/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./tests/Test_padded_cell.cc Copyright (C) 2023 Author: Peter Boyle This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #include #include #include #include #include #include #include using namespace std; using namespace Grid; template class HermOpAdaptor : public LinearOperatorBase { LinearOperatorBase & wrapped; public: HermOpAdaptor(LinearOperatorBase &wrapme) : wrapped(wrapme) {}; void OpDiag (const Field &in, Field &out) { assert(0); } void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); } void OpDirAll (const Field &in, std::vector &out){ assert(0); }; void Op (const Field &in, Field &out){ wrapped.HermOp(in,out); } void AdjOp (const Field &in, Field &out){ wrapped.HermOp(in,out); } void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); } void HermOp(const Field &in, Field &out){ wrapped.HermOp(in,out); } }; template class PVdagMLinearOperator : public LinearOperatorBase { Matrix &_Mat; Matrix &_PV; public: PVdagMLinearOperator(Matrix &Mat,Matrix &PV): _Mat(Mat),_PV(PV){}; void OpDiag (const Field &in, Field &out) { assert(0); } void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); } void OpDirAll (const Field &in, std::vector &out){ assert(0); }; void Op (const Field &in, Field &out){ Field tmp(in.Grid()); _Mat.M(in,tmp); _PV.Mdag(tmp,out); } void AdjOp (const Field &in, Field &out){ Field tmp(in.Grid()); _PV.M(tmp,out); _Mat.Mdag(in,tmp); } void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); } void HermOp(const Field &in, Field &out){ Field tmp(in.Grid()); _Mat.M(in,tmp); _PV.Mdag(tmp,out); _PV.M(out,tmp); _Mat.Mdag(tmp,out); } }; template class DumbOperator : public LinearOperatorBase { public: LatticeComplex scale; DumbOperator(GridBase *grid) : scale(grid) { scale = 0.0; LatticeComplex scalesft(grid); LatticeComplex scaletmp(grid); for(int d=0;d<4;d++){ Lattice > x(grid); LatticeCoordinate(x,d+1); LatticeCoordinate(scaletmp,d+1); scalesft = Cshift(scaletmp,d+1,1); scale = 100.0*scale + where( mod(x ,2)==(Integer)0, scalesft,scaletmp); } // std::cout << " scale\n" << scale << std::endl; } // Support for coarsening to a multigrid void OpDiag (const Field &in, Field &out) {}; void OpDir (const Field &in, Field &out,int dir,int disp){}; void OpDirAll (const Field &in, std::vector &out) {}; void Op (const Field &in, Field &out){ out = scale * in; } void AdjOp (const Field &in, Field &out){ out = scale * in; } void HermOp(const Field &in, Field &out){ double n1, n2; HermOpAndNorm(in,out,n1,n2); } void HermOpAndNorm(const Field &in, Field &out,double &n1,double &n2){ ComplexD dot; out = scale * in; dot= innerProduct(in,out); n1=real(dot); dot = innerProduct(out,out); n2=real(dot); } }; int main (int argc, char ** argv) { Grid_init(&argc,&argv); const int Ls=4; GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi()); GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid); GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid); GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid); // Construct a coarsened grid Coordinate clatt = GridDefaultLatt(); for(int d=0;d seeds4({1,2,3,4}); std::vector seeds5({5,6,7,8}); std::vector cseeds({5,6,7,8}); GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5); GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4); GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds); LatticeFermion src(FGrid); random(RNG5,src); LatticeFermion result(FGrid); result=Zero(); LatticeFermion ref(FGrid); ref=Zero(); LatticeFermion tmp(FGrid); LatticeFermion err(FGrid); LatticeGaugeField Umu(UGrid); //SU::HotConfiguration(RNG4,Umu); SU::ColdConfiguration(Umu); // auto U = peekLorentz(Umu,0); // Umu=Zero(); // Make operator local for now // pokeLorentz(Umu,U,0); RealD mass=0.5; RealD M5=1.8; DomainWallFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5); DomainWallFermionD Dpv(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,1.0,M5); const int nbasis = 20; const int cb = 0 ; LatticeFermion prom(FGrid); std::vector subspace(nbasis,FGrid); std::cout< HermDefOp(Ddwf); DumbOperator Diagonal(FGrid); typedef Aggregation Subspace; Subspace Aggregates(Coarse5d,FGrid,cb); Aggregates.CreateSubspaceRandom(RNG5); std::cout< LittleDiracOperator; typedef LittleDiracOperator::CoarseVector CoarseVector; NextToNearestStencilGeometry5D geom; LittleDiracOperator LittleDiracOp(geom,FGrid,Coarse5d); LittleDiracOp.CoarsenOperator(HermDefOp,Aggregates); // LittleDiracOp.CoarsenOperator(Diagonal,Aggregates); std::cout< PVdagM(Ddwf,Dpv); HermOpAdaptor HOA(PVdagM); // Run power method on HOA?? PowerMethod PM; PM(HOA,src); // Warning: This routine calls PVdagM.Op, not PVdagM.HermOp Subspace AggregatesPD(Coarse5d,FGrid,cb); AggregatesPD.CreateSubspaceChebyshev(RNG5, HOA, nbasis, 5000.0, 0.02, 100, 50, 50, 0.0); LittleDiracOperator LittleDiracOpPV(geom,FGrid,Coarse5d); LittleDiracOpPV.CoarsenOperator(PVdagM,AggregatesPD); std::cout<