active(1);
 | 
				
			||||||
    if (logstreams[i] == std::string("Performance")) GridLogPerformance.Active(1);
 | 
					    if (logstreams[i] == std::string("Performance")) GridLogPerformance.Active(1);
 | 
				
			||||||
    if (logstreams[i] == std::string("Dslash"))      GridLogDslash.Active(1);
 | 
					    if (logstreams[i] == std::string("Integrator"))  GridLogIntegrator.Active(1);
 | 
				
			||||||
    if (logstreams[i] == std::string("NoIntegrator"))GridLogIntegrator.Active(0);
 | 
					 | 
				
			||||||
    if (logstreams[i] == std::string("NoHMC"))       GridLogHMC.Active(0);
 | 
					 | 
				
			||||||
    if (logstreams[i] == std::string("Colours"))     GridLogColours.Active(1);
 | 
					    if (logstreams[i] == std::string("Colours"))     GridLogColours.Active(1);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -138,8 +138,7 @@ public:
 | 
				
			|||||||
        stream << std::setw(log.topWidth);
 | 
					        stream << std::setw(log.topWidth);
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
      stream << log.topName << log.background()<< " : ";
 | 
					      stream << log.topName << log.background()<< " : ";
 | 
				
			||||||
      //      stream << log.colour() <<  std::left;
 | 
					      stream << log.colour() <<  std::left;
 | 
				
			||||||
      stream <<  std::left;
 | 
					 | 
				
			||||||
      if (log.chanWidth > 0)
 | 
					      if (log.chanWidth > 0)
 | 
				
			||||||
      {
 | 
					      {
 | 
				
			||||||
        stream << std::setw(log.chanWidth);
 | 
					        stream << std::setw(log.chanWidth);
 | 
				
			||||||
@@ -154,9 +153,9 @@ public:
 | 
				
			|||||||
	stream << log.evidence()
 | 
						stream << log.evidence()
 | 
				
			||||||
	       << now	       << log.background() << " : " ;
 | 
						       << now	       << log.background() << " : " ;
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
      //      stream << log.colour();
 | 
					      stream << log.colour();
 | 
				
			||||||
      stream <<  std::right;
 | 
					 | 
				
			||||||
      stream.flags(f);
 | 
					      stream.flags(f);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      return stream;
 | 
					      return stream;
 | 
				
			||||||
    } else { 
 | 
					    } else { 
 | 
				
			||||||
      return devnull;
 | 
					      return devnull;
 | 
				
			||||||
@@ -179,53 +178,14 @@ extern GridLogger GridLogSolver;
 | 
				
			|||||||
extern GridLogger GridLogError;
 | 
					extern GridLogger GridLogError;
 | 
				
			||||||
extern GridLogger GridLogWarning;
 | 
					extern GridLogger GridLogWarning;
 | 
				
			||||||
extern GridLogger GridLogMessage;
 | 
					extern GridLogger GridLogMessage;
 | 
				
			||||||
extern GridLogger GridLogDebug;
 | 
					extern GridLogger GridLogDebug  ;
 | 
				
			||||||
extern GridLogger GridLogPerformance;
 | 
					extern GridLogger GridLogPerformance;
 | 
				
			||||||
extern GridLogger GridLogDslash;
 | 
					extern GridLogger GridLogIterative  ;
 | 
				
			||||||
extern GridLogger GridLogIterative;
 | 
					extern GridLogger GridLogIntegrator  ;
 | 
				
			||||||
extern GridLogger GridLogIntegrator;
 | 
					 | 
				
			||||||
extern GridLogger GridLogHMC;
 | 
					 | 
				
			||||||
extern GridLogger GridLogMemory;
 | 
					 | 
				
			||||||
extern GridLogger GridLogTracing;
 | 
					 | 
				
			||||||
extern Colours    GridLogColours;
 | 
					extern Colours    GridLogColours;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
std::string demangle(const char* name) ;
 | 
					std::string demangle(const char* name) ;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<typename... Args>
 | 
					 | 
				
