/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./lib/simd/Grid_sse4.h Copyright (C) 2015 Author: Azusa Yamaguchi Author: Peter Boyle Author: neo This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ //---------------------------------------------------------------------- /*! @file Grid_sse4.h @brief Optimization libraries for SSE4 instructions set Using intrinsics */ // Time-stamp: <2015-06-16 23:27:54 neo> //---------------------------------------------------------------------- #include NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Optimization); template union uconv { __m128 f; vtype v; }; union u128f { __m128 v; float f[4]; }; union u128d { __m128d v; double f[2]; }; struct Vsplat{ //Complex float inline __m128 operator()(float a, float b){ return _mm_set_ps(b,a,b,a); } // Real float inline __m128 operator()(float a){ return _mm_set_ps(a,a,a,a); } //Complex double inline __m128d operator()(double a, double b){ return _mm_set_pd(b,a); } //Real double inline __m128d operator()(double a){ return _mm_set_pd(a,a); } //Integer inline __m128i operator()(Integer a){ return _mm_set1_epi32(a); } }; struct Vstore{ //Float inline void operator()(__m128 a, float* F){ _mm_store_ps(F,a); } //Double inline void operator()(__m128d a, double* D){ _mm_store_pd(D,a); } //Integer inline void operator()(__m128i a, Integer* I){ _mm_store_si128((__m128i *)I,a); } }; struct Vstream{ //Float inline void operator()(float * a, __m128 b){ _mm_stream_ps(a,b); } //Double inline void operator()(double * a, __m128d b){ _mm_stream_pd(a,b); } }; struct Vset{ // Complex float inline __m128 operator()(Grid::ComplexF *a){ return _mm_set_ps(a[1].imag(), a[1].real(),a[0].imag(),a[0].real()); } // Complex double inline __m128d operator()(Grid::ComplexD *a){ return _mm_set_pd(a[0].imag(),a[0].real()); } // Real float inline __m128 operator()(float *a){ return _mm_set_ps(a[3],a[2],a[1],a[0]); } // Real double inline __m128d operator()(double *a){ return _mm_set_pd(a[1],a[0]); } // Integer inline __m128i operator()(Integer *a){ return _mm_set_epi32(a[3],a[2],a[1],a[0]); } }; template struct Reduce{ //Need templated class to overload output type //General form must generate error if compiled inline Out_type operator()(In_type in){ printf("Error, using wrong Reduce function\n"); exit(1); return 0; } }; ///////////////////////////////////////////////////// // Arithmetic operations ///////////////////////////////////////////////////// struct Sum{ //Complex/Real float inline __m128 operator()(__m128 a, __m128 b){ return _mm_add_ps(a,b); } //Complex/Real double inline __m128d operator()(__m128d a, __m128d b){ return _mm_add_pd(a,b); } //Integer inline __m128i operator()(__m128i a, __m128i b){ return _mm_add_epi32(a,b); } }; struct Sub{ //Complex/Real float inline __m128 operator()(__m128 a, __m128 b){ return _mm_sub_ps(a,b); } //Complex/Real double inline __m128d operator()(__m128d a, __m128d b){ return _mm_sub_pd(a,b); } //Integer inline __m128i operator()(__m128i a, __m128i b){ return _mm_sub_epi32(a,b); } }; struct MultRealPart{ inline __m128 operator()(__m128 a, __m128 b){ __m128 ymm0; ymm0 = _mm_shuffle_ps(a,a,_MM_SELECT_FOUR_FOUR(2,2,0,0)); // ymm0 <- ar ar, return _mm_mul_ps(ymm0,b); // ymm0 <- ar bi, ar br } inline __m128d operator()(__m128d a, __m128d b){ __m128d ymm0; ymm0 = _mm_shuffle_pd(a,a,0x0); // ymm0 <- ar ar, ar,ar b'00,00 return _mm_mul_pd(ymm0,b); // ymm0 <- ar bi, ar br } }; struct MaddRealPart{ inline __m128 operator()(__m128 a, __m128 b, __m128 c){ __m128 ymm0 = _mm_shuffle_ps(a,a,_MM_SELECT_FOUR_FOUR(2,2,0,0)); // ymm0 <- ar ar, return _mm_add_ps(_mm_mul_ps( ymm0, b),c); } inline __m128d operator()(__m128d a, __m128d b, __m128d c){ __m128d ymm0 = _mm_shuffle_pd( a, a, 0x0 ); return _mm_add_pd(_mm_mul_pd( ymm0, b),c); } }; struct MultComplex{ // Complex float inline __m128 operator()(__m128 a, __m128 b){ __m128 ymm0,ymm1,ymm2; ymm0 = _mm_shuffle_ps(a,a,_MM_SELECT_FOUR_FOUR(2,2,0,0)); // ymm0 <- ar ar, ymm0 = _mm_mul_ps(ymm0,b); // ymm0 <- ar bi, ar br ymm1 = _mm_shuffle_ps(b,b,_MM_SELECT_FOUR_FOUR(2,3,0,1)); // ymm1 <- br,bi ymm2 = _mm_shuffle_ps(a,a,_MM_SELECT_FOUR_FOUR(3,3,1,1)); // ymm2 <- ai,ai ymm1 = _mm_mul_ps(ymm1,ymm2); // ymm1 <- br ai, ai bi return _mm_addsub_ps(ymm0,ymm1); } // Complex double inline __m128d operator()(__m128d a, __m128d b){ __m128d ymm0,ymm1,ymm2; ymm0 = _mm_shuffle_pd(a,a,0x0); // ymm0 <- ar ar, ymm0 = _mm_mul_pd(ymm0,b); // ymm0 <- ar bi, ar br ymm1 = _mm_shuffle_pd(b,b,0x1); // ymm1 <- br,bi b01 ymm2 = _mm_shuffle_pd(a,a,0x3); // ymm2 <- ai,ai b11 ymm1 = _mm_mul_pd(ymm1,ymm2); // ymm1 <- br ai, ai bi return _mm_addsub_pd(ymm0,ymm1); } }; struct Mult{ inline void mac(__m128 &a, __m128 b, __m128 c){ a= _mm_add_ps(_mm_mul_ps(b,c),a); } inline void mac(__m128d &a, __m128d b, __m128d c){ a= _mm_add_pd(_mm_mul_pd(b,c),a); } // Real float inline __m128 operator()(__m128 a, __m128 b){ return _mm_mul_ps(a,b); } // Real double inline __m128d operator()(__m128d a, __m128d b){ return _mm_mul_pd(a,b); } // Integer inline __m128i operator()(__m128i a, __m128i b){ return _mm_mullo_epi32(a,b); } }; struct Div{ // Real float inline __m128 operator()(__m128 a, __m128 b){ return _mm_div_ps(a,b); } // Real double inline __m128d operator()(__m128d a, __m128d b){ return _mm_div_pd(a,b); } }; struct Conj{ // Complex single inline __m128 operator()(__m128 in){ return _mm_xor_ps(_mm_addsub_ps(_mm_setzero_ps(),in), _mm_set1_ps(-0.f)); } // Complex double inline __m128d operator()(__m128d in){ return _mm_xor_pd(_mm_addsub_pd(_mm_setzero_pd(),in), _mm_set1_pd(-0.f));//untested } // do not define for integer input }; struct TimesMinusI{ //Complex single inline __m128 operator()(__m128 in, __m128 ret){ __m128 tmp =_mm_addsub_ps(_mm_setzero_ps(),in); // r,-i return _mm_shuffle_ps(tmp,tmp,_MM_SELECT_FOUR_FOUR(2,3,0,1)); } //Complex double inline __m128d operator()(__m128d in, __m128d ret){ __m128d tmp =_mm_addsub_pd(_mm_setzero_pd(),in); // r,-i return _mm_shuffle_pd(tmp,tmp,0x1); } }; struct TimesI{ //Complex single inline __m128 operator()(__m128 in, __m128 ret){ __m128 tmp =_mm_shuffle_ps(in,in,_MM_SELECT_FOUR_FOUR(2,3,0,1)); return _mm_addsub_ps(_mm_setzero_ps(),tmp); // r,-i } //Complex double inline __m128d operator()(__m128d in, __m128d ret){ __m128d tmp = _mm_shuffle_pd(in,in,0x1); return _mm_addsub_pd(_mm_setzero_pd(),tmp); // r,-i } }; struct Permute{ static inline __m128 Permute0(__m128 in){ return _mm_shuffle_ps(in,in,_MM_SELECT_FOUR_FOUR(1,0,3,2)); //AB CD -> CD AB }; static inline __m128 Permute1(__m128 in){ return _mm_shuffle_ps(in,in,_MM_SELECT_FOUR_FOUR(2,3,0,1)); //AB CD -> BA DC }; static inline __m128 Permute2(__m128 in){ return in; }; static inline __m128 Permute3(__m128 in){ return in; }; static inline __m128d Permute0(__m128d in){ //AB -> BA return _mm_shuffle_pd(in,in,0x1); }; static inline __m128d Permute1(__m128d in){ return in; }; static inline __m128d Permute2(__m128d in){ return in; }; static inline __m128d Permute3(__m128d in){ return in; }; }; #define _my_alignr_epi32(a,b,n) _mm_alignr_epi8(a,b,(n*4)%16) #define _my_alignr_epi64(a,b,n) _mm_alignr_epi8(a,b,(n*8)%16) #ifdef SFW_FP16 struct Grid_half { Grid_half(){} Grid_half(uint16_t raw) : x(raw) {} uint16_t x; }; union FP32 { unsigned int u; float f; }; // PAB - Lifted and adapted from Eigen, which is GPL V2 inline float sfw_half_to_float(Grid_half h) { const FP32 magic = { 113 << 23 }; const unsigned int shifted_exp = 0x7c00 << 13; // exponent mask after shift FP32 o; o.u = (h.x & 0x7fff) << 13; // exponent/mantissa bits unsigned int exp = shifted_exp & o.u; // just the exponent o.u += (127 - 15) << 23; // exponent adjust // handle exponent special cases if (exp == shifted_exp) { // Inf/NaN? o.u += (128 - 16) << 23; // extra exp adjust } else if (exp == 0) { // Zero/Denormal? o.u += 1 << 23; // extra exp adjust o.f -= magic.f; // renormalize } o.u |= (h.x & 0x8000) << 16; // sign bit return o.f; } inline Grid_half sfw_float_to_half(float ff) { FP32 f; f.f = ff; const FP32 f32infty = { 255 << 23 }; const FP32 f16max = { (127 + 16) << 23 }; const FP32 denorm_magic = { ((127 - 15) + (23 - 10) + 1) << 23 }; unsigned int sign_mask = 0x80000000u; Grid_half o; o.x = static_cast(0x0u); unsigned int sign = f.u & sign_mask; f.u ^= sign; // NOTE all the integer compares in this function can be safely // compiled into signed compares since all operands are below // 0x80000000. Important if you want fast straight SSE2 code // (since there's no unsigned PCMPGTD). if (f.u >= f16max.u) { // result is Inf or NaN (all exponent bits set) o.x = (f.u > f32infty.u) ? 0x7e00 : 0x7c00; // NaN->qNaN and Inf->Inf } else { // (De)normalized number or zero if (f.u < (113 << 23)) { // resulting FP16 is subnormal or zero // use a magic value to align our 10 mantissa bits at the bottom of // the float. as long as FP addition is round-to-nearest-even this // just works. f.f += denorm_magic.f; // and one integer subtract of the bias later, we have our final float! o.x = static_cast(f.u - denorm_magic.u); } else { unsigned int mant_odd = (f.u >> 13) & 1; // resulting mantissa is odd // update exponent, rounding bias part 1 f.u += ((unsigned int)(15 - 127) << 23) + 0xfff; // rounding bias part 