/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./tests/forces/Test_dwf_force_eofa.cc Copyright (C) 2017 Author: Peter Boyle Author: David Murphy This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #include using namespace std; using namespace Grid; ; typedef GparityWilsonImplR FermionImplPolicy; typedef GparityMobiusEOFAFermionR FermionAction; typedef typename FermionAction::FermionField FermionField; int main (int argc, char** argv) { Grid_init(&argc, &argv); Coordinate latt_size = GridDefaultLatt(); Coordinate simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd()); Coordinate mpi_layout = GridDefaultMpi(); const int Ls = 8; GridCartesian *UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi()); GridRedBlackCartesian *UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid); GridCartesian *FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid); GridRedBlackCartesian *FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid); // Want a different conf at every run // First create an instance of an engine. std::random_device rnd_device; // Specify the engine and distribution. std::mt19937 mersenne_engine(rnd_device()); std::uniform_int_distribution dist(1, 100); auto gen = std::bind(dist, mersenne_engine); std::vector seeds4(4); generate(begin(seeds4), end(seeds4), gen); //std::vector seeds4({1,2,3,5}); std::vector seeds5({5,6,7,8}); GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5); GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4); int threads = GridThread::GetThreads(); std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl; FermionField phi (FGrid); gaussian(RNG5, phi); FermionField Mphi (FGrid); FermionField MphiPrime (FGrid); LatticeGaugeField U(UGrid); SU3::HotConfiguration(RNG4,U); //////////////////////////////////// // Unmodified matrix element //////////////////////////////////// RealD b = 2.5; RealD c = 1.5; RealD mf = 0.01; RealD mb = 1.0; RealD M5 = 1.8; FermionAction::ImplParams params; FermionAction Lop(U, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mb, 0.0, -1, M5, b, c, params); FermionAction Rop(U, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, mf, mb, -1.0, 1, M5, b, c, params); OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, 12); ConjugateGradient CG(1.0e-12, 5000); ExactOneFlavourRatioPseudoFermionAction Meofa(Lop, Rop, CG, CG, CG, CG, CG, Params, false); Meofa.refresh(U, RNG5); RealD S = Meofa.S(U); // pdag M p // get the deriv of phidag M phi with respect to "U" LatticeGaugeField UdSdU(UGrid); Meofa.deriv(U, UdSdU); //////////////////////////////////// // Modify the gauge field a little //////////////////////////////////// RealD dt = 0.0001; LatticeColourMatrix mommu(UGrid); LatticeColourMatrix forcemu(UGrid); LatticeGaugeField mom(UGrid); LatticeGaugeField Uprime(UGrid); for(int mu=0; mu(mom, mommu, mu); auto U_v = U.View(CpuRead); auto mom_v = mom.View(CpuRead); auto Uprime_v = Uprime.View(CpuWrite); // fourth order exponential approx thread_foreach( i, mom_v,{ Uprime_v[i](mu) = U_v[i](mu) + mom_v[i](mu)*U_v[i](mu)*dt + mom_v[i](mu) *mom_v[i](mu) *U_v[i](mu)*(dt*dt/2.0) + mom_v[i](mu) *mom_v[i](mu) *mom_v[i](mu) *U_v[i](mu)*(dt*dt*dt/6.0) + mom_v[i](mu) *mom_v[i](mu) *mom_v[i](mu) *mom_v[i](mu) *U_v[i](mu)*(dt*dt*dt*dt/24.0) + mom_v[i](mu) *mom_v[i](mu) *mom_v[i](mu) *mom_v[i](mu) *mom_v[i](mu) *U_v[i](mu)*(dt*dt*dt*dt*dt/120.0) + mom_v[i](mu) *mom_v[i](mu) *mom_v[i](mu) *mom_v[i](mu) *mom_v[i](mu) *mom_v[i](mu) *U_v[i](mu)*(dt*dt*dt*dt*dt*dt/720.0); }); } /*Ddwf.ImportGauge(Uprime); Ddwf.M (phi,MphiPrime); ComplexD Sprime = innerProduct(MphiPrime ,MphiPrime);*/ RealD Sprime = Meofa.S(Uprime); ////////////////////////////////////////////// // Use derivative to estimate dS ////////////////////////////////////////////// LatticeComplex dS(UGrid); dS = Zero(); for(int mu=0; mu(UdSdU, mu); mommu = Ta(mommu)*2.0; PokeIndex(UdSdU, mommu, mu); } for(int mu=0; mu(UdSdU, mu); mommu = PeekIndex(mom, mu); // Update PF action density dS = dS + trace(mommu*forcemu)*dt; } ComplexD dSpred = sum(dS); /*std::cout << GridLogMessage << " S " << S << std::endl; std::cout << GridLogMessage << " Sprime " << Sprime << std::endl; std::cout << GridLogMessage << "dS " << Sprime-S << std::endl; std::cout << GridLogMessage << "predict dS " << dSpred << std::endl;*/ printf("\nS = %1.15e\n", S); printf("Sprime = %1.15e\n", Sprime); printf("dS = %1.15e\n", Sprime - S); printf("real(dS_predict) = %1.15e\n", dSpred.real()); printf("imag(dS_predict) = %1.15e\n\n", dSpred.imag()); assert( fabs(real(Sprime-S-dSpred)) < 1.0 ) ; std::cout << GridLogMessage << "Done" << std::endl; Grid_finalize(); }