			||||||
inline std::string sjoin(Args&&... args) noexcept {
 | 
					 | 
				
			||||||
    std::ostringstream msg;
 | 
					 | 
				
			||||||
    (msg << ... << args);
 | 
					 | 
				
			||||||
    return msg.str();
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/*!  @brief make log messages work like python print */
 | 
					 | 
				
			||||||
template <typename... Args>
 | 
					 | 
				
			||||||
inline void Grid_log(Args&&... args) {
 | 
					 | 
				
			||||||
    std::string msg = sjoin(std::forward<Args>(args)...);
 | 
					 | 
				
			||||||
    std::cout << GridLogMessage << msg << std::endl;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/*!  @brief make warning messages work like python print */
 | 
					 | 
				
			||||||
template <typename... Args>
 | 
					 | 
				
			||||||
inline void Grid_warn(Args&&... args) {
 | 
					 | 
				
			||||||
    std::string msg = sjoin(std::forward<Args>(args)...);
 | 
					 | 
				
			||||||
    std::cout << "\033[33m" << GridLogWarning << msg << "\033[0m" << std::endl;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/*!  @brief make error messages work like python print */
 | 
					 | 
				
			||||||
template <typename... Args>
 | 
					 | 
				
			||||||
inline void Grid_error(Args&&... args) {
 | 
					 | 
				
			||||||
    std::string msg = sjoin(std::forward<Args>(args)...);
 | 
					 | 
				
			||||||
    std::cout << "\033[31m" << GridLogError << msg << "\033[0m" << std::endl;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/*!  @brief make pass messages work like python print */
 | 
					 | 
				
			||||||
template <typename... Args>
 | 
					 | 
				
			||||||
inline void Grid_pass(Args&&... args) {
 | 
					 | 
				
			||||||
    std::string msg = sjoin(std::forward<Args>(args)...);
 | 
					 | 
				
			||||||
    std::cout << "\033[32m" << GridLogMessage << msg << "\033[0m" << std::endl;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#define _NBACKTRACE (256)
 | 
					#define _NBACKTRACE (256)
 | 
				
			||||||
extern void * Grid_backtrace_buffer[_NBACKTRACE];
 | 
					extern void * Grid_backtrace_buffer[_NBACKTRACE];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -165,7 +165,7 @@ class BinaryIO {
 | 
				
			|||||||
	 * FIXME -- 128^3 x 256 x 16 will overflow.
 | 
						 * FIXME -- 128^3 x 256 x 16 will overflow.
 | 
				
			||||||
	 */
 | 
						 */
 | 
				
			||||||
	
 | 
						
 | 
				
			||||||
	int64_t global_site;
 | 
						int global_site;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	Lexicographic::CoorFromIndex(coor,local_site,local_vol);
 | 
						Lexicographic::CoorFromIndex(coor,local_site,local_vol);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -175,8 +175,8 @@ class BinaryIO {
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
	Lexicographic::IndexFromCoor(coor,global_site,global_vol);
 | 
						Lexicographic::IndexFromCoor(coor,global_site,global_vol);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	uint64_t gsite29   = global_site%29;
 | 
						uint32_t gsite29   = global_site%29;
 | 
				
			||||||
	uint64_t gsite31   = global_site%31;
 | 
						uint32_t gsite31   = global_site%31;
 | 
				
			||||||
	
 | 
						
 | 
				
			||||||
	site_crc = crc32(0,(unsigned char *)site_buf,sizeof(fobj));
 | 
						site_crc = crc32(0,(unsigned char *)site_buf,sizeof(fobj));
 | 
				
			||||||
	//	std::cout << "Site "<<local_site << " crc "<<std::hex<<site_crc<<std::dec<<std::endl;
 | 
						//	std::cout << "Site "<<local_site << " crc "<<std::hex<<site_crc<<std::dec<<std::endl;
 | 
				
			||||||
@@ -545,9 +545,7 @@ class BinaryIO {
 | 
				
			|||||||
				       const std::string &format,
 | 
									       const std::string &format,
 | 
				
			||||||
				       uint32_t &nersc_csum,
 | 
									       uint32_t &nersc_csum,
 | 
				
			||||||
				       uint32_t &scidac_csuma,
 | 
									       uint32_t &scidac_csuma,
 | 
				
			||||||
				       uint32_t &scidac_csumb,
 | 
									       uint32_t &scidac_csumb)
 | 
				
