/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: extras/Hadrons/GeneticScheduler.hpp Copyright (C) 2015 Copyright (C) 2016 Author: Antonin Portelli This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #ifndef Hadrons_GeneticScheduler_hpp_ #define Hadrons_GeneticScheduler_hpp_ #include #include BEGIN_HADRONS_NAMESPACE /****************************************************************************** * Scheduler based on a genetic algorithm * ******************************************************************************/ template class GeneticScheduler { public: typedef std::vector Gene; typedef std::pair GenePair; typedef std::function ObjFunc; struct Parameters { double mutationRate; unsigned int popSize, seed; }; public: // constructor GeneticScheduler(Graph &graph, const ObjFunc &func, const Parameters &par); // destructor virtual ~GeneticScheduler(void) = default; // access const Gene & getMinSchedule(void); int getMinValue(void); // breed a new generation void nextGeneration(void); // heuristic benchmarks void benchmarkCrossover(const unsigned int nIt); // print population friend std::ostream & operator<<(std::ostream &out, const GeneticScheduler &s) { out << "["; for (auto &p: s.population_) { out << p.first << ", "; } out << "\b\b]"; return out; } private: // evolution steps void initPopulation(void); void doCrossover(void); void doMutation(void); // genetic operators GenePair selectPair(void); void crossover(Gene &c1, Gene &c2, const Gene &p1, const Gene &p2); void mutation(Gene &m, const Gene &c); private: Graph &graph_; const ObjFunc &func_; const Parameters par_; std::multimap population_; std::mt19937 gen_; }; /****************************************************************************** * template implementation * ******************************************************************************/ // constructor ///////////////////////////////////////////////////////////////// template GeneticScheduler::GeneticScheduler(Graph &graph, const ObjFunc &func, const Parameters &par) : graph_(graph) , func_(func) , par_(par) { gen_.seed(par_.seed); } // access ////////////////////////////////////////////////////////////////////// template const typename GeneticScheduler::Gene & GeneticScheduler::getMinSchedule(void) { return population_.begin()->second; } template int GeneticScheduler::getMinValue(void) { return population_.begin()->first; } // breed a new generation ////////////////////////////////////////////////////// template void GeneticScheduler::nextGeneration(void) { // random initialization of the population if necessary if (population_.size() != par_.popSize) { initPopulation(); } LOG(Debug) << "Starting population:\n" << *this << std::endl; // random mutations //PARALLEL_FOR_LOOP for (unsigned int i = 0; i < par_.popSize; ++i) { doMutation(); } LOG(Debug) << "After mutations:\n" << *this << std::endl; // mating //PARALLEL_FOR_LOOP for (unsigned int i = 0; i < par_.popSize/2; ++i) { doCrossover(); } LOG(Debug) << "After mating:\n" << *this << std::endl; // grim reaper auto it = population_.begin(); std::advance(it, par_.popSize); population_.erase(it, population_.end()); LOG(Debug) << "After grim reaper:\n" << *this << std::endl; } // evolution steps ///////////////////////////////////////////////////////////// template void GeneticScheduler::initPopulation(void) { population_.clear(); for (unsigned int i = 0; i < par_.popSize; ++i) { auto p = graph_.topoSort(gen_); population_.insert(std::make_pair(func_(p), p)); } } template void GeneticScheduler::doCrossover(void) { auto p = selectPair(); Gene &p1 = *(p.first), &p2 = *(p.second); Gene c1, c2; crossover(c1, c2, p1, p2); PARALLEL_CRITICAL { population_.insert(std::make_pair(func_(c1), c1)); population_.insert(std::make_pair(func_(c2), c2)); } } template void GeneticScheduler::doMutation(void) { std::uniform_real_distribution mdis(0., 1.); std::uniform_int_distribution pdis(0, population_.size() - 1); if (mdis(gen_) < par_.mutationRate) { Gene m; auto it = population_.begin(); std::advance(it, pdis(gen_)); mutation(m, it->second); PARALLEL_CRITICAL { population_.insert(std::make_pair(func_(m), m)); } } } // genetic operators /////////////////////////////////////////////////////////// template typename GeneticScheduler::GenePair GeneticScheduler::selectPair(void) { std::vector prob; unsigned int ind; Gene *p1, *p2; const double max = population_.rbegin()->first; for (auto &c: population_) { prob.push_back(std::exp((c.first-1.)/max)); } std::discrete_distribution dis1(prob.begin(), prob.end()); auto rIt = population_.begin(); ind = dis1(gen_); std::advance(rIt, ind); p1 = &(rIt->second); prob[ind] = 0.; std::discrete_distribution dis2(prob.begin(), prob.end()); rIt = population_.begin(); std::advance(rIt, dis2(gen_)); p2 = &(rIt->second); return std::make_pair(p1, p2); } template void GeneticScheduler::crossover(Gene &c1, Gene &c2, const Gene &p1, const Gene &p2) { Gene buf; std::uniform_int_distribution dis(0, p1.size() - 1); unsigned int cut = dis(gen_); c1.clear(); buf = p2; for (unsigned int i = 0; i < cut; ++i) { c1.push_back(p1[i]); buf.erase(std::find(buf.begin(), buf.end(), p1[i])); } for (unsigned int i = 0; i < buf.size(); ++i) { c1.push_back(buf[i]); } c2.clear(); buf = p2; for (unsigned int i = cut; i < p1.size(); ++i) { buf.erase(std::find(buf.begin(), buf.end(), p1[i])); } for (unsigned int i = 0; i < buf.size(); ++i) { c2.push_back(buf[i]); } for (unsigned int i = cut; i < p1.size(); ++i) { c2.push_back(p1[i]); } } template void GeneticScheduler::mutation(Gene &m, const Gene &c) { Gene buf; std::uniform_int_distribution dis(0, c.size() - 1); unsigned int cut = dis(gen_); Graph g1 = graph_, g2 = graph_; for (unsigned int i = 0; i < cut; ++i) { g1.removeVertex(c[i]); } for (unsigned int i = cut; i < c.size(); ++i) { g2.removeVertex(c[i]); } if (g1.size() > 0) { buf = g1.topoSort(gen_); } if (g2.size() > 0) { m = g2.topoSort(gen_); } for (unsigned int i = cut; i < c.size(); ++i) { m.push_back(buf[i - cut]); } } template void GeneticScheduler::benchmarkCrossover(const unsigned int nIt) { Gene p1, p2, c1, c2; double neg = 0., eq = 0., pos = 0., total; int improvement; LOG(Message) << "Benchmarking crossover..." << std::endl; for (unsigned int i = 0; i < nIt; ++i) { p1 = graph_.topoSort(gen_); p2 = graph_.topoSort(gen_); crossover(c1, c2, p1, p2); improvement = (func_(c1) + func_(c2) - func_(p1) - func_(p2))/2; if (improvement < 0) neg++; else if (improvement == 0) eq++; else pos++; } total = neg + eq + pos; LOG(Message) << " -: " << neg/total << " =: " << eq/total << " +: " << pos/total << std::endl; } END_HADRONS_NAMESPACE #endif // Hadrons_GeneticScheduler_hpp_