/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./tests/debug/Test_reweight_dwf_eofa.cc Copyright (C) 2017 Author: Peter Boyle <paboyle@ph.ed.ac.uk> Author: paboyle <paboyle@ph.ed.ac.uk> Author: David Murphy <dmurphy@phys.columbia.edu> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #include <Grid/Grid.h> using namespace std; using namespace Grid; ; // parameters for test const std::vector<int> grid_dim = { 8, 8, 8, 8 }; const int Ls = 8; const int Nhits = 25; const int max_iter = 5000; const RealD mf = 0.1; const RealD mb = 0.11; const RealD M5 = 1.8; const RealD stop_tol = 1.0e-12; RealD mean(const std::vector<RealD>& data) { int N = data.size(); RealD mean(0.0); for(int i=0; i<N; ++i){ mean += data[i]; } return mean/RealD(N); } RealD jack_mean(const std::vector<RealD>& data, int sample) { int N = data.size(); RealD mean(0.0); for(int i=0; i<N; ++i){ if(i != sample){ mean += data[i]; } } return mean/RealD(N-1); } RealD jack_std(const std::vector<RealD>& jacks, RealD mean) { int N = jacks.size(); RealD std(0.0); for(int i=0; i<N; ++i){ std += std::pow(jacks[i]-mean, 2.0); } return std::sqrt(RealD(N-1)/RealD(N)*std); } std::vector<RealD> jack_stats(const std::vector<RealD>& data) { int N = data.size(); std::vector<RealD> jack_samples(N); std::vector<RealD> jack_stats(2); jack_stats[0] = mean(data); for(int i=0; i<N; i++){ jack_samples[i] = jack_mean(data,i); } jack_stats[1] = jack_std(jack_samples, jack_stats[0]); return jack_stats; } int main(int argc, char **argv) { Grid_init(&argc, &argv); // Initialize spacetime grid std::cout << GridLogMessage << "Lattice dimensions: " << grid_dim << " Ls: " << Ls << std::endl; GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(grid_dim, GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi()); GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid); GridCartesian* FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid); GridRedBlackCartesian* FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid); // Set up RNGs std::vector<int> seeds4({1, 2, 3, 4}); std::vector<int> seeds5({5, 6, 7, 8}); GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5); GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4); // Random gauge field LatticeGaugeField Umu(UGrid); SU<Nc>::HotConfiguration(RNG4, Umu); // Initialize RHMC fermion operators DomainWallFermionD Ddwf_f(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, M5); DomainWallFermionD Ddwf_b(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, M5); SchurDiagMooeeOperator<DomainWallFermionD, LatticeFermion> MdagM(Ddwf_f); SchurDiagMooeeOperator<DomainWallFermionD, LatticeFermion> VdagV(Ddwf_b); // Degree 12 rational approximations to x^(1/4) and x^(-1/4) double lo = 0.0001; double hi = 95.0; int precision = 64; int degree = 12; AlgRemez remez(lo, hi, precision); std::cout << GridLogMessage << "Generating degree " << degree << " for x^(1/4)" << std::endl; remez.generateApprox(degree, 1, 4); MultiShiftFunction PowerQuarter(remez, stop_tol, false); MultiShiftFunction PowerNegQuarter(remez, stop_tol, true); // Stochastically estimate reweighting factor via RHMC RealD scale = std::sqrt(0.5); std::vector<RealD> rw_rhmc(Nhits); ConjugateGradientMultiShift<LatticeFermion> msCG_V(max_iter, PowerQuarter); ConjugateGradientMultiShift<LatticeFermion> msCG_M(max_iter, PowerNegQuarter); std::cout.precision(12); for(int hit=0; hit<Nhits; hit++){ // Gaussian source LatticeFermion Phi (Ddwf_f.FermionGrid()); LatticeFermion PhiOdd (Ddwf_f.FermionRedBlackGrid()); std::vector<LatticeFermion> tmp(2, Ddwf_f.FermionRedBlackGrid()); gaussian(RNG5, Phi); Phi = Phi*scale; pickCheckerboard(Odd, PhiOdd, Phi); // evaluate -log(rw) msCG_V(VdagV, PhiOdd, tmp[0]); msCG_M(MdagM, tmp[0], tmp[1]); rw_rhmc[hit] = norm2(tmp[1]) - norm2(PhiOdd); std::cout << std::endl << "==================================================" << std::endl; std::cout << " --- RHMC: Hit " << hit << ": rw = " << rw_rhmc[hit]; std::cout << std::endl << "==================================================" << std::endl << std::endl; } // Initialize EOFA fermion operators RealD shift_L = 0.0; RealD shift_R = -1.0; int pm = 1; DomainWallEOFAFermionD Deofa_L(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mb, shift_L, pm, M5); DomainWallEOFAFermionD Deofa_R(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, mf, mb, shift_R, pm, M5); MdagMLinearOperator<DomainWallEOFAFermionD, LatticeFermion> LdagL(Deofa_L); MdagMLinearOperator<DomainWallEOFAFermionD, LatticeFermion> RdagR(Deofa_R); // Stochastically estimate reweighting factor via EOFA RealD k = Deofa_L.k; std::vector<RealD> rw_eofa(Nhits); ConjugateGradient<LatticeFermion> CG(stop_tol, max_iter); SchurRedBlackDiagMooeeSolve<LatticeFermion> SchurSolver(CG); for(int hit=0; hit<Nhits; hit++){ // Gaussian source LatticeFermion Phi (Deofa_L.FermionGrid()); LatticeFermion spProj_Phi(Deofa_L.FermionGrid()); std::vector<LatticeFermion> tmp(2, Deofa_L.FermionGrid()); gaussian(RNG5, Phi); Phi = Phi*scale; // evaluate -log(rw) // LH term for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(spProj_Phi, 0.0, Phi, 1.0, Phi, s, s); } Deofa_L.Omega(spProj_Phi, tmp[0], -1, 0); G5R5(tmp[1], tmp[0]); tmp[0] = Zero(); SchurSolver(Deofa_L, tmp[1], tmp[0]); Deofa_L.Omega(tmp[0], tmp[1], -1, 1); rw_eofa[hit] = -k*innerProduct(spProj_Phi,tmp[1]).real(); // RH term for(int s=0; s<Ls; ++s){ axpby_ssp_pplus(spProj_Phi, 0.0, Phi, 1.0, Phi, s, s); } Deofa_R.Omega(spProj_Phi, tmp[0], 1, 0); G5R5(tmp[1], tmp[0]); tmp[0] = Zero(); SchurSolver(Deofa_R, tmp[1], tmp[0]); Deofa_R.Omega(tmp[0], tmp[1], 1, 1); rw_eofa[hit] += k*innerProduct(spProj_Phi,tmp[1]).real(); std::cout << std::endl << "==================================================" << std::endl; std::cout << " --- EOFA: Hit " << hit << ": rw = " << rw_eofa[hit]; std::cout << std::endl << "==================================================" << std::endl << std::endl; } std::vector<RealD> rhmc_result = jack_stats(rw_rhmc); std::vector<RealD> eofa_result = jack_stats(rw_eofa); std::cout << std::endl << "RHMC: rw = " << rhmc_result[0] << " +/- " << rhmc_result[1] << std::endl; std::cout << std::endl << "EOFA: rw = " << eofa_result[0] << " +/- " << eofa_result[1] << std::endl; Grid_finalize(); }