			||||||
				       int control=BINARYIO_LEXICOGRAPHIC
 | 
					 | 
				
			||||||
				       )
 | 
					 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    typedef typename vobj::scalar_object sobj;
 | 
					    typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
    typedef typename vobj::Realified::scalar_type word;    word w=0;
 | 
					    typedef typename vobj::Realified::scalar_type word;    word w=0;
 | 
				
			||||||
@@ -558,7 +556,7 @@ class BinaryIO {
 | 
				
			|||||||
    std::vector<sobj> scalardata(lsites); 
 | 
					    std::vector<sobj> scalardata(lsites); 
 | 
				
			||||||
    std::vector<fobj>     iodata(lsites); // Munge, checksum, byte order in here
 | 
					    std::vector<fobj>     iodata(lsites); // Munge, checksum, byte order in here
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    IOobject(w,grid,iodata,file,offset,format,BINARYIO_READ|control,
 | 
					    IOobject(w,grid,iodata,file,offset,format,BINARYIO_READ|BINARYIO_LEXICOGRAPHIC,
 | 
				
			||||||
	     nersc_csum,scidac_csuma,scidac_csumb);
 | 
						     nersc_csum,scidac_csuma,scidac_csumb);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    GridStopWatch timer; 
 | 
					    GridStopWatch timer; 
 | 
				
			||||||
@@ -584,8 +582,7 @@ class BinaryIO {
 | 
				
			|||||||
					  const std::string &format,
 | 
										  const std::string &format,
 | 
				
			||||||
					  uint32_t &nersc_csum,
 | 
										  uint32_t &nersc_csum,
 | 
				
			||||||
					  uint32_t &scidac_csuma,
 | 
										  uint32_t &scidac_csuma,
 | 
				
			||||||
					  uint32_t &scidac_csumb,
 | 
										  uint32_t &scidac_csumb)
 | 
				
			||||||
					  int control=BINARYIO_LEXICOGRAPHIC)
 | 
					 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    typedef typename vobj::scalar_object sobj;
 | 
					    typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
    typedef typename vobj::Realified::scalar_type word;    word w=0;
 | 
					    typedef typename vobj::Realified::scalar_type word;    word w=0;
 | 
				
			||||||
@@ -610,7 +607,7 @@ class BinaryIO {
 | 
				
			|||||||
    while (attemptsLeft >= 0)
 | 
					    while (attemptsLeft >= 0)
 | 
				
			||||||
    {
 | 
					    {
 | 
				
			||||||
      grid->Barrier();
 | 
					      grid->Barrier();
 | 
				
			||||||
      IOobject(w,grid,iodata,file,offset,format,BINARYIO_WRITE|control,
 | 
					      IOobject(w,grid,iodata,file,offset,format,BINARYIO_WRITE|BINARYIO_LEXICOGRAPHIC,
 | 
				
			||||||
	             nersc_csum,scidac_csuma,scidac_csumb);
 | 
						             nersc_csum,scidac_csuma,scidac_csumb);
 | 
				
			||||||
      if (checkWrite)
 | 
					      if (checkWrite)
 | 
				
			||||||
      {
 | 
					      {
 | 
				
			||||||
@@ -620,7 +617,7 @@ class BinaryIO {
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
        std::cout << GridLogMessage << "writeLatticeObject: read back object" << std::endl;
 | 
					        std::cout << GridLogMessage << "writeLatticeObject: read back object" << std::endl;
 | 
				
			||||||
        grid->Barrier();
 | 
					        grid->Barrier();
 | 
				
			||||||
        IOobject(w,grid,ckiodata,file,ckoffset,format,BINARYIO_READ|control,
 | 
					        IOobject(w,grid,ckiodata,file,ckoffset,format,BINARYIO_READ|BINARYIO_LEXICOGRAPHIC,
 | 
				
			||||||
	               cknersc_csum,ckscidac_csuma,ckscidac_csumb);
 | 
						               cknersc_csum,ckscidac_csuma,ckscidac_csumb);
 | 
				
