/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./tests/Test_dwf_mrhs_cg.cc Copyright (C) 2015 Author: Peter Boyle <paboyle@ph.ed.ac.uk> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #include <Grid/Grid.h> #include <Grid/algorithms/iterative/BlockConjugateGradient.h> using namespace std; using namespace Grid; int main (int argc, char ** argv) { typedef typename MobiusFermionD::FermionField FermionField; typedef typename MobiusFermionD::ComplexField ComplexField; typename MobiusFermionD::ImplParams params; const int Ls=12; Grid_init(&argc,&argv); auto latt_size = GridDefaultLatt(); auto simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd()); auto mpi_layout = GridDefaultMpi(); Coordinate mpi_split (mpi_layout.size(),1); Coordinate split_coor (mpi_layout.size(),1); Coordinate split_dim (mpi_layout.size(),1); std::vector<Complex> boundary_phases(Nd,1.); boundary_phases[Nd-1]=-1.; params.boundary_phases = boundary_phases; GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi()); GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid); GridRedBlackCartesian * rbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid); GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid); ///////////////////////////////////////////// // Split into 1^4 mpi communicators ///////////////////////////////////////////// for(int i=0;i<argc;i++){ if(std::string(argv[i]) == "--split"){ for(int k=0;k<mpi_layout.size();k++){ std::stringstream ss; ss << argv[i+1+k]; ss >> mpi_split[k]; } break; } } double stp = 1.e-8; int nrhs = 1; int me; for(int i=0;i<mpi_layout.size();i++){ // split_dim[i] = (mpi_layout[i]/mpi_split[i]); nrhs *= (mpi_layout[i]/mpi_split[i]); // split_coor[i] = FGrid._processor_coor[i]/mpi_split[i]; } std::cout << GridLogMessage << "Creating split grids " <<std::endl; GridCartesian * SGrid = new GridCartesian(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), mpi_split, *UGrid,me); std::cout << GridLogMessage <<"Creating split ferm grids " <<std::endl; GridCartesian * SFGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,SGrid); std::cout << GridLogMessage <<"Creating split rb grids " <<std::endl; GridRedBlackCartesian * SrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(SGrid); std::cout << GridLogMessage <<"Creating split ferm rb grids " <<std::endl; GridRedBlackCartesian * SFrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,SGrid); std::cout << GridLogMessage << "Made the grids"<<std::endl; /////////////////////////////////////////////// // Set up the problem as a 4d spreadout job /////////////////////////////////////////////// std::vector<int> seeds({1,2,3,4}); std::vector<FermionField> src(nrhs,FGrid); std::vector<FermionField> src_chk(nrhs,FGrid); std::vector<FermionField> result(nrhs,FGrid); FermionField tmp(FGrid); std::cout << GridLogMessage << "Made the Fermion Fields"<<std::endl; for(int s=0;s<nrhs;s++) result[s]=Zero(); GridParallelRNG pRNG5(FGrid); pRNG5.SeedFixedIntegers(seeds); for(int s=0;s<nrhs;s++) { random(pRNG5,src[s]); std::cout << GridLogMessage << " src ["<<s<<"] "<<norm2(src[s])<<std::endl; } std::cout << GridLogMessage << "Intialised the Fermion Fields"<<std::endl; LatticeGaugeField Umu(UGrid); if(0) { FieldMetaData header; std::string file("./lat.in"); NerscIO::readConfiguration(Umu,header,file); std::cout << GridLogMessage << " "<<file<<" successfully read" <<std::endl; } else { GridParallelRNG pRNG(UGrid ); std::cout << GridLogMessage << "Intialising 4D RNG "<<std::endl; pRNG.SeedFixedIntegers(seeds); std::cout << GridLogMessage << "Intialised 4D RNG "<<std::endl; SU<Nc>::HotConfiguration(pRNG,Umu); std::cout << GridLogMessage << "Intialised the HOT Gauge Field"<<std::endl; } ///////////////// // MPI only sends ///////////////// LatticeGaugeField s_Umu(SGrid); FermionField s_src(SFGrid); FermionField s_tmp(SFGrid); FermionField s_res(SFGrid); std::cout << GridLogMessage << "Made the split grid fields"<<std::endl; /////////////////////////////////////////////////////////////// // split the source out using MPI instead of I/O /////////////////////////////////////////////////////////////// Grid_split (Umu,s_Umu); Grid_split (src,s_src); std::cout << GridLogMessage << " split rank " <<me << " s_src "<<norm2(s_src)<<std::endl; /////////////////////////////////////////////////////////////// // Set up N-solvers as trivially parallel /////////////////////////////////////////////////////////////// std::cout << GridLogMessage << " Building the solvers"<<std::endl; // RealD mass=0.00107; RealD mass=0.1; RealD M5=1.8; RealD mobius_factor=32./12.; RealD mobius_b=0.5*(mobius_factor+1.); RealD mobius_c=0.5*(mobius_factor-1.); MobiusFermionD Dchk(Umu,*FGrid,*FrbGrid,*UGrid,*rbGrid,mass,M5,mobius_b,mobius_c,params); MobiusFermionD Ddwf(s_Umu,*SFGrid,*SFrbGrid,*SGrid,*SrbGrid,mass,M5,mobius_b,mobius_c,params); std::cout << GridLogMessage << "****************************************************************** "<<std::endl; std::cout << GridLogMessage << " Calling DWF CG "<<std::endl; std::cout << GridLogMessage << "****************************************************************** "<<std::endl; MdagMLinearOperator<MobiusFermionD,FermionField> HermOp(Ddwf); MdagMLinearOperator<MobiusFermionD,FermionField> HermOpCk(Dchk); ConjugateGradient<FermionField> CG((stp),100000); s_res = Zero(); CG(HermOp,s_src,s_res); std::cout << GridLogMessage << " split residual norm "<<norm2(s_res)<<std::endl; ///////////////////////////////////////////////////////////// // Report how long they all took ///////////////////////////////////////////////////////////// std::vector<uint32_t> iterations(nrhs,0); iterations[me] = CG.IterationsToComplete; for(int n=0;n<nrhs;n++){ UGrid->GlobalSum(iterations[n]); std::cout << GridLogMessage<<" Rank "<<n<<" "<< iterations[n]<<" CG iterations"<<std::endl; } ///////////////////////////////////////////////////////////// // Gather and residual check on the results ///////////////////////////////////////////////////////////// std::cout << GridLogMessage<< "Unsplitting the result"<<std::endl; Grid_unsplit(result,s_res); std::cout << GridLogMessage<< "Checking the residuals"<<std::endl; for(int n=0;n<nrhs;n++){ std::cout << GridLogMessage<< " res["<<n<<"] norm "<<norm2(result[n])<<std::endl; HermOpCk.HermOp(result[n],tmp); tmp = tmp - src[n]; std::cout << GridLogMessage<<" resid["<<n<<"] "<< std::sqrt(norm2(tmp)/norm2(src[n]))<<std::endl; } for(int s=0;s<nrhs;s++){ result[s]=Zero(); } ///////////////////////////////////////////////////////////// // Try block CG ///////////////////////////////////////////////////////////// int blockDim = 0;//not used for BlockCGVec BlockConjugateGradient<FermionField> BCGV (BlockCGrQVec,blockDim,stp,100000); { BCGV(HermOpCk,src,result); } Grid_finalize(); }