/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./tests/Test_dwf_block_lanczos.cc Copyright (C) 2015 Author: Peter Boyle <paboyle@ph.ed.ac.uk> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #include <Grid/Grid.h> #include <Grid/util/Init.h> #include <Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h> using namespace std; using namespace Grid; //using namespace Grid::QCD; //typedef typename GparityDomainWallFermionR::FermionField FermionField; typedef typename ZMobiusFermionR::FermionField FermionField; RealD AllZero(RealD x){ return 0.;} class CmdJobParams { public: std::string gaugefile; int Ls; double mass; double M5; double mob_b; std::vector<ComplexD> omega; std::vector<Complex> boundary_phase; std::vector<int> mpi_split; LanczosType Impl; int Nu; int Nk; int Np; int Nm; int Nstop; int Ntest; int MaxIter; double resid; double low; double high; int order; CmdJobParams() : gaugefile("Hot"), Ls(8), mass(0.01), M5(1.8), mob_b(1.5), Impl(LanczosType::irbl),mpi_split(4,1), Nu(4), Nk(200), Np(200), Nstop(100), Ntest(1), MaxIter(10), resid(1.0e-8), low(0.2), high(5.5), order(11) {Nm=Nk+Np;}; void Parse(char **argv, int argc); }; void CmdJobParams::Parse(char **argv,int argc) { std::string arg; std::vector<int> vi; double re,im; int expect, idx; std::string vstr; std::ifstream pfile; if( GridCmdOptionExists(argv,argv+argc,"--gconf") ){ gaugefile = GridCmdOptionPayload(argv,argv+argc,"--gconf"); } if( GridCmdOptionExists(argv,argv+argc,"--phase") ){ arg = GridCmdOptionPayload(argv,argv+argc,"--phase"); pfile.open(arg); assert(pfile); expect = 0; while( pfile >> vstr ) { if ( vstr.compare("boundary_phase") == 0 ) { pfile >> vstr; GridCmdOptionInt(vstr,idx); assert(expect==idx); pfile >> vstr; GridCmdOptionFloat(vstr,re); pfile >> vstr; GridCmdOptionFloat(vstr,im); boundary_phase.push_back({re,im}); expect++; } } pfile.close(); } else { for (int i=0; i<4; ++i) boundary_phase.push_back({1.,0.}); } if( GridCmdOptionExists(argv,argv+argc,"--omega") ){ arg = GridCmdOptionPayload(argv,argv+argc,"--omega"); pfile.open(arg); assert(pfile); Ls = 0; while( pfile >> vstr ) { if ( vstr.compare("omega") == 0 ) { pfile >> vstr; GridCmdOptionInt(vstr,idx); assert(Ls==idx); pfile >> vstr; GridCmdOptionFloat(vstr,re); pfile >> vstr; GridCmdOptionFloat(vstr,im); omega.push_back({re,im}); Ls++; } } pfile.close(); } else { if( GridCmdOptionExists(argv,argv+argc,"--Ls") ){ arg = GridCmdOptionPayload(argv,argv+argc,"--Ls"); GridCmdOptionInt(arg,Ls); } } if( GridCmdOptionExists(argv,argv+argc,"--mass") ){ arg = GridCmdOptionPayload(argv,argv+argc,"--mass"); GridCmdOptionFloat(arg,mass); } if( GridCmdOptionExists(argv,argv+argc,"--M5") ){ arg = GridCmdOptionPayload(argv,argv+argc,"--M5"); GridCmdOptionFloat(arg,M5); } if( GridCmdOptionExists(argv,argv+argc,"--mob_b") ){ arg = GridCmdOptionPayload(argv,argv+argc,"--mob_b"); GridCmdOptionFloat(arg,mob_b); } if( GridCmdOptionExists(argv,argv+argc,"--irbl") ){ arg = GridCmdOptionPayload(argv,argv+argc,"--irbl"); GridCmdOptionIntVector(arg,vi); Nu = vi[0]; Nk = vi[1]; Np = vi[2]; Nstop = vi[3]; MaxIter = vi[4]; // ypj[fixme] mode overriding message is needed. Impl = LanczosType::irbl; Nm = Nk+Np; } // block Lanczos with explicit extension of its dimensions if( GridCmdOptionExists(argv,argv+argc,"--rbl") ){ arg = GridCmdOptionPayload(argv,argv+argc,"--rbl"); GridCmdOptionIntVector(arg,vi); Nu = vi[0]; Nk = vi[1]; Np = vi[2]; // vector space is enlarged by adding Np vectors Nstop = vi[3]; MaxIter = vi[4]; // ypj[fixme] mode overriding message is needed. Impl = LanczosType::rbl; Nm = Nk+Np*MaxIter; } #if 1 // block Lanczos with explicit