			||||||
        if ((cknersc_csum != nersc_csum) or (ckscidac_csuma != scidac_csuma) or (ckscidac_csumb != scidac_csumb))
 | 
					        if ((cknersc_csum != nersc_csum) or (ckscidac_csuma != scidac_csuma) or (ckscidac_csumb != scidac_csumb))
 | 
				
			||||||
        {
 | 
					        {
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -31,7 +31,6 @@ directory
 | 
				
			|||||||
#include <fstream>
 | 
					#include <fstream>
 | 
				
			||||||
#include <iomanip>
 | 
					#include <iomanip>
 | 
				
			||||||
#include <iostream>
 | 
					#include <iostream>
 | 
				
			||||||
#include <string>
 | 
					 | 
				
			||||||
#include <map>
 | 
					#include <map>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#include <pwd.h>
 | 
					#include <pwd.h>
 | 
				
			||||||
@@ -162,14 +161,8 @@ template<class vobj> void ScidacMetaData(Lattice<vobj> & field,
 | 
				
			|||||||
 {
 | 
					 {
 | 
				
			||||||
   uint32_t scidac_checksuma = stoull(scidacChecksum_.suma,0,16);
 | 
					   uint32_t scidac_checksuma = stoull(scidacChecksum_.suma,0,16);
 | 
				
			||||||
   uint32_t scidac_checksumb = stoull(scidacChecksum_.sumb,0,16);
 | 
					   uint32_t scidac_checksumb = stoull(scidacChecksum_.sumb,0,16);
 | 
				
			||||||
   std::cout << GridLogMessage << " scidacChecksumVerify computed "<<scidac_csuma<<" expected "<<scidac_checksuma <<std::endl;
 | 
					   if ( scidac_csuma !=scidac_checksuma) return 0;
 | 
				
			||||||
   std::cout << GridLogMessage << " scidacChecksumVerify computed "<<scidac_csumb<<" expected "<<scidac_checksumb <<std::endl;
 | 
					   if ( scidac_csumb !=scidac_checksumb) return 0;
 | 
				
			||||||
   if ( scidac_csuma !=scidac_checksuma) {
 | 
					 | 
				
			||||||
     return 0;
 | 
					 | 
				
			||||||
   };
 | 
					 | 
				
			||||||
   if ( scidac_csumb !=scidac_checksumb) {
 | 
					 | 
				
			||||||
     return 0;
 | 
					 | 
				
			||||||
   };
 | 
					 | 
				
			||||||
   return 1;
 | 
					   return 1;
 | 
				
			||||||
 }
 | 
					 }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -212,7 +205,7 @@ class GridLimeReader : public BinaryIO {
 | 
				
			|||||||
  // Read a generic lattice field and verify checksum
 | 
					  // Read a generic lattice field and verify checksum
 | 
				
			||||||
  ////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////
 | 
				
			||||||
  template<class vobj>
 | 
					  template<class vobj>
 | 
				
			||||||
  void readLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name,int control=BINARYIO_LEXICOGRAPHIC)
 | 
					  void readLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    typedef typename vobj::scalar_object sobj;
 | 
					    typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
    scidacChecksum scidacChecksum_;
 | 
					    scidacChecksum scidacChecksum_;
 | 
				
			||||||
@@ -244,7 +237,7 @@ class GridLimeReader : public BinaryIO {
 | 
				
			|||||||
	uint64_t offset= ftello(File);
 | 
						uint64_t offset= ftello(File);
 | 
				
			||||||
	//	std::cout << " ReadLatticeObject from offset "<<offset << std::endl;
 | 
						//	std::cout << " ReadLatticeObject from offset "<<offset << std::endl;
 | 
				
			||||||
	BinarySimpleMunger<sobj,sobj> munge;
 | 
						BinarySimpleMunger<sobj,sobj> munge;
 | 
				
			||||||
	BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb,control);
 | 
						BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
 | 
				
			||||||
	std::cout << GridLogMessage << "SciDAC checksum A " << std::hex << scidac_csuma << std::dec << std::endl;
 | 
						std::cout << GridLogMessage << "SciDAC checksum A " << std::hex << scidac_csuma << std::dec << std::endl;
 | 
				
