/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./lib/qcd/action/fermion/WilsonCloverFermionImplementation.h Copyright (C) 2017 - 2022 Author: paboyle Author: Guido Cossu Author: Daniel Richtmann This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #include #include #include NAMESPACE_BEGIN(Grid); template WilsonCloverFermion::WilsonCloverFermion(GaugeField& _Umu, GridCartesian& Fgrid, GridRedBlackCartesian& Hgrid, const RealD _mass, const RealD _csw_r, const RealD _csw_t, const WilsonAnisotropyCoefficients& clover_anisotropy, const ImplParams& impl_p) : WilsonFermion(_Umu, Fgrid, Hgrid, _mass, impl_p, clover_anisotropy) , CloverTerm(&Fgrid) , CloverTermInv(&Fgrid) , CloverTermEven(&Hgrid) , CloverTermOdd(&Hgrid) , CloverTermInvEven(&Hgrid) , CloverTermInvOdd(&Hgrid) , CloverTermDagEven(&Hgrid) , CloverTermDagOdd(&Hgrid) , CloverTermInvDagEven(&Hgrid) , CloverTermInvDagOdd(&Hgrid) { assert(Nd == 4); // require 4 dimensions if(clover_anisotropy.isAnisotropic) { csw_r = _csw_r * 0.5 / clover_anisotropy.xi_0; diag_mass = _mass + 1.0 + (Nd - 1) * (clover_anisotropy.nu / clover_anisotropy.xi_0); } else { csw_r = _csw_r * 0.5; diag_mass = 4.0 + _mass; } csw_t = _csw_t * 0.5; if(csw_r == 0) std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw_r = 0" << std::endl; if(csw_t == 0) std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw_t = 0" << std::endl; ImportGauge(_Umu); } // *NOT* EO template void WilsonCloverFermion::M(const FermionField &in, FermionField &out) { FermionField temp(out.Grid()); // Wilson term out.Checkerboard() = in.Checkerboard(); this->Dhop(in, out, DaggerNo); // Clover term Mooee(in, temp); out += temp; } template void WilsonCloverFermion::Mdag(const FermionField &in, FermionField &out) { FermionField temp(out.Grid()); // Wilson term out.Checkerboard() = in.Checkerboard(); this->Dhop(in, out, DaggerYes); // Clover term MooeeDag(in, temp); out += temp; } template void WilsonCloverFermion::ImportGauge(const GaugeField &_Umu) { double t0 = usecond(); WilsonFermion::ImportGauge(_Umu); double t1 = usecond(); GridBase *grid = _Umu.Grid(); typename Impl::GaugeLinkField Bx(grid), By(grid), Bz(grid), Ex(grid), Ey(grid), Ez(grid); double t2 = usecond(); // Compute the field strength terms mu>nu WilsonLoops::FieldStrength(Bx, _Umu, Zdir, Ydir); WilsonLoops::FieldStrength(By, _Umu, Zdir, Xdir); WilsonLoops::FieldStrength(Bz, _Umu, Ydir, Xdir); WilsonLoops::FieldStrength(Ex, _Umu, Tdir, Xdir); WilsonLoops::FieldStrength(Ey, _Umu, Tdir, Ydir); WilsonLoops::FieldStrength(Ez, _Umu, Tdir, Zdir); double t3 = usecond(); // Compute the Clover Operator acting on Colour and Spin // multiply here by the clover coefficients for the anisotropy CloverTerm = Helpers::fillCloverYZ(Bx) * csw_r; CloverTerm += Helpers::fillCloverXZ(By) * csw_r; CloverTerm += Helpers::fillCloverXY(Bz) * csw_r; CloverTerm += Helpers::fillCloverXT(Ex) * csw_t; CloverTerm += Helpers::fillCloverYT(Ey) * csw_t; CloverTerm += Helpers::fillCloverZT(Ez) * csw_t; double t4 = usecond(); CloverHelpers::Instantiate(CloverTerm, CloverTermInv, csw_t, this->diag_mass); double t5 = usecond(); // Separate the even and odd parts pickCheckerboard(Even, CloverTermEven, CloverTerm); pickCheckerboard(Odd, CloverTermOdd, CloverTerm); pickCheckerboard(Even, CloverTermDagEven, adj(CloverTerm)); pickCheckerboard(Odd, CloverTermDagOdd, adj(CloverTerm)); pickCheckerboard(Even, CloverTermInvEven, CloverTermInv); pickCheckerboard(Odd, CloverTermInvOdd, CloverTermInv); pickCheckerboard(Even, CloverTermInvDagEven, adj(CloverTermInv)); pickCheckerboard(Odd, CloverTermInvDagOdd, adj(CloverTermInv)); double t6 = usecond(); std::cout << GridLogDebug << "WilsonCloverFermion::ImportGauge timings:" << std::endl; std::cout << GridLogDebug << "WilsonFermion::Importgauge = " << (t1 - t0) / 1e6 << std::endl; std::cout << GridLogDebug << "allocations = " << (t2 - t1) / 1e6 << std::endl; std::cout << GridLogDebug << "field strength = " << (t3 - t2) / 1e6 << std::endl; std::cout << GridLogDebug << "fill clover = " << (t4 - t3) / 1e6 << std::endl; std::cout << GridLogDebug << "instantiation = " << (t5 - t4) / 1e6 << std::endl; std::cout << GridLogDebug << "pick cbs = " << (t6 - t5) / 1e6 << std::endl; std::cout << GridLogDebug << "total = " << (t6 - t0) / 1e6 << std::endl; } template void WilsonCloverFermion::Mooee(const FermionField &in, FermionField &out) { this->MooeeInternal(in, out, DaggerNo, InverseNo); } template void WilsonCloverFermion::MooeeDag(const FermionField &in, FermionField &out) { this->MooeeInternal(in, out, DaggerYes, InverseNo); } template void WilsonCloverFermion::MooeeInv(const FermionField &in, FermionField &out) { this->MooeeInternal(in, out, DaggerNo, InverseYes); } template void WilsonCloverFermion::MooeeInvDag(const FermionField &in, FermionField &out) { this->MooeeInternal(in, out, DaggerYes, InverseYes); } template void WilsonCloverFermion::MooeeInternal(const FermionField &in, FermionField &out, int dag, int inv) { out.Checkerboard() = in.Checkerboard(); CloverField *Clover; assert(in.Checkerboard() == Odd || in.Checkerboard() == Even); if (dag) { if (in.Grid()->_isCheckerBoarded) { if (in.Checkerboard() == Odd) { Clover = (inv) ? &CloverTermInvDagOdd : &CloverTermDagOdd; } else { Clover = (inv) ? &CloverTermInvDagEven : &CloverTermDagEven; } Helpers::multCloverField(out, *Clover, in); } else { Clover = (inv) ? &CloverTermInv : &CloverTerm; Helpers::multCloverField(out, *Clover, in); // don't bother with adj, hermitian anyway } } else { if (in.Grid()->_isCheckerBoarded) { if (in.Checkerboard() == Odd) { // std::cout << "Calling clover term Odd" << std::endl; Clover = (inv) ? &CloverTermInvOdd : &CloverTermOdd; } else { // std::cout << "Calling clover term Even" << std::endl; Clover = (inv) ? &CloverTermInvEven : &CloverTermEven; } Helpers::multCloverField(out, *Clover, in); // std::cout << GridLogMessage << "*Clover.Checkerboard() " << (*Clover).Checkerboard() << std::endl; } else { Clover = (inv) ? &CloverTermInv : &CloverTerm; Helpers::multCloverField(out, *Clover, in); } } } // MooeeInternal // Derivative parts unpreconditioned pseudofermions template void WilsonCloverFermion::MDeriv(GaugeField &force, const FermionField &X, const FermionField &Y, int dag) { conformable(X.Grid(), Y.Grid()); conformable(X.Grid(), force.Grid()); GaugeLinkField force_mu(force.Grid()), lambda(force.Grid()); GaugeField clover_force(force.Grid()); PropagatorField Lambda(force.Grid()); // Guido: Here we are hitting some performance issues: // need to extract the components of the DoubledGaugeField // for each call // Possible solution // Create a vector object to store them? (cons: wasting space) std::vector U(Nd, this->Umu.Grid()); Impl::extractLinkField(U, this->Umu); force = Zero(); // Derivative of the Wilson hopping term this->DhopDeriv(force, X, Y, dag); /////////////////////////////////////////////////////////// // Clover term derivative /////////////////////////////////////////////////////////// Impl::outerProductImpl(Lambda, X, Y); //std::cout << "Lambda:" << Lambda << std::endl; Gamma::Algebra sigma[] = { Gamma::Algebra::SigmaXY, Gamma::Algebra::SigmaXZ, Gamma::Algebra::SigmaXT, Gamma::Algebra::MinusSigmaXY, Gamma::Algebra::SigmaYZ, Gamma::Algebra::SigmaYT, Gamma::Algebra::MinusSigmaXZ, Gamma::Algebra::MinusSigmaYZ, Gamma::Algebra::SigmaZT, Gamma::Algebra::MinusSigmaXT, Gamma::Algebra::MinusSigmaYT, Gamma::Algebra::MinusSigmaZT}; /* sigma_{\mu \nu}= | 0 sigma[0] sigma[1] sigma[2] | | sigma[3] 0 sigma[4] sigma[5] | | sigma[6] sigma[7] 0 sigma[8] | | sigma[9] sigma[10] sigma[11] 0 | */ int count = 0; clover_force = Zero(); for (int mu = 0; mu < 4; mu++) { force_mu = Zero(); for (int nu = 0; nu < 4; nu++) { if (mu == nu) continue; RealD factor; if (nu == 4 || mu == 4) { factor = 2.0 * csw_t; } else { factor = 2.0 * csw_r; } PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok force_mu -= factor*CloverHelpers::Cmunu(U, lambda, mu, nu); // checked count++; } pokeLorentz(clover_force, U[mu] * force_mu, mu); } //clover_force *= csw; force += clover_force; } // Derivative parts template void WilsonCloverFermion::MooDeriv(GaugeField &mat, const FermionField &X, const FermionField &Y, int dag) { assert(0); } // Derivative parts template void WilsonCloverFermion::MeeDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag) { assert(0); // not implemented yet } NAMESPACE_END(Grid);