extension of its dimensions if( GridCmdOptionExists(argv,argv+argc,"--split") ){ arg = GridCmdOptionPayload(argv,argv+argc,"--split"); GridCmdOptionIntVector(arg,vi); for(int i=0;i<mpi_split.size();i++) mpi_split[i] = vi[i]; } #endif if( GridCmdOptionExists(argv,argv+argc,"--check_int") ){ arg = GridCmdOptionPayload(argv,argv+argc,"--check_int"); GridCmdOptionInt(arg,Ntest); } if( GridCmdOptionExists(argv,argv+argc,"--resid") ){ arg = GridCmdOptionPayload(argv,argv+argc,"--resid"); GridCmdOptionFloat(arg,resid); } if( GridCmdOptionExists(argv,argv+argc,"--cheby_l") ){ arg = GridCmdOptionPayload(argv,argv+argc,"--cheby_l"); GridCmdOptionFloat(arg,low); } if( GridCmdOptionExists(argv,argv+argc,"--cheby_u") ){ arg = GridCmdOptionPayload(argv,argv+argc,"--cheby_u"); GridCmdOptionFloat(arg,high); } if( GridCmdOptionExists(argv,argv+argc,"--cheby_n") ){ arg = GridCmdOptionPayload(argv,argv+argc,"--cheby_n"); GridCmdOptionInt(arg,order); } if ( CartesianCommunicator::RankWorld() == 0 ) { std::streamsize ss = std::cout.precision(); std::cout << GridLogMessage <<" Gauge Configuration "<< gaugefile << '\n'; std::cout.precision(15); for ( int i=0; i<4; ++i ) std::cout << GridLogMessage <<" boundary_phase["<< i << "] = " << boundary_phase[i] << '\n'; std::cout.precision(ss); std::cout << GridLogMessage <<" Ls "<< Ls << '\n'; std::cout << GridLogMessage <<" mass "<< mass << '\n'; std::cout << GridLogMessage <<" M5 "<< M5 << '\n'; std::cout << GridLogMessage <<" mob_b "<< mob_b << '\n'; std::cout.precision(15); for ( int i=0; i<Ls; ++i ) std::cout << GridLogMessage <<" omega["<< i << "] = " << omega[i] << '\n'; std::cout.precision(ss); std::cout << GridLogMessage <<" Nu "<< Nu << '\n'; std::cout << GridLogMessage <<" Nk "<< Nk << '\n'; std::cout << GridLogMessage <<" Np "<< Np << '\n'; std::cout << GridLogMessage <<" Nm "<< Nm << '\n'; std::cout << GridLogMessage <<" Nstop "<< Nstop << '\n'; std::cout << GridLogMessage <<" Ntest "<< Ntest << '\n'; std::cout << GridLogMessage <<" MaxIter "<< MaxIter << '\n'; std::cout << GridLogMessage <<" resid "<< resid << '\n'; std::cout << GridLogMessage <<" Cheby Poly "<< low << "," << high << "," << order << std::endl; } } int main (int argc, char ** argv) { Grid_init(&argc,&argv); CmdJobParams JP; JP.Parse(argv,argc); GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi()); GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid); GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(JP.Ls,UGrid); GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(JP.Ls,UGrid); // printf("UGrid=%p UrbGrid=%p FGrid=%p FrbGrid=%p\n",UGrid,UrbGrid,FGrid,FrbGrid); std::vector<int> seeds4({1,2,3,4}); std::vector<int> seeds5({5,6,7,8}); GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5); GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4); // ypj [note] why seed RNG5 again? bug? In this case, run with a default seed(). GridParallelRNG RNG5rb(FrbGrid); RNG5rb.SeedFixedIntegers(seeds5); LatticeGaugeField Umu(UGrid); std::vector<LatticeColourMatrix> U(4,UGrid); if ( JP.gaugefile.compare("Hot") == 0 ) { SU3::HotConfiguration(RNG4, Umu); } else { FieldMetaData header; NerscIO::readConfiguration(Umu,header,JP.gaugefile); // ypj [fixme] additional checks for the loaded configuration? } for(int mu=0;mu<Nd;mu++){ U[mu] = PeekIndex<LorentzIndex>(Umu,mu); } RealD mass = JP.mass; RealD M5 = JP.M5; // ypj [fixme] flexible support for a various Fermions // RealD mob_b = JP.mob_b; // Gparity // std::vector<ComplexD> omega; // ZMobius // GparityMobiusFermionD ::ImplParams params; // std::vector<int> twists({1,1,1,0}); // params.twists = twists; // GparityMobiusFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,mob_b,mob_b-1.,params); // SchurDiagTwoOperator<GparityMobiusFermionR,FermionField> HermOp(Ddwf); // int mrhs = JP.Nu; int Ndir=4; auto mpi_layout = GridDefaultMpi(); std::vector<int> mpi_split (Ndir,1); #if 0 int tmp=mrhs, dir=0; std::cout << GridLogMessage << "dir= "<<dir <<"tmp= "<<tmp<<"mpi_split= "<<mpi_split[dir]<<"mpi_layout= "<<mpi_split[dir]<<std::endl; while ( tmp> 1) { if ((mpi_split[dir]*2) <= mpi_layout[dir]){ mpi_split[dir] *=2; tmp = tmp/2; } std::cout << GridLogMessage << "dir= "<<dir <<"tmp= "<<tmp<<"mpi_split= "<<mpi_split[dir]<<"mpi_layout= "<<mpi_layout[dir]<<std::endl; dir = (dir+1)%Ndir; } #endif int mrhs=1; for(int i =0;i<Ndir;i++){ mpi_split[i] = mpi_layout[i] / JP.mpi_split[i] ; mrhs *= JP.mpi_split[i]; } std::cout << GridLogMessage << "mpi_layout= " << mpi_layout << std::endl; std::cout << GridLogMessage << "mpi_split= " << mpi_split << std::endl; std::cout << GridLogMessage << "mrhs= " << mrhs << std::endl; // assert(JP.Nu==tmp); ///////////////////////////////////////////// // Split into 1^4 mpi communicators ///////////////////////////////////////////// GridCartesian * SGrid = new GridCartesian(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), mpi_split, *UGrid); GridCartesian * SFGrid = SpaceTimeGrid::makeFiveDimGrid(JP.Ls,SGrid); GridRedBlackCartesian * SrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(SGrid); GridRedBlackCartesian * SFrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(JP.Ls,SGrid); LatticeGaugeField s_Umu(SGrid); Grid_split (Umu,s_Umu); //WilsonFermionR::ImplParams params; ZMobiusFermionR::ImplParams params; params.overlapCommsCompute = true; params.boundary_phases = JP.boundary_phase; ZMobiusFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,JP.omega,1.,0.,params); // SchurDiagTwoOperator<ZMobiusFermionR,FermionField> HermOp(Ddwf); SchurDiagOneOperator<ZMobiusFermionR,FermionField> HermOp(Ddwf); ZMobiusFermionR Dsplit(s_Umu,*SFGrid,*SFrbGrid,*SGrid,*SrbGrid,mass,M5,JP.omega,1.,0.,params); // SchurDiagTwoOperator<ZMobiusFermionR,FermionField> SHermOp(Dsplit); SchurDiagOneOperator<ZMobiusFermionR,FermionField> SHermOp(Dsplit); //std::vector<double> Coeffs { 0.,-1.}; // ypj [note] this may not be supported by some compilers std::vector<double> Coeffs({ 0.,-1.}); Polynomial<FermionField> PolyX(Coeffs); //Chebyshev<FermionField> Cheb(0.2,5.5,11); Chebyshev<FermionField> Cheb(JP.low,JP.high,JP.order); // Cheb.csv(std::cout); ImplicitlyRestartedBlockLanczos<FermionField> IRBL(HermOp, SHermOp, FrbGrid,SFrbGrid,mrhs, Cheb, JP.Nstop, JP.Ntest, JP.Nu, JP.Nk, JP.Nm, JP.resid, JP.MaxIter, IRBLdiagonaliseWithEigen); // IRBLdiagonaliseWithLAPACK); IRBL.split_test=0; std::vector<RealD> eval(JP.Nm); std::vector<FermionField> src(JP.Nu,FrbGrid); if (0) { // in case RNG is too slow std::cout << GridLogMessage << "Using RNG5"<<std::endl; FermionField src_tmp(FGrid); for ( int i=0; i<JP.Nu; ++i ){ // gaussian(RNG5,src_tmp); ComplexD rnd; RealD re; fillScalar(re,RNG5._gaussian[0],RNG5._generators[0]); std::cout << i <<" / "<< JP.Nm <<" re "<< re << std::endl; // printf("%d / %d re %e\n",i,FGrid->_processor,re); src_tmp=re; pickCheckerboard(Odd,src[i],src_tmp); } RNG5.Report(); } else { std::cout << GridLogMessage << "Using RNG5rb"<<std::endl; for ( int i=0; i<JP.Nu; ++i ) gaussian(RNG5rb,src[i]); RNG5rb.Report(); } std::vector<FermionField> evec(JP.Nm,FrbGrid); for(int i=0;i<1;++i){ std::cout << GridLogMessage << i <<" / "<< JP.Nm <<" grid pointer "<< evec[i].Grid() << std::endl; }; int Nconv; IRBL.calc(eval,evec,src,Nconv,JP.Impl); Grid_finalize(); }