			||||||
	std::cout << GridLogMessage << "SciDAC checksum B " << std::hex << scidac_csumb << std::dec << std::endl;
 | 
						std::cout << GridLogMessage << "SciDAC checksum B " << std::hex << scidac_csumb << std::dec << std::endl;
 | 
				
			||||||
	/////////////////////////////////////////////
 | 
						/////////////////////////////////////////////
 | 
				
			||||||
@@ -414,7 +407,7 @@ class GridLimeWriter : public BinaryIO
 | 
				
			|||||||
  // in communicator used by the field.Grid()
 | 
					  // in communicator used by the field.Grid()
 | 
				
			||||||
  ////////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////////
 | 
				
			||||||
  template<class vobj>
 | 
					  template<class vobj>
 | 
				
			||||||
  void writeLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name,int control=BINARYIO_LEXICOGRAPHIC)
 | 
					  void writeLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    ////////////////////////////////////////////////////////////////////
 | 
					    ////////////////////////////////////////////////////////////////////
 | 
				
			||||||
    // NB: FILE and iostream are jointly writing disjoint sequences in the
 | 
					    // NB: FILE and iostream are jointly writing disjoint sequences in the
 | 
				
			||||||
@@ -465,7 +458,7 @@ class GridLimeWriter : public BinaryIO
 | 
				
			|||||||
    ///////////////////////////////////////////
 | 
					    ///////////////////////////////////////////
 | 
				
			||||||
    std::string format = getFormatString<vobj>();
 | 
					    std::string format = getFormatString<vobj>();
 | 
				
			||||||
    BinarySimpleMunger<sobj,sobj> munge;
 | 
					    BinarySimpleMunger<sobj,sobj> munge;
 | 
				
			||||||
    BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset1, format,nersc_csum,scidac_csuma,scidac_csumb,control);
 | 
					    BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset1, format,nersc_csum,scidac_csuma,scidac_csumb);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    ///////////////////////////////////////////
 | 
					    ///////////////////////////////////////////
 | 
				
			||||||
    // Wind forward and close the record
 | 
					    // Wind forward and close the record
 | 
				
			||||||
@@ -518,8 +511,7 @@ class ScidacWriter : public GridLimeWriter {
 | 
				
			|||||||
  ////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////
 | 
				
			||||||
  template <class vobj, class userRecord>
 | 
					  template <class vobj, class userRecord>
 | 
				
			||||||
  void writeScidacFieldRecord(Lattice<vobj> &field,userRecord _userRecord,
 | 
					  void writeScidacFieldRecord(Lattice<vobj> &field,userRecord _userRecord,
 | 
				
			||||||
                              const unsigned int recordScientificPrec = 0,
 | 
					                              const unsigned int recordScientificPrec = 0) 
 | 
				
			||||||
			      int control=BINARYIO_LEXICOGRAPHIC)
 | 
					 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    GridBase * grid = field.Grid();
 | 
					    GridBase * grid = field.Grid();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -541,7 +533,7 @@ class ScidacWriter : public GridLimeWriter {
 | 
				
			|||||||
      writeLimeObject(0,0,_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
 | 
					      writeLimeObject(0,0,_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    // Collective call
 | 
					    // Collective call
 | 
				
			||||||
    writeLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA),control);      // Closes message with checksum
 | 
					    writeLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA));      // Closes message with checksum
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -560,8 +552,7 @@ class ScidacReader : public GridLimeReader {
 | 
				
			|||||||
  // Write generic lattice field in scidac format
 | 
					  // Write generic lattice field in scidac format
 | 
				
			||||||
  ////////////////////////////////////////////////
 | 
					  ////////////////////////////////////////////////
 | 
				
			||||||
  template <class vobj, class userRecord>
 | 
					  template <class vobj, class userRecord>
 | 
				
			||||||
  void readScidacFieldRecord(Lattice<vobj> &field,userRecord &_userRecord,
 | 
					  void readScidacFieldRecord(Lattice<vobj> &field,userRecord &_userRecord) 
 | 
				
			||||||
			     int control=BINARYIO_LEXICOGRAPHIC) 
 | 
					 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    typedef typename vobj::scalar_object sobj;
 | 
					    typedef typename vobj::scalar_object sobj;
 | 
				
