/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./tests/Test_dwf_multishift_mixedprec.cc Copyright (C) 2015 Author: Christopher Kelly <ckelly@bnl.gov> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #include <Grid/Grid.h> using namespace Grid; template<typename SpeciesD, typename SpeciesF, typename GaugeStatisticsType> void run_test(int argc, char ** argv, const typename SpeciesD::ImplParams ¶ms){ const int Ls = 16; GridCartesian* UGrid_d = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexD::Nsimd()), GridDefaultMpi()); GridRedBlackCartesian* UrbGrid_d = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_d); GridCartesian* FGrid_d = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid_d); GridRedBlackCartesian* FrbGrid_d = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid_d); GridCartesian* UGrid_f = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi()); GridRedBlackCartesian* UrbGrid_f = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_f); GridCartesian* FGrid_f = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid_f); GridRedBlackCartesian* FrbGrid_f = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid_f); typedef typename SpeciesD::FermionField FermionFieldD; typedef typename SpeciesF::FermionField FermionFieldF; std::vector<int> seeds4({1, 2, 3, 4}); std::vector<int> seeds5({5, 6, 7, 8}); GridParallelRNG RNG5(FGrid_d); RNG5.SeedFixedIntegers(seeds5); GridParallelRNG RNG4(UGrid_d); RNG4.SeedFixedIntegers(seeds4); FermionFieldD src_d(FGrid_d); random(RNG5, src_d); LatticeGaugeFieldD Umu_d(UGrid_d); //CPS-created G-parity ensembles have a factor of 2 error in the plaquette that causes the read to fail unless we workaround it bool gparity_plaquette_fix = false; for(int i=1;i<argc;i++){ if(std::string(argv[i]) == "--gparity_plaquette_fix"){ gparity_plaquette_fix=true; break; } } bool cfg_loaded=false; for(int i=1;i<argc;i++){ if(std::string(argv[i]) == "--load_config"){ assert(i != argc-1); std::string file = argv[i+1]; NerscIO io; FieldMetaData metadata; if(gparity_plaquette_fix) NerscIO::exitOnReadPlaquetteMismatch() = false; io.readConfiguration<GaugeStatisticsType>(Umu_d, metadata, file); if(gparity_plaquette_fix){ metadata.plaquette *= 2.; //correct header value //Get the true plaquette FieldMetaData tmp; GaugeStatisticsType gs; gs(Umu_d, tmp); std::cout << "After correction: plaqs " << tmp.plaquette << " " << metadata.plaquette << std::endl; assert(fabs(tmp.plaquette -metadata.plaquette ) < 1.0e-5 ); } cfg_loaded=true; break; } } if(!cfg_loaded) SU<Nc>::HotConfiguration(RNG4, Umu_d); LatticeGaugeFieldF Umu_f(UGrid_f); precisionChange(Umu_f, Umu_d); std::cout << GridLogMessage << "Lattice dimensions: " << GridDefaultLatt() << " Ls: " << Ls << std::endl; RealD mass = 0.01; RealD M5 = 1.8; SpeciesD Ddwf_d(Umu_d, *FGrid_d, *FrbGrid_d, *UGrid_d, *UrbGrid_d, mass, M5, params); SpeciesF Ddwf_f(Umu_f, *FGrid_f, *FrbGrid_f, *UGrid_f, *UrbGrid_f, mass, M5, params); FermionFieldD src_o_d(FrbGrid_d); pickCheckerboard(Odd, src_o_d, src_d); SchurDiagMooeeOperator<SpeciesD, FermionFieldD> HermOpEO_d(Ddwf_d); SchurDiagMooeeOperator<SpeciesF, FermionFieldF> HermOpEO_f(Ddwf_f); AlgRemez remez(1e-4, 64, 50); int order = 15; remez.generateApprox(order, 1, 2); //sqrt MultiShiftFunction shifts(remez, 1e-10, false); int relup_freq = 50; double t1=usecond(); ConjugateGradientMultiShiftMixedPrec<FermionFieldD,FermionFieldF> mcg(10000, shifts, FrbGrid_f, HermOpEO_f, relup_freq); std::vector<FermionFieldD> results_o_d(order, FrbGrid_d); mcg(HermOpEO_d, src_o_d, results_o_d); double t2=usecond(); //Crosscheck double and mixed prec results ConjugateGradientMultiShift<FermionFieldD> dmcg(10000, shifts); std::vector<FermionFieldD> results_o_d_2(order, FrbGrid_d); dmcg(HermOpEO_d, src_o_d, results_o_d_2); double t3=usecond(); std::cout << GridLogMessage << "Comparison of mixed prec results to double prec results |mixed - double|^2 :" << std::endl; FermionFieldD tmp(FrbGrid_d); for(int i=0;i<order;i++){ RealD ndiff = axpy_norm(tmp, -1., results_o_d[i], results_o_d_2[i]); std::cout << i << " " << ndiff << std::endl; } std::cout<<GridLogMessage << "Mixed precision algorithm: Total usec = "<< (t2-t1)<<std::endl; std::cout<<GridLogMessage << "Double precision algorithm: Total usec = "<< (t3-t2)<<std::endl; } int main (int argc, char ** argv) { Grid_init(&argc, &argv); bool gparity = false; int gpdir; for(int i=1;i<argc;i++){ std::string arg(argv[i]); if(arg == "--Gparity"){ assert(i!=argc-1); gpdir = std::stoi(argv[i+1]); assert(gpdir >= 0 && gpdir <= 2); //spatial! gparity = true; } } if(gparity){ std::cout << "Running test with G-parity BCs in " << gpdir << " direction" << std::endl; GparityWilsonImplParams params; params.twists[gpdir] = 1; std::vector<int> conj_dirs(Nd,0); conj_dirs[gpdir] = 1; ConjugateGimplD::setDirections(conj_dirs); run_test<GparityDomainWallFermionD, GparityDomainWallFermionF, ConjugateGaugeStatistics>(argc,argv,params); }else{ std::cout << "Running test with periodic BCs" << std::endl; WilsonImplParams params; run_test<DomainWallFermionD, DomainWallFermionF, PeriodicGaugeStatistics>(argc,argv,params); } Grid_finalize(); }