/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./lib/tensors/Tensor_Ta.h Copyright (C) 2015 Author: Peter Boyle <paboyle@ph.ed.ac.uk> Author: neo <cossu@post.kek.jp> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #ifndef GRID_MATH_TA_H #define GRID_MATH_TA_H namespace Grid { /////////////////////////////////////////////// // Ta function for scalar, vector, matrix /////////////////////////////////////////////// /* inline ComplexF Ta( const ComplexF &arg){ return arg;} inline ComplexD Ta( const ComplexD &arg){ return arg;} inline RealF Ta( const RealF &arg){ return arg;} inline RealD Ta( const RealD &arg){ return arg;} */ template<class vtype> inline iScalar<vtype> Ta(const iScalar<vtype>&r) { iScalar<vtype> ret; ret._internal = Ta(r._internal); return ret; } template<class vtype,int N> inline iVector<vtype,N> Ta(const iVector<vtype,N>&r) { iVector<vtype,N> ret; for(int i=0;i<N;i++){ ret._internal[i] = Ta(r._internal[i]); } return ret; } template<class vtype,int N> inline iMatrix<vtype,N> Ta(const iMatrix<vtype,N> &arg) { iMatrix<vtype,N> ret; double factor = (1.0/(double)N); ret= (arg - adj(arg))*0.5; ret=ret - (trace(ret)*factor); return ret; } /////////////////////////////////////////////// // ProjectOnGroup function for scalar, vector, matrix // Projects on orthogonal, unitary group /////////////////////////////////////////////// template<class vtype> inline iScalar<vtype> ProjectOnGroup(const iScalar<vtype>&r) { iScalar<vtype> ret; ret._internal = ProjectOnGroup(r._internal); return ret; } template<class vtype,int N> inline iVector<vtype,N> ProjectOnGroup(const iVector<vtype,N>&r) { iVector<vtype,N> ret; for(int i=0;i<N;i++){ ret._internal[i] = ProjectOnGroup(r._internal[i]); } return ret; } template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr> inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg) { // need a check for the group type? iMatrix<vtype,N> ret(arg); vtype nrm; vtype inner; for(int c1=0;c1<N;c1++){ zeroit(inner); for(int c2=0;c2<N;c2++) inner += innerProduct(ret._internal[c1][c2],ret._internal[c1][c2]); nrm = rsqrt(inner); for(int c2=0;c2<N;c2++) ret._internal[c1][c2]*= nrm; for (int b=c1+1; b<N; ++b){ decltype(ret._internal[b][b]*ret._internal[b][b]) pr; zeroit(pr); for(int c=0; c<N; ++c) pr += conjugate(ret._internal[c1][c])*ret._internal[b][c]; for(int c=0; c<N; ++c){ ret._internal[b][c] -= pr * ret._internal[c1][c]; } } } // assuming the determinant is ok return ret; } } #endif