			||||||
    GridBase * grid = field.Grid();
 | 
					    GridBase * grid = field.Grid();
 | 
				
			||||||
@@ -579,14 +570,12 @@ class ScidacReader : public GridLimeReader {
 | 
				
			|||||||
    readLimeObject(header ,std::string("FieldMetaData"),std::string(GRID_FORMAT)); // Open message 
 | 
					    readLimeObject(header ,std::string("FieldMetaData"),std::string(GRID_FORMAT)); // Open message 
 | 
				
			||||||
    readLimeObject(_userRecord,_userRecord.SerialisableClassName(),std::string(SCIDAC_RECORD_XML));
 | 
					    readLimeObject(_userRecord,_userRecord.SerialisableClassName(),std::string(SCIDAC_RECORD_XML));
 | 
				
			||||||
    readLimeObject(_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
 | 
					    readLimeObject(_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
 | 
				
			||||||
    readLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA),control);
 | 
					    readLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA));
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
  void skipPastBinaryRecord(void) {
 | 
					  void skipPastBinaryRecord(void) {
 | 
				
			||||||
    std::string rec_name(ILDG_BINARY_DATA);
 | 
					    std::string rec_name(ILDG_BINARY_DATA);
 | 
				
			||||||
    while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) { 
 | 
					    while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) { 
 | 
				
			||||||
      if ( !strncmp(limeReaderType(LimeR), rec_name.c_str(),strlen(rec_name.c_str()) )  ) {
 | 
					      if ( !strncmp(limeReaderType(LimeR), rec_name.c_str(),strlen(rec_name.c_str()) )  ) {
 | 
				
			||||||
  // in principle should do the line below, but that breaks backard compatibility with old data
 | 
					 | 
				
			||||||
  // skipPastObjectRecord(std::string(GRID_FIELD_NORM));
 | 
					 | 
				
			||||||
	skipPastObjectRecord(std::string(SCIDAC_CHECKSUM));
 | 
						skipPastObjectRecord(std::string(SCIDAC_CHECKSUM));
 | 
				
			||||||
	return;
 | 
						return;
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
@@ -663,8 +652,7 @@ class IldgWriter : public ScidacWriter {
 | 
				
			|||||||
    // Fill ILDG header data struct
 | 
					    // Fill ILDG header data struct
 | 
				
			||||||
    //////////////////////////////////////////////////////
 | 
					    //////////////////////////////////////////////////////
 | 
				
			||||||
    ildgFormat ildgfmt ;
 | 
					    ildgFormat ildgfmt ;
 | 
				
			||||||
    const std::string stNC = std::to_string( Nc ) ;
 | 
					    ildgfmt.field     = std::string("su3gauge");
 | 
				
			||||||
    ildgfmt.field          = std::string("su"+stNC+"gauge");
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if ( format == std::string("IEEE32BIG") ) { 
 | 
					    if ( format == std::string("IEEE32BIG") ) { 
 | 
				
			||||||
      ildgfmt.precision = 32;
 | 
					      ildgfmt.precision = 32;
 | 
				
			||||||
@@ -881,8 +869,7 @@ class IldgReader : public GridLimeReader {
 | 
				
			|||||||
    } else { 
 | 
					    } else { 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      assert(found_ildgFormat);
 | 
					      assert(found_ildgFormat);
 | 
				
			||||||
      const std::string stNC = std::to_string( Nc ) ;
 | 
					      assert ( ildgFormat_.field == std::string("su3gauge") );
 | 
				
			||||||
      assert ( ildgFormat_.field == std::string("su"+stNC+"gauge") );
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
      ///////////////////////////////////////////////////////////////////////////////////////
 | 
					      ///////////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
      // Populate our Grid metadata as best we can
 | 
					      // Populate our Grid metadata as best we can
 | 
				
			||||||
@@ -890,7 +877,7 @@ class IldgReader : public GridLimeReader {
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
      std::ostringstream vers; vers << ildgFormat_.version;
 | 
					      std::ostringstream vers; vers << ildgFormat_.version;
 | 
				
			||||||
      FieldMetaData_.hdr_version = vers.str();
 | 
					      FieldMetaData_.hdr_version = vers.str();
 | 
				
