/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./lib/qcd/action/pseudofermion/OneFlavourEvenOddRational.h Copyright (C) 2015 Author: Peter Boyle This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #ifndef QCD_PSEUDOFERMION_ONE_FLAVOUR_EVEN_ODD_RATIONAL_H #define QCD_PSEUDOFERMION_ONE_FLAVOUR_EVEN_ODD_RATIONAL_H namespace Grid { namespace QCD { /////////////////////////////////////// // One flavour rational /////////////////////////////////////// // S_f = chi^dag * N(Mpc^dag*Mpc)/D(Mpc^dag*Mpc) * chi // // Here, M is some operator // N and D makeup the rat. poly // template class OneFlavourEvenOddRationalPseudoFermionAction : public Action { public: INHERIT_IMPL_TYPES(Impl); typedef OneFlavourRationalParams Params; Params param; MultiShiftFunction PowerHalf; MultiShiftFunction PowerNegHalf; MultiShiftFunction PowerQuarter; MultiShiftFunction PowerNegQuarter; private: FermionOperator &FermOp; // the basic operator // NOT using "Nroots"; IroIro is -- perhaps later, but this wasn't good for us // historically // and hasenbusch works better FermionField PhiEven; // the pseudo fermion field for this trajectory FermionField PhiOdd; // the pseudo fermion field for this trajectory public: OneFlavourEvenOddRationalPseudoFermionAction(FermionOperator &Op, Params &p) : FermOp(Op), PhiEven(Op.FermionRedBlackGrid()), PhiOdd(Op.FermionRedBlackGrid()), param(p) { AlgRemez remez(param.lo, param.hi, param.precision); // MdagM^(+- 1/2) std::cout << GridLogMessage << "Generating degree " << param.degree << " for x^(1/2)" << std::endl; remez.generateApprox(param.degree, 1, 2); PowerHalf.Init(remez, param.tolerance, false); PowerNegHalf.Init(remez, param.tolerance, true); // MdagM^(+- 1/4) std::cout << GridLogMessage << "Generating degree " << param.degree << " for x^(1/4)" << std::endl; remez.generateApprox(param.degree, 1, 4); PowerQuarter.Init(remez, param.tolerance, false); PowerNegQuarter.Init(remez, param.tolerance, true); }; virtual std::string action_name(){return "OneFlavourEvenOddRationalPseudoFermionAction";} virtual void refresh(const GaugeField &U, GridParallelRNG &pRNG) { // P(phi) = e^{- phi^dag (MpcdagMpc)^-1/2 phi} // = e^{- phi^dag (MpcdagMpc)^-1/4 (MpcdagMpc)^-1/4 phi} // Phi = MpcdagMpc^{1/4} eta // // P(eta) = e^{- eta^dag eta} // // e^{x^2/2 sig^2} => sig^2 = 0.5. // // So eta should be of width sig = 1/sqrt(2). RealD scale = std::sqrt(0.5); FermionField eta(FermOp.FermionGrid()); FermionField etaOdd(FermOp.FermionRedBlackGrid()); FermionField etaEven(FermOp.FermionRedBlackGrid()); gaussian(pRNG, eta); eta = eta * scale; pickCheckerboard(Even, etaEven, eta); pickCheckerboard(Odd, etaOdd, eta); FermOp.ImportGauge(U); // mutishift CG SchurDifferentiableOperator Mpc(FermOp); ConjugateGradientMultiShift msCG(param.MaxIter, PowerQuarter); msCG(Mpc, etaOdd, PhiOdd); ////////////////////////////////////////////////////// // FIXME : Clover term not yet.. ////////////////////////////////////////////////////// assert(FermOp.ConstEE() == 1); PhiEven = zero; }; ////////////////////////////////////////////////////// // S = phi^dag (Mdag M)^-1/2 phi ////////////////////////////////////////////////////// virtual RealD S(const GaugeField &U) { FermOp.ImportGauge(U); FermionField Y(FermOp.FermionRedBlackGrid()); SchurDifferentiableOperator Mpc(FermOp); ConjugateGradientMultiShift msCG(param.MaxIter, PowerNegQuarter); msCG(Mpc, PhiOdd, Y); RealD action = norm2(Y); std::cout << GridLogMessage << "Pseudofermion action FIXME -- is -1/4 " "solve or -1/2 solve faster??? " << action << std::endl; return action; }; ////////////////////////////////////////////////////// // Need // dS_f/dU = chi^dag d[N/D] chi // // N/D is expressed as partial fraction expansion: // // a0 + \sum_k ak/(M^dagM + bk) // // d[N/D] is then // // \sum_k -ak [M^dagM+bk]^{-1} [ dM^dag M + M^dag dM ] [M^dag M + // bk]^{-1} // // Need // Mf Phi_k = [MdagM+bk]^{-1} Phi // Mf Phi = \sum_k ak [MdagM+bk]^{-1} Phi // // With these building blocks // // dS/dU = \sum_k -ak Mf Phi_k^dag [ dM^dag M + M^dag dM ] Mf // Phi_k // S = innerprodReal(Phi,Mf Phi); ////////////////////////////////////////////////////// virtual void deriv(const GaugeField &U, GaugeField &dSdU) { const int Npole = PowerNegHalf.poles.size(); std::vector MPhi_k(Npole, FermOp.FermionRedBlackGrid()); FermionField X(FermOp.FermionRedBlackGrid()); FermionField Y(FermOp.FermionRedBlackGrid()); GaugeField tmp(FermOp.GaugeGrid()); FermOp.ImportGauge(U); SchurDifferentiableOperator Mpc(FermOp); ConjugateGradientMultiShift msCG(param.MaxIter, PowerNegHalf); msCG(Mpc, PhiOdd, MPhi_k); dSdU = zero; for (int k = 0; k < Npole; k++) { RealD ak = PowerNegHalf.residues[k]; X = MPhi_k[k]; Mpc.Mpc(X, Y); Mpc.MpcDeriv(tmp, Y, X); dSdU = dSdU + ak * tmp; Mpc.MpcDagDeriv(tmp, X, Y); dSdU = dSdU + ak * tmp; } // dSdU = Ta(dSdU); }; }; } } #endif