/* * Policy classes for the HMC * Author: Guido Cossu */ #ifndef ADJOINT_H #define ADJOINT_H namespace Grid { namespace QCD { /* * This is an helper class for the HMC * Should contain only the data for the adjoint representation * and the facility to convert from the fundamental -> adjoint */ template class AdjointRep { public: // typdef to be used by the Representations class in HMC to get the // types for the higher representation fields typedef typename SU_Adjoint::LatticeAdjMatrix LatticeMatrix; typedef typename SU_Adjoint::LatticeAdjField LatticeField; static const int Dimension = ncolour * ncolour - 1; LatticeField U; explicit AdjointRep(GridBase *grid) : U(grid) {} void update_representation(const LatticeGaugeField &Uin) { std::cout << GridLogDebug << "Updating adjoint representation\n" ; // Uin is in the fundamental representation // get the U in AdjointRep // (U_adj)_B = tr[e^a U e^b U^dag] // e^a = t^a/sqrt(T_F) // where t^a is the generator in the fundamental // T_F is 1/2 for the fundamental representation conformable(U, Uin); U = zero; LatticeColourMatrix tmp(Uin._grid); Vector::Matrix> ta(Dimension); // FIXME probably not very efficient to get all the generators // everytime for (int a = 0; a < Dimension; a++) SU::generator(a, ta[a]); for (int mu = 0; mu < Nd; mu++) { auto Uin_mu = peekLorentz(Uin, mu); auto U_mu = peekLorentz(U, mu); for (int a = 0; a < Dimension; a++) { tmp = 2.0 * adj(Uin_mu) * ta[a] * Uin_mu; for (int b = 0; b < Dimension; b++) pokeColour(U_mu, trace(tmp * ta[b]), a, b); } // Check matrix U_mu, must be real orthogonal //reality LatticeMatrix Ucheck = U_mu - conjugate(U_mu); std::cout << GridLogMessage << "Reality check: " << norm2(Ucheck) << std::endl; LatticeMatrix uno(Uin._grid); uno = 1.0; Ucheck = U_mu * adj(U_mu) - uno; std::cout << GridLogMessage << "orthogonality check: " << norm2(Ucheck) << std::endl; pokeLorentz(U, U_mu, mu); } } LatticeGaugeField RtoFundamentalProject(const LatticeField &in, Real scale = 1.0) const { LatticeGaugeField out(in._grid); out = zero; for (int mu = 0; mu < Nd; mu++) { LatticeColourMatrix out_mu(in._grid); // fundamental representation LatticeMatrix in_mu = peekLorentz(in, mu); out_mu = zero; typename SU::LatticeAlgebraVector h(in._grid); projectOnAlgebra(h, in_mu, scale); FundamentalLieAlgebraMatrix(h, out_mu, 1.0); // apply scale only once pokeLorentz(out, out_mu, mu); // Returns traceless antihermitian matrix Nc * Nc. // Confirmed } return out; } private: void projectOnAlgebra(typename SU::LatticeAlgebraVector &h_out, const LatticeMatrix &in, Real scale = 1.0) const { SU_Adjoint::projectOnAlgebra(h_out, in, scale); } void FundamentalLieAlgebraMatrix( typename SU::LatticeAlgebraVector &h, typename SU::LatticeMatrix &out, Real scale = 1.0) const { SU::FundamentalLieAlgebraMatrix(h, out, scale); } }; typedef AdjointRep AdjointRepresentation; } } #endif