			||||||
      FieldMetaData_.data_type = std::string("4D_SU"+stNC+"_GAUGE_"+stNC+"x"+stNC);
 | 
					      FieldMetaData_.data_type = std::string("4D_SU3_GAUGE_3X3");
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      FieldMetaData_.nd=4;
 | 
					      FieldMetaData_.nd=4;
 | 
				
			||||||
      FieldMetaData_.dimension.resize(4);
 | 
					      FieldMetaData_.dimension.resize(4);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -6,8 +6,8 @@
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    Copyright (C) 2015
 | 
					    Copyright (C) 2015
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
					    Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
				
			||||||
    Author: Jamie Hudspith <renwick.james.hudspth@gmail.com>
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    This program is free software; you can redistribute it and/or modify
 | 
					    This program is free software; you can redistribute it and/or modify
 | 
				
			||||||
    it under the terms of the GNU General Public License as published by
 | 
					    it under the terms of the GNU General Public License as published by
 | 
				
			||||||
@@ -182,8 +182,8 @@ class GaugeStatistics
 | 
				
			|||||||
public:
 | 
					public:
 | 
				
			||||||
  void operator()(Lattice<vLorentzColourMatrixD> & data,FieldMetaData &header)
 | 
					  void operator()(Lattice<vLorentzColourMatrixD> & data,FieldMetaData &header)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    header.link_trace = WilsonLoops<Impl>::linkTrace(data);
 | 
					    header.link_trace=WilsonLoops<Impl>::linkTrace(data);
 | 
				
			||||||
    header.plaquette  = WilsonLoops<Impl>::avgPlaquette(data);
 | 
					    header.plaquette =WilsonLoops<Impl>::avgPlaquette(data);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
typedef GaugeStatistics<PeriodicGimplD> PeriodicGaugeStatistics;
 | 
					typedef GaugeStatistics<PeriodicGimplD> PeriodicGaugeStatistics;
 | 
				
			||||||
@@ -203,24 +203,20 @@ template<> inline void PrepareMetaData<vLorentzColourMatrixD>(Lattice<vLorentzCo
 | 
				
			|||||||
//////////////////////////////////////////////////////////////////////
 | 
					//////////////////////////////////////////////////////////////////////
 | 
				
			||||||
inline void reconstruct3(LorentzColourMatrix & cm)
 | 
					inline void reconstruct3(LorentzColourMatrix & cm)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  assert( Nc < 4 && Nc > 1 ) ;
 | 
					  const int x=0;
 | 
				
			||||||
 | 
					  const int y=1;
 | 
				
			||||||
 | 
					  const int z=2;
 | 
				
			||||||
  for(int mu=0;mu<Nd;mu++){
 | 
					  for(int mu=0;mu<Nd;mu++){
 | 
				
			||||||
    #if Nc == 2
 | 
					 | 
				
			||||||
      cm(mu)()(1,0) = -adj(cm(mu)()(0,y)) ;
 | 
					 | 
				
			||||||
      cm(mu)()(1,1) =  adj(cm(mu)()(0,x)) ;
 | 
					 | 
				
			||||||
    #else
 | 
					 | 
				
			||||||
      const int x=0 , y=1 , z=2 ; // a little disinenuous labelling
 | 
					 | 
				
			||||||
    cm(mu)()(2,x) = adj(cm(mu)()(0,y)*cm(mu)()(1,z)-cm(mu)()(0,z)*cm(mu)()(1,y)); //x= yz-zy
 | 
					    cm(mu)()(2,x) = adj(cm(mu)()(0,y)*cm(mu)()(1,z)-cm(mu)()(0,z)*cm(mu)()(1,y)); //x= yz-zy
 | 
				
			||||||
    cm(mu)()(2,y) = adj(cm(mu)()(0,z)*cm(mu)()(1,x)-cm(mu)()(0,x)*cm(mu)()(1,z)); //y= zx-xz
 | 
					    cm(mu)()(2,y) = adj(cm(mu)()(0,z)*cm(mu)()(1,x)-cm(mu)()(0,x)*cm(mu)()(1,z)); //y= zx-xz
 | 
				
