/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./tests/Test_hmc_EODWFRatio.cc Copyright (C) 2015-2016 Author: Peter Boyle Author: Guido Cossu This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #include NAMESPACE_BEGIN(Grid); template class MixedPrecisionConjugateGradientOperatorFunction : public OperatorFunction { public: typedef typename FermionOperatorD::FermionField FieldD; typedef typename FermionOperatorF::FermionField FieldF; using OperatorFunction::operator(); RealD Tolerance; RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed Integer MaxInnerIterations; Integer MaxOuterIterations; GridBase* SinglePrecGrid4; //Grid for single-precision fields GridBase* SinglePrecGrid5; //Grid for single-precision fields RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance FermionOperatorF &FermOpF; FermionOperatorD &FermOpD;; SchurOperatorF &LinOpF; SchurOperatorD &LinOpD; Integer TotalInnerIterations; //Number of inner CG iterations Integer TotalOuterIterations; //Number of restarts Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step MixedPrecisionConjugateGradientOperatorFunction(RealD tol, Integer maxinnerit, Integer maxouterit, GridBase* _sp_grid4, GridBase* _sp_grid5, FermionOperatorF &_FermOpF, FermionOperatorD &_FermOpD, SchurOperatorF &_LinOpF, SchurOperatorD &_LinOpD): LinOpF(_LinOpF), LinOpD(_LinOpD), FermOpF(_FermOpF), FermOpD(_FermOpD), Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit), MaxOuterIterations(maxouterit), SinglePrecGrid4(_sp_grid4), SinglePrecGrid5(_sp_grid5), OuterLoopNormMult(100.) { /* Debugging instances of objects; references are stored std::cout << GridLogMessage << " Mixed precision CG wrapper LinOpF " < &LinOpU, const FieldD &src, FieldD &psi) { std::cout << GridLogMessage << " Mixed precision CG wrapper operator() "<(&LinOpU); // std::cout << GridLogMessage << " Mixed precision CG wrapper operator() FermOpU " <_Mat)<_Mat)==&(LinOpD._Mat)); //////////////////////////////////////////////////////////////////////////////////// // Must snarf a single precision copy of the gauge field in Linop_d argument //////////////////////////////////////////////////////////////////////////////////// typedef typename FermionOperatorF::GaugeField GaugeFieldF; typedef typename FermionOperatorF::GaugeLinkField GaugeLinkFieldF; typedef typename FermionOperatorD::GaugeField GaugeFieldD; typedef typename FermionOperatorD::GaugeLinkField GaugeLinkFieldD; GridBase * GridPtrF = SinglePrecGrid4; GridBase * GridPtrD = FermOpD.Umu.Grid(); GaugeFieldF U_f (GridPtrF); GaugeLinkFieldF Umu_f(GridPtrF); // std::cout << " Dim gauge field "<Nd()<Nd()<(FermOpD.Umu, mu); precisionChange(Umu_f,Umu_d); PokeIndex(FermOpF.Umu, Umu_f, mu); } pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu); pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu); //////////////////////////////////////////////////////////////////////////////////// // Make a mixed precision conjugate gradient //////////////////////////////////////////////////////////////////////////////////// #if 1 RealD delta=1.e-4; std::cout << GridLogMessage << "Calling reliable update Conjugate Gradient" < MPCG(Tolerance,MaxInnerIterations*MaxOuterIterations,delta,SinglePrecGrid5,LinOpF,LinOpD); #else std::cout << GridLogMessage << "Calling mixed precision Conjugate Gradient" < MPCG(Tolerance,MaxInnerIterations,MaxOuterIterations,SinglePrecGrid5,LinOpF,LinOpD); #endif MPCG(src,psi); } }; NAMESPACE_END(Grid); int main(int argc, char **argv) { using namespace Grid; Grid_init(&argc, &argv); CartesianCommunicator::BarrierWorld(); std::cout << GridLogMessage << " Clock skew check" < HMCWrapper; // MD.name = std::string("Leap Frog"); typedef GenericHMCRunner HMCWrapper; MD.name = std::string("Force Gradient"); //typedef GenericHMCRunner HMCWrapper; // MD.name = std::string("MinimumNorm2"); // TrajL = 2 // 4/2 => 0.6 dH // 3/3 => 0.8 dH .. depth 3, slower //MD.MDsteps = 4; MD.MDsteps = 3; MD.trajL = 0.5; HMCparameters HMCparams; HMCparams.StartTrajectory = 1077; HMCparams.Trajectories = 1; HMCparams.NoMetropolisUntil= 0; // "[HotStart, ColdStart, TepidStart, CheckpointStart]\n"; // HMCparams.StartingType =std::string("ColdStart"); HMCparams.StartingType =std::string("CheckpointStart"); HMCparams.MD = MD; HMCWrapper TheHMC(HMCparams); // Grid from the command line arguments --grid and --mpi TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition CheckpointerParameters CPparams; CPparams.config_prefix = "ckpoint_DDHMC_lat"; CPparams.rng_prefix = "ckpoint_DDHMC_rng"; CPparams.saveInterval = 1; CPparams.format = "IEEE64BIG"; TheHMC.Resources.LoadNerscCheckpointer(CPparams); std::cout << "loaded NERSC checpointer"< PlaqObs; TheHMC.Resources.AddObservable(); ////////////////////////////////////////////// const int Ls = 12; RealD M5 = 1.8; RealD b = 1.5; RealD c = 0.5; Real beta = 2.13; // Real light_mass = 5.4e-4; Real light_mass = 7.8e-4; Real strange_mass = 0.0362; Real pv_mass = 1.0; // std::vector hasenbusch({ 0.01, 0.045, 0.108, 0.25, 0.51 , pv_mass }); // std::vector hasenbusch({ light_mass, 0.01, 0.045, 0.108, 0.25, 0.51 , pv_mass }); std::vector hasenbusch({ light_mass, 0.005, 0.0145, 0.045, 0.108, 0.25, 0.51 , pv_mass }); // Updated // std::vector hasenbusch({ light_mass, 0.0145, 0.045, 0.108, 0.25, 0.51 , 0.75 , pv_mass }); auto GridPtr = TheHMC.Resources.GetCartesian(); auto GridRBPtr = TheHMC.Resources.GetRBCartesian(); typedef SchurDiagMooeeOperator LinearOperatorF; typedef SchurDiagMooeeOperator LinearOperatorD; typedef SchurDiagMooeeOperator LinearOperatorEOFAF; typedef SchurDiagMooeeOperator LinearOperatorEOFAD; typedef MixedPrecisionConjugateGradientOperatorFunction MxPCG; typedef MixedPrecisionConjugateGradientOperatorFunction MxPCG_EOFA; //////////////////////////////////////////////////////////////// // Domain decomposed //////////////////////////////////////////////////////////////// Coordinate latt4 = GridPtr->GlobalDimensions(); Coordinate mpi = GridPtr->ProcessorGrid(); Coordinate shm; GlobalSharedMemory::GetShmDims(mpi,shm); Coordinate CommDim(Nd); for(int d=0;d1 ? 1 : 0; Coordinate NonDirichlet(Nd+1,0); ////////////////////////// // Fermion Grids ////////////////////////// auto FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtr); auto FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtr); Coordinate simdF = GridDefaultSimd(Nd,vComplexF::Nsimd()); auto GridPtrF = SpaceTimeGrid::makeFourDimGrid(latt4,simdF,mpi); auto GridRBPtrF = SpaceTimeGrid::makeFourDimRedBlackGrid(GridPtrF); auto FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtrF); auto FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtrF); IwasakiGaugeActionR GaugeAction(beta); // temporarily need a gauge field LatticeGaugeFieldD U(GridPtr); U=Zero(); LatticeGaugeFieldF UF(GridPtrF); UF=Zero(); LatticeGaugeFieldD2 UD2(GridPtrF); UD2=Zero(); std::cout << GridLogMessage << " Running the HMC "<< std::endl; TheHMC.ReadCommandLine(argc,argv); // params on CML or from param file TheHMC.initializeGaugeFieldAndRNGs(U); std::cout << "loaded NERSC gauge field"< boundary = {1,1,1,-1}; FermionAction::ImplParams Params(boundary); FermionActionF::ImplParams ParamsF(boundary); Params.dirichlet=NonDirichlet; ParamsF.dirichlet=NonDirichlet; // double StoppingCondition = 1e-14; // double