2 f.u += mant_odd; // take the bits! o.x = static_cast(f.u >> 13); } } o.x |= static_cast(sign >> 16); return o; } static inline __m128i Grid_mm_cvtps_ph(__m128 f,int discard) { __m128i ret=(__m128i)_mm_setzero_ps(); float *fp = (float *)&f; Grid_half *hp = (Grid_half *)&ret; hp[0] = sfw_float_to_half(fp[0]); hp[1] = sfw_float_to_half(fp[1]); hp[2] = sfw_float_to_half(fp[2]); hp[3] = sfw_float_to_half(fp[3]); return ret; } static inline __m128 Grid_mm_cvtph_ps(__m128i h,int discard) { __m128 ret=_mm_setzero_ps(); float *fp = (float *)&ret; Grid_half *hp = (Grid_half *)&h; fp[0] = sfw_half_to_float(hp[0]); fp[1] = sfw_half_to_float(hp[1]); fp[2] = sfw_half_to_float(hp[2]); fp[3] = sfw_half_to_float(hp[3]); return ret; } #else #define Grid_mm_cvtps_ph _mm_cvtps_ph #define Grid_mm_cvtph_ps _mm_cvtph_ps #endif struct PrecisionChange { static inline __m128i StoH (__m128 a,__m128 b) { __m128i ha = Grid_mm_cvtps_ph(a,0); __m128i hb = Grid_mm_cvtps_ph(b,0); __m128i h =(__m128i) _mm_shuffle_ps((__m128)ha,(__m128)hb,_MM_SELECT_FOUR_FOUR(1,0,1,0)); return h; } static inline void HtoS (__m128i h,__m128 &sa,__m128 &sb) { sa = Grid_mm_cvtph_ps(h,0); h = (__m128i)_my_alignr_epi32((__m128i)h,(__m128i)h,2); sb = Grid_mm_cvtph_ps(h,0); } static inline __m128 DtoS (__m128d a,__m128d b) { __m128 sa = _mm_cvtpd_ps(a); __m128 sb = _mm_cvtpd_ps(b); __m128 s = _mm_shuffle_ps(sa,sb,_MM_SELECT_FOUR_FOUR(1,0,1,0)); return s; } static inline void StoD (__m128 s,__m128d &a,__m128d &b) { a = _mm_cvtps_pd(s); s = (__m128)_my_alignr_epi32((__m128i)s,(__m128i)s,2); b = _mm_cvtps_pd(s); } static inline __m128i DtoH (__m128d a,__m128d b,__m128d c,__m128d d) { __m128 sa,sb; sa = DtoS(a,b); sb = DtoS(c,d); return StoH(sa,sb); } static inline void HtoD (__m128i h,__m128d &a,__m128d &b,__m128d &c,__m128d &d) { __m128 sa,sb; HtoS(h,sa,sb); StoD(sa,a,b); StoD(sb,c,d); } }; struct Exchange{ // 3210 ordering static inline void Exchange0(__m128 &out1,__m128 &out2,__m128 in1,__m128 in2){ out1= _mm_shuffle_ps(in1,in2,_MM_SELECT_FOUR_FOUR(1,0,1,0)); out2= _mm_shuffle_ps(in1,in2,_MM_SELECT_FOUR_FOUR(3,2,3,2)); }; static inline void Exchange1(__m128 &out1,__m128 &out2,__m128 in1,__m128 in2){ out1= _mm_shuffle_ps(in1,in2,_MM_SELECT_FOUR_FOUR(2,0,2,0)); /*ACEG*/ out2= _mm_shuffle_ps(in1,in2,_MM_SELECT_FOUR_FOUR(3,1,3,1)); /*BDFH*/ out1= _mm_shuffle_ps(out1,out1,_MM_SELECT_FOUR_FOUR(3,1,2,0)); /*AECG*/ out2= _mm_shuffle_ps(out2,out2,_MM_SELECT_FOUR_FOUR(3,1,2,0)); /*AECG*/ }; static inline void Exchange2(__m128 &out1,__m128 &out2,__m128 in1,__m128 in2){ assert(0); return; }; static inline void Exchange3(__m128 &out1,__m128 &out2,__m128 in1,__m128 in2){ assert(0); return; }; static inline void Exchange0(__m128d &out1,__m128d &out2,__m128d in1,__m128d in2){ out1= _mm_shuffle_pd(in1,in2,0x0); out2= _mm_shuffle_pd(in1,in2,0x3); }; static inline void Exchange1(__m128d &out1,__m128d &out2,__m128d in1,__m128d in2){ assert(0); return; }; static inline void Exchange2(__m128d &out1,__m128d &out2,__m128d in1,__m128d in2){ assert(0); return; }; static inline void Exchange3(__m128d &out1,__m128d &out2,__m128d in1,__m128d in2){ assert(0); return; }; }; struct Rotate{ static inline __m128 rotate(__m128 in,int n){ switch(n){ case 0: return tRotate<0>(in);break; case 1: return tRotate<1>(in);break; case 2: return tRotate<2>(in);break; case 3: return tRotate<3>(in);break; default: assert(0); } } static inline __m128d rotate(__m128d in,int n){ switch(n){ case 0: return tRotate<0>(in);break; case 1: return tRotate<1>(in);break; default: assert(0); } } template static inline __m128 tRotate(__m128 in){ return (__m128)_my_alignr_epi32((__m128i)in,(__m128i)in,n); }; template static inline __m128d tRotate(__m128d in){ return (__m128d)_my_alignr_epi64((__m128i)in,(__m128i)in,n); }; }; ////////////////////////////////////////////// // Some Template specialization //Complex float Reduce template<> inline Grid::ComplexF Reduce::operator()(__m128 in){ __m128 v1; // two complex v1= Optimization::Permute::Permute0(in); v1= _mm_add_ps(v1,in); u128f conv; conv.v=v1; return Grid::ComplexF(conv.f[0],conv.f[1]); } //Real float Reduce template<> inline Grid::RealF Reduce::operator()(__m128 in){ __m128 v1,v2; // quad single v1= Optimization::Permute::Permute0(in); v1= _mm_add_ps(v1,in); v2= Optimization::Permute::Permute1(v1); v1 = _mm_add_ps(v1,v2); u128f conv; conv.v=v1; return conv.f[0]; } //Complex double Reduce template<> inline Grid::ComplexD Reduce::operator()(__m128d in){ u128d conv; conv.v = in; return Grid::ComplexD(conv.f[0],conv.f[1]); } //Real double Reduce template<> inline Grid::RealD Reduce::operator()(__m128d in){ __m128d v1; v1 = Optimization::Permute::Permute0(in); v1 = _mm_add_pd(v1,in); u128d conv; conv.v = v1; return conv.f[0]; } //Integer Reduce template<> inline Integer Reduce::operator()(__m128i in){ __m128i v1 = _mm_hadd_epi32(in, in); __m128i v2 = _mm_hadd_epi32(v1, v1); return _mm_cvtsi128_si32(v2); } NAMESPACE_END(Optimization); ////////////////////////////////////////////////////////////////////////////////////// // Here assign types typedef __m128i SIMD_Htype; // Single precision type typedef __m128 SIMD_Ftype; // Single precision type typedef __m128d SIMD_Dtype; // Double precision type typedef __m128i SIMD_Itype; // Integer type // prefetch utilities inline void v_prefetch0(int size, const char *ptr){}; inline void prefetch_HINT_T0(const char *ptr){ _mm_prefetch(ptr,_MM_HINT_T0); } // Function name aliases typedef Optimization::Vsplat VsplatSIMD; typedef Optimization::Vstore VstoreSIMD; typedef Optimization::Vset VsetSIMD; typedef Optimization::Vstream VstreamSIMD; template using ReduceSIMD = Optimization::Reduce; // Arithmetic operations typedef Optimization::Sum SumSIMD; typedef Optimization::Sub SubSIMD; typedef Optimization::Div DivSIMD; typedef Optimization::Mult MultSIMD; typedef Optimization::MultComplex MultComplexSIMD; typedef Optimization::MultRealPart MultRealPartSIMD; typedef Optimization::MaddRealPart MaddRealPartSIMD; typedef Optimization::Conj ConjSIMD; typedef Optimization::TimesMinusI TimesMinusISIMD; typedef Optimization::TimesI TimesISIMD; NAMESPACE_END(Grid);