/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./lib/algorithms/iterative/BiCGSTAB.h Copyright (C) 2015 Author: Azusa Yamaguchi Author: Peter Boyle Author: paboyle Author: juettner Author: David Murphy This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #ifndef GRID_BICGSTAB_H #define GRID_BICGSTAB_H NAMESPACE_BEGIN(Grid); ///////////////////////////////////////////////////////////// // Base classes for iterative processes based on operators // single input vec, single output vec. ///////////////////////////////////////////////////////////// template class BiCGSTAB : public OperatorFunction { public: using OperatorFunction::operator(); bool ErrorOnNoConverge; // throw an assert when the CG fails to converge. // Defaults true. RealD Tolerance; Integer MaxIterations; Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion BiCGSTAB(RealD tol, Integer maxit, bool err_on_no_conv = true) : Tolerance(tol), MaxIterations(maxit), ErrorOnNoConverge(err_on_no_conv){}; void operator()(LinearOperatorBase& Linop, const Field& src, Field& psi) { psi.Checkerboard() = src.Checkerboard(); conformable(psi, src); RealD cp(0), rho(1), rho_prev(0), alpha(1), beta(0), omega(1); RealD a(0), bo(0), b(0), ssq(0); Field p(src); Field r(src); Field rhat(src); Field v(src); Field s(src); Field t(src); Field h(src); v = Zero(); p = Zero(); // Initial residual computation & set up RealD guess = norm2(psi); assert(std::isnan(guess) == 0); Linop.Op(psi, v); b = norm2(v); r = src - v; rhat = r; a = norm2(r); ssq = norm2(src); std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: guess " << guess << std::endl; std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: src " << ssq << std::endl; std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: mp " << b << std::endl; std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: r " << a << std::endl; RealD rsq = Tolerance * Tolerance * ssq; // Check if guess is really REALLY good :) if(a <= rsq){ return; } std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: k=0 residual " << a << " target " << rsq << std::endl; GridStopWatch LinalgTimer; GridStopWatch InnerTimer; GridStopWatch AxpyNormTimer; GridStopWatch LinearCombTimer; GridStopWatch MatrixTimer; GridStopWatch SolverTimer; SolverTimer.Start(); int k; for (k = 1; k <= MaxIterations; k++) { rho_prev = rho; LinalgTimer.Start(); InnerTimer.Start(); ComplexD Crho = innerProduct(rhat,r); InnerTimer.Stop(); rho = Crho.real(); beta = (rho / rho_prev) * (alpha / omega); LinearCombTimer.Start(); bo = beta * omega; { autoView( p_v , p, AcceleratorWrite); autoView( r_v , r, AcceleratorRead); autoView( v_v , v, AcceleratorRead); accelerator_for(ss, p_v.size(), Field::vector_object::Nsimd(),{ coalescedWrite(p_v[ss], beta*p_v(ss) - bo*v_v(ss) + r_v(ss)); }); } LinearCombTimer.Stop(); LinalgTimer.Stop(); MatrixTimer.Start(); Linop.Op(p,v); MatrixTimer.Stop(); LinalgTimer.Start(); InnerTimer.Start(); ComplexD Calpha = innerProduct(rhat,v); InnerTimer.Stop(); alpha = rho / Calpha.real(); LinearCombTimer.Start(); { autoView( p_v , p, AcceleratorRead); autoView( r_v , r, AcceleratorRead); autoView( v_v , v, AcceleratorRead); autoView( psi_v,psi, AcceleratorRead); autoView( h_v , h, AcceleratorWrite); autoView( s_v , s, AcceleratorWrite); accelerator_for(ss, h_v.size(), Field::vector_object::Nsimd(),{ coalescedWrite(h_v[ss], alpha*p_v(ss) + psi_v(ss)); }); accelerator_for(ss, s_v.size(), Field::vector_object::Nsimd(),{ coalescedWrite(s_v[ss], -alpha*v_v(ss) + r_v(ss)); }); } LinearCombTimer.Stop(); LinalgTimer.Stop(); MatrixTimer.Start(); Linop.Op(s,t); MatrixTimer.Stop(); LinalgTimer.Start(); InnerTimer.Start(); ComplexD Comega = innerProduct(t,s); InnerTimer.Stop(); omega = Comega.real() / norm2(t); LinearCombTimer.Start(); { autoView( psi_v,psi, AcceleratorWrite); autoView( r_v , r, AcceleratorWrite); autoView( h_v , h, AcceleratorRead); autoView( s_v , s, AcceleratorRead); autoView( t_v , t, AcceleratorRead); accelerator_for(ss, psi_v.size(), Field::vector_object::Nsimd(),{ coalescedWrite(psi_v[ss], h_v(ss) + omega * s_v(ss)); coalescedWrite(r_v[ss], -omega * t_v(ss) + s_v(ss)); }); } LinearCombTimer.Stop(); cp = norm2(r); LinalgTimer.Stop(); std::cout << GridLogIterative << "BiCGSTAB: Iteration " << k << " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl; // Stopping condition if(cp <= rsq) { SolverTimer.Stop(); Linop.Op(psi, v); p = v - src; RealD srcnorm = sqrt(norm2(src)); RealD resnorm = sqrt(norm2(p)); RealD true_residual = resnorm / srcnorm; std::cout << GridLogMessage << "BiCGSTAB Converged on iteration " << k << std::endl; std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp/ssq) << std::endl; std::cout << GridLogMessage << "\tTrue residual " << true_residual << std::endl; std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl; std::cout << GridLogMessage << "Time breakdown " << std::endl; std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() << std::endl; std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() << std::endl; std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() << std::endl; std::cout << GridLogMessage << "\tInner " << InnerTimer.Elapsed() << std::endl; std::cout << GridLogMessage << "\tAxpyNorm " << AxpyNormTimer.Elapsed() << std::endl; std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() << std::endl; if(ErrorOnNoConverge){ assert(true_residual / Tolerance < 10000.0); } IterationsToComplete = k; return; } } std::cout << GridLogMessage << "BiCGSTAB did NOT converge" << std::endl; if(ErrorOnNoConverge){ assert(0); } IterationsToComplete = k; } }; NAMESPACE_END(Grid); #endif