#include #include #include using namespace Grid; using namespace Hadrons; using namespace MScalar; /****************************************************************************** * TScalarVP implementation * ******************************************************************************/ // constructor ///////////////////////////////////////////////////////////////// TScalarVP::TScalarVP(const std::string name) : Module(name) {} // dependencies/products /////////////////////////////////////////////////////// std::vector TScalarVP::getInput(void) { propQName_ = par().scalarProp + "_Q"; propSunName_ = par().scalarProp + "_Sun"; propTadName_ = par().scalarProp + "_Tad"; std::vector in = {par().emField, propQName_, propSunName_, propTadName_}; return in; } std::vector TScalarVP::getOutput(void) { std::vector out; for (unsigned int mu = 0; mu < env().getNd(); ++mu) { out.push_back(getName() + "_propQ_" + std::to_string(mu)); for (unsigned int nu = 0; nu < env().getNd(); ++nu) { out.push_back(getName() + "_" + std::to_string(mu) + "_" + std::to_string(nu)); out.push_back(getName() + "_free_" + std::to_string(mu) + "_" + std::to_string(nu)); } } return out; } // setup /////////////////////////////////////////////////////////////////////// void TScalarVP::setup(void) { freeMomPropName_ = FREEMOMPROP(static_cast(env().getModule(par().scalarProp))->par().mass); GFSrcName_ = "_" + par().scalarProp + "_DinvSrc"; prop0Name_ = par().scalarProp + "_0"; phaseName_.clear(); muPropQName_.clear(); vpTensorName_.clear(); freeVpTensorName_.clear(); for (unsigned int mu = 0; mu < env().getNd(); ++mu) { phaseName_.push_back("_shiftphase_" + std::to_string(mu)); muPropQName_.push_back(getName() + "_propQ_" + std::to_string(mu)); std::vector vpTensorName_mu; std::vector freeVpTensorName_mu; for (unsigned int nu = 0; nu < env().getNd(); ++nu) { vpTensorName_mu.push_back(getName() + "_" + std::to_string(mu) + "_" + std::to_string(nu)); freeVpTensorName_mu.push_back(getName() + "_free_" + std::to_string(mu) + "_" + std::to_string(nu)); } vpTensorName_.push_back(vpTensorName_mu); freeVpTensorName_.push_back(freeVpTensorName_mu); } for (unsigned int mu = 0; mu < env().getNd(); ++mu) { env().registerLattice(muPropQName_[mu]); for (unsigned int nu = 0; nu < env().getNd(); ++nu) { env().registerLattice(vpTensorName_[mu][nu]); env().registerLattice(freeVpTensorName_[mu][nu]); } } } // execution /////////////////////////////////////////////////////////////////// void TScalarVP::execute(void) { // Get objects cached by ChargedProp module Complex ci(0.0,1.0); FFT fft(env().getGrid()); Real q = static_cast(env().getModule(par().scalarProp))->par().charge; freeMomProp_ = env().getObject(freeMomPropName_); for (unsigned int mu = 0; mu < env().getNd(); ++mu) { phase_.push_back(env().getObject(phaseName_[mu])); } GFSrc_ = env().getObject(GFSrcName_); prop0_ = env().getObject(prop0Name_); // Propagator from unshifted source ScalarField &propQ = *env().getObject(propQName_); ScalarField &propSun = *env().getObject(propSunName_); ScalarField &propTad = *env().getObject(propTadName_); // Propagators from shifted sources LOG(Message) << "Computing O(q) charged scalar propagators..." << std::endl; std::vector muPropQ; for (unsigned int mu = 0; mu < env().getNd(); ++mu) { muPropQ.push_back(*env().createLattice(muPropQName_[mu])); // -G*momD1*G*F*tau_mu*Src (momD1 = F*D1*Finv) muPropQ[mu] = adj(*phase_[mu])*(*GFSrc_); momD1(muPropQ[mu], fft); muPropQ[mu] = -(*freeMomProp_)*muPropQ[mu]; fft.FFT_all_dim(muPropQ[mu], muPropQ[mu], FFT::backward); } // CONTRACTIONS ScalarField prop1(env().getGrid()), prop2(env().getGrid()); EmField &A = *env().getObject(par().emField); ScalarField Amu(env().getGrid()); TComplex Anu0; std::vector coor0 = {0, 0, 0, 0}; std::vector > vpTensor, freeVpTensor; for (unsigned int mu = 0; mu < env().getNd(); ++mu) { std::vector vpTensor_mu; std::vector freeVpTensor_mu; for (unsigned int nu = 0; nu < env().getNd(); ++nu) { vpTensor_mu.push_back(*env().createLattice(vpTensorName_[mu][nu])); freeVpTensor_mu.push_back(*env().createLattice(freeVpTensorName_[mu][nu])); } vpTensor.push_back(vpTensor_mu); freeVpTensor.push_back(freeVpTensor_mu); } for (unsigned int nu = 0; nu < env().getNd(); ++nu) { peekSite(Anu0, peekLorentz(A, nu), coor0); for (unsigned int mu = 0; mu < env().getNd(); ++mu) { LOG(Message) << "Computing Pi[" << mu << "][" << nu << "]..." << std::endl; Amu = peekLorentz(A, mu); // Free VP prop1 = *prop0_; prop2 = Cshift(*prop0_, nu, -1); freeVpTensor[mu][nu] = adj(prop2) * Cshift(prop1, mu, 1); freeVpTensor[mu][nu] -= Cshift(adj(prop2), mu, 1) * prop1; // "Exchange" terms prop1 += q*propQ; prop2 += q*muPropQ[nu]; vpTensor[mu][nu] = adj(prop2) * (1.0 + ci*q*Amu) * Cshift(prop1, mu, 1) * (1.0 + ci*q*Anu0); vpTensor[mu][nu] -= Cshift(adj(prop2), mu, 1) * (1.0 - ci*q*Amu) * prop1 * (1.0 + ci*q*Anu0); // Subtract O(alpha^2) term prop1 = q*propQ; prop2 = q*muPropQ[nu]; vpTensor[mu][nu] -= adj(prop2) * ci*q*Amu * Cshift(prop1, mu, 1) * ci*q*Anu0; vpTensor[mu][nu] += Cshift(adj(prop2), mu, 1) * (-ci)*q*Amu * prop1 * ci*q*Anu0; // Sunset+tadpole from source prop1 = q*q*(propSun + propTad); prop2 = Cshift(*prop0_, nu, -1); vpTensor[mu][nu] += adj(prop2) * Cshift(prop1, mu, 1); vpTensor[mu][nu] -= Cshift(adj(prop2), mu, 1) * prop1; // Sunset+tadpole from shifted source prop1 = Cshift(prop1, nu, -1); vpTensor[mu][nu] += Cshift(adj(*prop0_), mu, 1) * prop1; vpTensor[mu][nu] -= adj(*prop0_) * Cshift(prop1, mu, 1); // Source tadpole prop1 = *prop0_; vpTensor[mu][nu] += adj(prop2) * Cshift(prop1, mu, 1) * (-0.5)*q*q*Anu0*Anu0; vpTensor[mu][nu] -= Cshift(adj(prop2), mu, 1) * prop1 * (-0.5)*q*q*Anu0*Anu0; // Sink tadpole vpTensor[mu][nu] += adj(prop2) * (-0.5)*q*q*Amu*Amu * Cshift(prop1, mu, 1); vpTensor[mu][nu] -= Cshift(adj(prop2), mu, 1) * (-0.5)*q*q*Amu*Amu * prop1; freeVpTensor[mu][nu] = 2.0*real(freeVpTensor[mu][nu]); vpTensor[mu][nu] = 2.0*real(vpTensor[mu][nu]); } } // OUTPUT IF NECESSARY if (!par().output.empty()) { std::string filename = par().output + "." + std::to_string(env().getTrajectory()); LOG(Message) << "Saving zero-momentum projection to '" << filename << "'..." << std::endl; CorrWriter writer(filename); std::vector vecBuf; std::vector result; write(writer, "charge", q); write(writer, "mass", static_cast(env().getModule(par().scalarProp))->par().mass); for (unsigned int mu = 0; mu < env().getNd(); ++mu) { for (unsigned int nu = 0; nu < env().getNd(); ++nu) { sliceSum(vpTensor[mu][nu], vecBuf, Tp); result.resize(vecBuf.size()); for (unsigned int t = 0; t < vecBuf.size(); ++t) { result[t] = TensorRemove(vecBuf[t]); } write(writer, "Pi_"+std::to_string(mu)+"_"+std::to_string(nu), result); sliceSum(freeVpTensor[mu][nu], vecBuf, Tp); result.resize(vecBuf.size()); for (unsigned int t = 0; t < vecBuf.size(); ++t) { result[t] = TensorRemove(vecBuf[t]); } write(writer, "Pi_"+std::to_string(mu)+"_"+std::to_string(nu)+"_free", result); } } } } void TScalarVP::momD1(ScalarField &s, FFT &fft) { EmField &A = *env().getObject(par().emField); ScalarField buf(env().getGrid()), result(env().getGrid()), Amu(env().getGrid()); Complex ci(0.0,1.0); result = zero; for (unsigned int mu = 0; mu < env().getNd(); ++mu) { Amu = peekLorentz(A, mu); buf = (*phase_[mu])*s; fft.FFT_all_dim(buf, buf, FFT::backward); buf = Amu*buf; fft.FFT_all_dim(buf, buf, FFT::forward); result = result - ci*buf; } fft.FFT_all_dim(s, s, FFT::backward); for (unsigned int mu = 0; mu < env().getNd(); ++mu) { Amu = peekLorentz(A, mu); buf = Amu*s; fft.FFT_all_dim(buf, buf, FFT::forward); result = result + ci*adj(*phase_[mu])*buf; } s = result; }