//---------------------------------------------------------------------- /*! @file Grid_avx.h @brief Optimization libraries for AVX1/2 instructions set Using intrinsics */ // Time-stamp: <2015-05-27 12:07:15 neo> //---------------------------------------------------------------------- #include // _mm256_set_m128i(hi,lo); // not defined in all versions of immintrin.h #ifndef _mm256_set_m128i #define _mm256_set_m128i(hi,lo) _mm256_insertf128_si256(_mm256_castsi128_si256(lo),(hi),1) #endif namespace Optimization { struct Vsplat{ //Complex float inline __m256 operator()(float a, float b){ return _mm256_set_ps(b,a,b,a,b,a,b,a); } // Real float inline __m256 operator()(float a){ return _mm256_set_ps(a,a,a,a,a,a,a,a); } //Complex double inline __m256d operator()(double a, double b){ return _mm256_set_pd(b,a,b,a); } //Real double inline __m256d operator()(double a){ return _mm256_set_pd(a,a,a,a); } //Integer inline __m256i operator()(Integer a){ return _mm256_set1_epi32(a); } }; struct Vstore{ //Float inline void operator()(__m256 a, float* F){ _mm256_store_ps(F,a); } //Double inline void operator()(__m256d a, double* D){ _mm256_store_pd(D,a); } //Integer inline void operator()(__m256i a, Integer* I){ _mm256_store_si256((__m256i*)I,a); } }; struct Vstream{ //Float inline void operator()(float * a, __m256 b){ _mm256_stream_ps(a,b); } //Double inline void operator()(double * a, __m256d b){ _mm256_stream_pd(a,b); } }; struct Vset{ // Complex float inline __m256 operator()(Grid::ComplexF *a){ return _mm256_set_ps(a[3].imag(),a[3].real(),a[2].imag(),a[2].real(),a[1].imag(),a[1].real(),a[0].imag(),a[0].real()); } // Complex double inline __m256d operator()(Grid::ComplexD *a){ return _mm256_set_pd(a[1].imag(),a[1].real(),a[0].imag(),a[0].real()); } // Real float inline __m256 operator()(float *a){ return _mm256_set_ps(a[7],a[6],a[5],a[4],a[3],a[2],a[1],a[0]); } // Real double inline __m256d operator()(double *a){ return _mm256_set_pd(a[3],a[2],a[1],a[0]); } // Integer inline __m256i operator()(Integer *a){ return _mm256_set_epi32(a[7],a[6],a[5],a[4],a[3],a[2],a[1],a[0]); } }; template struct Reduce{ //Need templated class to overload output type //General form must generate error if compiled inline Out_type operator()(In_type in){ printf("Error, using wrong Reduce function\n"); exit(1); return 0; } }; ///////////////////////////////////////////////////// // Arithmetic operations ///////////////////////////////////////////////////// struct Sum{ //Complex/Real float inline __m256 operator()(__m256 a, __m256 b){ return _mm256_add_ps(a,b); } //Complex/Real double inline __m256d operator()(__m256d a, __m256d b){ return _mm256_add_pd(a,b); } //Integer inline __m256i operator()(__m256i a, __m256i b){ #if defined (AVX1) __m128i a0,a1; __m128i b0,b1; a0 = _mm256_extractf128_si256(a,0); b0 = _mm256_extractf128_si256(b,0); a1 = _mm256_extractf128_si256(a,1); b1 = _mm256_extractf128_si256(b,1); a0 = _mm_add_epi32(a0,b0); a1 = _mm_add_epi32(a1,b1); return _mm256_set_m128i(a1,a0); #endif #if defined (AVX2) return _mm256_add_epi32(a,b); #endif } }; struct Sub{ //Complex/Real float inline __m256 operator()(__m256 a, __m256 b){ return _mm256_sub_ps(a,b); } //Complex/Real double inline __m256d operator()(__m256d a, __m256d b){ return _mm256_sub_pd(a,b); } //Integer inline __m256i operator()(__m256i a, __m256i b){ #if defined (AVX1) __m128i a0,a1; __m128i b0,b1; a0 = _mm256_extractf128_si256(a,0); b0 = _mm256_extractf128_si256(b,0); a1 = _mm256_extractf128_si256(a,1); b1 = _mm256_extractf128_si256(b,1); a0 = _mm_sub_epi32(a0,b0); a1 = _mm_sub_epi32(a1,b1); return _mm256_set_m128i(a1,a0); #endif #if defined (AVX2) return _mm256_sub_epi32(a,b); #endif } }; struct MultComplex{ // Complex float inline __m256 operator()(__m256 a, __m256 b){ __m256 ymm0,ymm1,ymm2; ymm0 = _mm256_shuffle_ps(a,a,_MM_SHUFFLE(2,2,0,0)); // ymm0 <- ar ar, ymm0 = _mm256_mul_ps(ymm0,b); // ymm0 <- ar bi, ar br // FIXME AVX2 could MAC ymm1 = _mm256_shuffle_ps(b,b,_MM_SHUFFLE(2,3,0,1)); // ymm1 <- br,bi ymm2 = _mm256_shuffle_ps(a,a,_MM_SHUFFLE(3,3,1,1)); // ymm2 <- ai,ai ymm1 = _mm256_mul_ps(ymm1,ymm2); // ymm1 <- br ai, ai bi return _mm256_addsub_ps(ymm0,ymm1); } // Complex double inline __m256d operator()(__m256d a, __m256d b){ //Multiplication of (ak+ibk)*(ck+idk) // a + i b can be stored as a data structure //From intel optimisation reference guide /* movsldup xmm0, Src1; load real parts into the destination, ; a1, a1, a0, a0 movaps xmm1, src2; load the 2nd pair of complex values, ; i.e. d1, c1, d0, c0 mulps xmm0, xmm1; temporary results, a1d1, a1c1, a0d0, ; a0c0 shufps xmm1, xmm1, b1; reorder the real and imaginary ; parts, c1, d1, c0, d0 movshdup xmm2, Src1; load the imaginary parts into the ; destination, b1, b1, b0, b0 mulps xmm2, xmm1; temporary results, b1c1, b1d1, b0c0, ; b0d0 addsubps xmm0, xmm2; b1c1+a1d1, a1c1 -b1d1, b0c0+a0d VSHUFPD (VEX.256 encoded version) IF IMM0[0] = 0 THEN DEST[63:0]=SRC1[63:0] ELSE DEST[63:0]=SRC1[127:64] FI; IF IMM0[1] = 0 THEN DEST[127:64]=SRC2[63:0] ELSE DEST[127:64]=SRC2[127:64] FI; IF IMM0[2] = 0 THEN DEST[191:128]=SRC1[191:128] ELSE DEST[191:128]=SRC1[255:192] FI; IF IMM0[3] = 0 THEN DEST[255:192]=SRC2[191:128] ELSE DEST[255:192]=SRC2[255:192] FI; // Ox5 r<->i ; 0xC unchanged */ __m256d ymm0,ymm1,ymm2; ymm0 = _mm256_shuffle_pd(a,a,0x0); // ymm0 <- ar ar, ar,ar b'00,00 ymm0 = _mm256_mul_pd(ymm0,b); // ymm0 <- ar bi, ar br ymm1 = _mm256_shuffle_pd(b,b,0x5); // ymm1 <- br,bi b'01,01 ymm2 = _mm256_shuffle_pd(a,a,0xF); // ymm2 <- ai,ai b'11,11 ymm1 = _mm256_mul_pd(ymm1,ymm2); // ymm1 <- br ai, ai bi return _mm256_addsub_pd(ymm0,ymm1); } }; struct Mult{ // Real float inline __m256 operator()(__m256 a, __m256 b){ return _mm256_mul_ps(a,b); } // Real double inline __m256d operator()(__m256d a, __m256d b){ return _mm256_mul_pd(a,b); } // Integer inline __m256i operator()(__m256i a, __m256i b){ #if defined (AVX1) __m128i a0,a1; __m128i b0,b1; a0 = _mm256_extractf128_si256(a,0); b0 = _mm256_extractf128_si256(b,0); a1 = _mm256_extractf128_si256(a,1); b1 = _mm256_extractf128_si256(b,1); a0 = _mm_mul_epi32(a0,b0); a1 = _mm_mul_epi32(a1,b1); return _mm256_set_m128i(a1,a0); #endif #if defined (AVX2) return _mm256_mul_epi32(a,b); #endif } }; struct Conj{ // Complex single inline __m256 operator()(__m256 in){ return _mm256_xor_ps(_mm256_addsub_ps(_mm256_setzero_ps(),in), _mm256_set1_ps(-0.f)); } // Complex double inline __m256d operator()(__m256d in){ return _mm256_xor_pd(_mm256_addsub_pd(_mm256_setzero_pd(),in), _mm256_set1_pd(-0.f));//untested /* // original // addsubps 0, inv=>0+in.v[3] 0-in.v[2], 0+in.v[1], 0-in.v[0], ... __m256d tmp = _mm256_addsub_pd(_mm256_setzero_pd(),_mm256_shuffle_pd(in,in,0x5)); return _mm256_shuffle_pd(tmp,tmp,0x5); */ } // do not define for integer input }; struct TimesMinusI{ //Complex single inline __m256 operator()(__m256 in, __m256 ret){ __m256 tmp =_mm256_addsub_ps(_mm256_setzero_ps(),in); // r,-i return _mm256_shuffle_ps(tmp,tmp,_MM_SHUFFLE(2,3,0,1)); //-i,r } //Complex double inline __m256d operator()(__m256d in, __m256d ret){ __m256d tmp = _mm256_addsub_pd(_mm256_setzero_pd(),in); // r,-i return _mm256_shuffle_pd(tmp,tmp,0x5); } }; struct TimesI{ //Complex single inline __m256 operator()(__m256 in, __m256 ret){ __m256 tmp =_mm256_shuffle_ps(in,in,_MM_SHUFFLE(2,3,0,1)); // i,r return _mm256_addsub_ps(_mm256_setzero_ps(),tmp); // i,-r } //Complex double inline __m256d operator()(__m256d in, __m256d ret){ __m256d tmp = _mm256_shuffle_pd(in,in,0x5); return _mm256_addsub_pd(_mm256_setzero_pd(),tmp); // i,-r } }; ////////////////////////////////////////////// // Some Template specialization template < typename vtype > void permute(vtype &a, vtype &b, int perm) { union { __m256 f; vtype v; } conv; conv.v = b; switch (perm){ // 8x32 bits=>3 permutes case 2: conv.f = _mm256_shuffle_ps(conv.f,conv.f,_MM_SHUFFLE(2,3,0,1)); break; case 1: conv.f = _mm256_shuffle_ps(conv.f,conv.f,_MM_SHUFFLE(1,0,3,2)); break; case 0: conv.f = _mm256_permute2f128_ps(conv.f,conv.f,0x01); break; default: assert(0); break; } a = conv.v; } //Complex float Reduce template<> inline Grid::ComplexF Reduce::operator()(__m256 in){ __m256 v1,v2; union { __m256 v; float f[8]; } conv; Optimization::permute(v1,in,0); // sse 128; paired complex single v1 = _mm256_add_ps(v1,in); Optimization::permute(v2,v1,1); // avx 256; quad complex single v1 = _mm256_add_ps(v1,v2); conv.v = v1; return Grid::ComplexF(conv.f[0],conv.f[1]); } //Real float Reduce template<> inline Grid::RealF Reduce::operator()(__m256 in){ __m256 v1,v2; Optimization::permute(v1,in,0); // avx 256; octo-double v1 = _mm256_add_ps(v1,in); Optimization::permute(v2,v1,1); v1 = _mm256_add_ps(v1,v2); Optimization::permute(v2,v1,2); v1 = _mm256_add_ps(v1,v2); return v1[0]; } //Complex double Reduce template<> inline Grid::ComplexD Reduce::operator()(__m256d in){ __m256d v1; Optimization::permute(v1,in,0); // sse 128; paired complex single v1 = _mm256_add_pd(v1,in); return Grid::ComplexD(v1[0],v1[1]); } //Real double Reduce template<> inline Grid::RealD Reduce::operator()(__m256d in){ __m256d v1,v2; Optimization::permute(v1,in,0); // avx 256; quad double v1 = _mm256_add_pd(v1,in); Optimization::permute(v2,v1,1); v1 = _mm256_add_pd(v1,v2); return v1[0]; } //Integer Reduce template<> inline Integer Reduce::operator()(__m256i in){ // FIXME unimplemented printf("Reduce : Missing integer implementation -> FIX\n"); assert(0); } } ////////////////////////////////////////////////////////////////////////////////////// // Here assign types namespace Grid { typedef __m256 SIMD_Ftype; // Single precision type typedef __m256d SIMD_Dtype; // Double precision type typedef __m256i SIMD_Itype; // Integer type // prefecthing inline void v_prefetch0(int size, const char *ptr){ for(int i=0;i inline void Gpermute(VectorSIMD &y,const VectorSIMD &b, int perm ) { union { __m256 f; decltype(VectorSIMD::v) v; } conv; conv.v = b.v; switch(perm){ case 3: break; //empty for AVX1/2 case 2: conv.f = _mm256_shuffle_ps(conv.f,conv.f,_MM_SHUFFLE(2,3,0,1)); break; case 1: conv.f = _mm256_shuffle_ps(conv.f,conv.f,_MM_SHUFFLE(1,0,3,2)); break; case 0: conv.f = _mm256_permute2f128_ps(conv.f,conv.f,0x01); break; default: assert(0); break; } y.v=conv.v; }; // Function name aliases typedef Optimization::Vsplat VsplatSIMD; typedef Optimization::Vstore VstoreSIMD; typedef Optimization::Vset VsetSIMD; typedef Optimization::Vstream VstreamSIMD; template using ReduceSIMD = Optimization::Reduce; // Arithmetic operations typedef Optimization::Sum SumSIMD; typedef Optimization::Sub SubSIMD; typedef Optimization::Mult MultSIMD; typedef Optimization::MultComplex MultComplexSIMD; typedef Optimization::Conj ConjSIMD; typedef Optimization::TimesMinusI TimesMinusISIMD; typedef Optimization::TimesI TimesISIMD; }