MDStoppingCondition = 1e-9; double StoppingCondition = 1e-8; double MDStoppingCondition = 1e-7; double MDStoppingConditionLoose = 1e-7; double MDStoppingConditionStrange = 1e-7; double MaxCGIterations = 300000; ConjugateGradient CG(StoppingCondition,MaxCGIterations); ConjugateGradient MDCG(MDStoppingCondition,MaxCGIterations); //////////////////////////////////// // Collect actions //////////////////////////////////// ActionLevel Level1(1); ActionLevel Level2(3); ActionLevel Level3(15); //////////////////////////////////// // Strange action //////////////////////////////////// FermionAction StrangeOp (U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,strange_mass,M5,b,c, Params); FermionAction StrangePauliVillarsOp(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,pv_mass, M5,b,c, Params); // Probably dominates the force - back to EOFA. OneFlavourRationalParams SFRp; SFRp.lo = 0.25; SFRp.hi = 25.0; SFRp.MaxIter = 10000; SFRp.tolerance= 1.0e-5; SFRp.mdtolerance= 2.0e-4; SFRp.degree = 8; SFRp.precision= 50; MobiusEOFAFermionD Strange_Op_L (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , strange_mass, strange_mass, pv_mass, 0.0, -1, M5, b, c); MobiusEOFAFermionF Strange_Op_LF(UF, *FGridF, *FrbGridF, *GridPtrF, *GridRBPtrF, strange_mass, strange_mass, pv_mass, 0.0, -1, M5, b, c); MobiusEOFAFermionD Strange_Op_R (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , pv_mass, strange_mass, pv_mass, -1.0, 1, M5, b, c); MobiusEOFAFermionF Strange_Op_RF(UF, *FGridF, *FrbGridF, *GridPtrF, *GridRBPtrF, pv_mass, strange_mass, pv_mass, -1.0, 1, M5, b, c); ConjugateGradient ActionCG(StoppingCondition,MaxCGIterations); ConjugateGradient DerivativeCG(MDStoppingCondition,MaxCGIterations); LinearOperatorEOFAD Strange_LinOp_L (Strange_Op_L); LinearOperatorEOFAD Strange_LinOp_R (Strange_Op_R); LinearOperatorEOFAF Strange_LinOp_LF(Strange_Op_LF); LinearOperatorEOFAF Strange_LinOp_RF(Strange_Op_RF); const int MX_inner = 1000; MxPCG_EOFA ActionCGL(StoppingCondition, MX_inner, MaxCGIterations, GridPtrF, FrbGridF, Strange_Op_LF,Strange_Op_L, Strange_LinOp_LF,Strange_LinOp_L); MxPCG_EOFA DerivativeCGL(MDStoppingConditionStrange, MX_inner, MaxCGIterations, GridPtrF, FrbGridF, Strange_Op_LF,Strange_Op_L, Strange_LinOp_LF,Strange_LinOp_L); MxPCG_EOFA ActionCGR(StoppingCondition, MX_inner, MaxCGIterations, GridPtrF, FrbGridF, Strange_Op_RF,Strange_Op_R, Strange_LinOp_RF,Strange_LinOp_R); MxPCG_EOFA DerivativeCGR(MDStoppingConditionStrange, MX_inner, MaxCGIterations, GridPtrF, FrbGridF, Strange_Op_RF,Strange_Op_R, Strange_LinOp_RF,Strange_LinOp_R); ExactOneFlavourRatioPseudoFermionAction EOFA(Strange_Op_L, Strange_Op_R, ActionCG, ActionCGL, ActionCGR, DerivativeCGL, DerivativeCGR, SFRp, true); // Level2.push_back(&EOFA); //////////////////////////////////// // up down action //////////////////////////////////// std::vector light_den; std::vector light_num; std::vector dirichlet_den; std::vector dirichlet_num; int n_hasenbusch = hasenbusch.size(); light_den.push_back(light_mass); dirichlet_den.push_back(0); for(int h=0;h Numerators; std::vector Denominators; std::vector NumeratorsF; std::vector DenominatorsF; std::vector NumeratorsD2; std::vector DenominatorsD2; std::vector *> Quotients; std::vector ActionMPCG; std::vector MPCG; #define MIXED_PRECISION #ifdef MIXED_PRECISION std::vector *> Bdys; #else std::vector *> Bdys; #endif typedef SchurDiagMooeeOperator LinearOperatorF; typedef SchurDiagMooeeOperator LinearOperatorD; std::vector LinOpD; std::vector LinOpF; for(int h=0;h(*Numerators[h],*Denominators[h],*MPCG[h],*ActionMPCG[h],CG)); } int nquo=Quotients.size(); for(int h=0;h