			||||||
    cm(mu)()(2,z) = adj(cm(mu)()(0,x)*cm(mu)()(1,y)-cm(mu)()(0,y)*cm(mu)()(1,x)); //z= xy-yx
 | 
					    cm(mu)()(2,z) = adj(cm(mu)()(0,x)*cm(mu)()(1,y)-cm(mu)()(0,y)*cm(mu)()(1,x)); //z= xy-yx
 | 
				
			||||||
    #endif
 | 
					 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
////////////////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
// Some data types for intermediate storage
 | 
					// Some data types for intermediate storage
 | 
				
			||||||
////////////////////////////////////////////////////////////////////////////////
 | 
					////////////////////////////////////////////////////////////////////////////////
 | 
				
			||||||
template<typename vtype> using iLorentzColour2x3 = iVector<iVector<iVector<vtype, Nc>, Nc-1>, Nd >;
 | 
					template<typename vtype> using iLorentzColour2x3 = iVector<iVector<iVector<vtype, Nc>, 2>, Nd >;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
typedef iLorentzColour2x3<Complex>  LorentzColour2x3;
 | 
					typedef iLorentzColour2x3<Complex>  LorentzColour2x3;
 | 
				
			||||||
typedef iLorentzColour2x3<ComplexF> LorentzColour2x3F;
 | 
					typedef iLorentzColour2x3<ComplexF> LorentzColour2x3F;
 | 
				
			||||||
@@ -282,6 +278,7 @@ struct GaugeSimpleMunger{
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
template <class fobj, class sobj>
 | 
					template <class fobj, class sobj>
 | 
				
			||||||
struct GaugeSimpleUnmunger {
 | 
					struct GaugeSimpleUnmunger {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  void operator()(sobj &in, fobj &out) {
 | 
					  void operator()(sobj &in, fobj &out) {
 | 
				
			||||||
    for (int mu = 0; mu < Nd; mu++) {
 | 
					    for (int mu = 0; mu < Nd; mu++) {
 | 
				
			||||||
      for (int i = 0; i < Nc; i++) {
 | 
					      for (int i = 0; i < Nc; i++) {
 | 
				
			||||||
@@ -320,8 +317,8 @@ template<class fobj,class sobj>
 | 
				
			|||||||
struct Gauge3x2munger{
 | 
					struct Gauge3x2munger{
 | 
				
			||||||
  void operator() (fobj &in,sobj &out){
 | 
					  void operator() (fobj &in,sobj &out){
 | 
				
			||||||
    for(int mu=0;mu<Nd;mu++){
 | 
					    for(int mu=0;mu<Nd;mu++){
 | 
				
			||||||
      for(int i=0;i<Nc-1;i++){
 | 
					      for(int i=0;i<2;i++){
 | 
				
			||||||
	for(int j=0;j<Nc;j++){
 | 
						for(int j=0;j<3;j++){
 | 
				
			||||||
	  out(mu)()(i,j) = in(mu)(i)(j);
 | 
						  out(mu)()(i,j) = in(mu)(i)(j);
 | 
				
			||||||
	}}
 | 
						}}
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
@@ -333,8 +330,8 @@ template<class fobj,class sobj>
 | 
				
			|||||||
struct Gauge3x2unmunger{
 | 
					struct Gauge3x2unmunger{
 | 
				
			||||||
  void operator() (sobj &in,fobj &out){
 | 
					  void operator() (sobj &in,fobj &out){
 | 
				
			||||||
    for(int mu=0;mu<Nd;mu++){
 | 
					    for(int mu=0;mu<Nd;mu++){
 | 
				
			||||||
      for(int i=0;i<Nc-1;i++){
 | 
					      for(int i=0;i<2;i++){
 | 
				
			||||||
	for(int j=0;j<Nc;j++){
 | 
						for(int j=0;j<3;j++){
 | 
				
			||||||
	  out(mu)(i)(j) = in(mu)()(i,j);
 | 
						  out(mu)(i)(j) = in(mu)()(i,j);
 | 
				
			||||||
	}}
 | 
						}}
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 
 | 
				
			|||||||
Some files were not shown because too many files have changed in this diff Show More
		Reference in New Issue
	
	Block a user