/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: Hadrons/Modules/MContraction/Baryon.hpp Copyright (C) 2015-2019 Author: Antonin Portelli Author: Felix Erben This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #ifndef Hadrons_MContraction_Baryon_hpp_ #define Hadrons_MContraction_Baryon_hpp_ #include #include #include #include BEGIN_HADRONS_NAMESPACE /****************************************************************************** * Baryon * ******************************************************************************/ BEGIN_MODULE_NAMESPACE(MContraction) class BaryonPar: Serializable { public: GRID_SERIALIZABLE_CLASS_MEMBERS(BaryonPar, std::string, q1, std::string, q2, std::string, q3, std::string, GammaA, std::string, GammaB, std::string, quarks, std::string, prefactors, std::string, parity, std::string, sink, std::string, output); }; template class TBaryon: public Module { public: FERM_TYPE_ALIASES(FImpl1, 1); FERM_TYPE_ALIASES(FImpl2, 2); FERM_TYPE_ALIASES(FImpl3, 3); BASIC_TYPE_ALIASES(ScalarImplCR, Scalar); SINK_TYPE_ALIASES(Scalar); class Result: Serializable { public: GRID_SERIALIZABLE_CLASS_MEMBERS(Result, Gamma::Algebra, gammaA, Gamma::Algebra, gammaB, std::string, quarks, std::string, prefactors, int, parity, std::vector, corr); }; public: // constructor TBaryon(const std::string name); // destructor virtual ~TBaryon(void) {}; // dependency relation virtual std::vector getInput(void); virtual std::vector getOutput(void); protected: // setup virtual void setup(void); // execution virtual void execute(void); // Which gamma algebra was specified Gamma::Algebra al; }; MODULE_REGISTER_TMP(Baryon, ARG(TBaryon), MContraction); /****************************************************************************** * TBaryon implementation * ******************************************************************************/ // constructor ///////////////////////////////////////////////////////////////// template TBaryon::TBaryon(const std::string name) : Module(name) {} // dependencies/products /////////////////////////////////////////////////////// template std::vector TBaryon::getInput(void) { std::vector input = {par().q1, par().q2, par().q3, par().sink}; return input; } template std::vector TBaryon::getOutput(void) { std::vector out = {}; return out; } // setup /////////////////////////////////////////////////////////////////////// template void TBaryon::setup(void) { envTmpLat(LatticeComplex, "c"); envTmpLat(LatticeComplex, "c2"); } // execution /////////////////////////////////////////////////////////////////// template void TBaryon::execute(void) { std::vector quarks = strToVec(par().quarks); std::vector prefactors = strToVec(par().prefactors); int nQ=quarks.size(); const int parity {par().parity.size()>0 ? std::stoi(par().parity) : 1}; assert(prefactors.size()==nQ && "number of prefactors needs to match number of quark-structures."); for (int iQ = 0; iQ < nQ; iQ++) assert(quarks[iQ].size()==3 && "quark-structures must consist of 3 quarks each."); LOG(Message) << "Computing baryon contractions '" << getName() << "'" << std::endl; for (int iQ1 = 0; iQ1 < nQ; iQ1++) for (int iQ2 = 0; iQ2 < nQ; iQ2++) LOG(Message) << prefactors[iQ1]*prefactors[iQ2] << "*<" << quarks[iQ1] << "|" << quarks[iQ2] << ">" << std::endl; LOG(Message) << " using quarks " << par().q1 << "', " << par().q2 << "', and '" << par().q3 << "' and (Gamma^A,Gamma^B) = ( " << par().GammaA << " , " << par().GammaB << " ) and parity " << parity << " using sink " << par().sink << "." << std::endl; envGetTmp(LatticeComplex, c); envGetTmp(LatticeComplex, c2); int nt = env().getDim(Tp); std::vector ggA = strToVec(par().GammaA); Gamma GammaA(ggA[0]); std::vector ggB = strToVec(par().GammaB); Gamma GammaB(ggB[0]); std::vector buf; TComplex cs; TComplex ch; Result result; result.corr.resize(nt); result.gammaA = ggA[0]; result.gammaB = ggB[0]; result.parity = parity; result.quarks = par().quarks; result.prefactors = par().prefactors; if (envHasType(SlicedPropagator1, par().q1) and envHasType(SlicedPropagator2, par().q2) and envHasType(SlicedPropagator3, par().q3)) { auto &q1 = envGet(SlicedPropagator1, par().q1); auto &q2 = envGet(SlicedPropagator2, par().q2); auto &q3 = envGet(SlicedPropagator3, par().q3); LOG(Message) << "(propagator already sinked)" << std::endl; for (unsigned int t = 0; t < buf.size(); ++t) { cs = Zero(); for (int iQ1 = 0; iQ1 < nQ; iQ1++){ for (int iQ2 = 0; iQ2 < nQ; iQ2++){ BaryonUtils::ContractBaryons_Sliced(q1[t],q2[t],q3[t],GammaA,GammaB,quarks[iQ1].c_str(),quarks[iQ2].c_str(),parity,ch); cs += prefactors[iQ1]*prefactors[iQ2]*ch; } } result.corr[t] = TensorRemove(cs); } } else { auto &q1 = envGet(PropagatorField1, par().q1); auto &q2 = envGet(PropagatorField2, par().q2); auto &q3 = envGet(PropagatorField3, par().q3); std::string ns; ns = vm().getModuleNamespace(env().getObjectModule(par().sink)); if (ns == "MSource") { c=Zero(); for (int iQ1 = 0; iQ1 < nQ; iQ1++){ for (int iQ2 = 0; iQ2 < nQ; iQ2++){ BaryonUtils::ContractBaryons(q1,q2,q3,GammaA,GammaB,quarks[iQ1].c_str(),quarks[iQ2].c_str(),parity,c2); c+=prefactors[iQ1]*prefactors[iQ2]*c2; } } PropagatorField1 &sink = envGet(PropagatorField1, par().sink); auto test = closure(trace(sink*c)); sliceSum(test, buf, Tp); } else if (ns == "MSink") { c=Zero(); for (int iQ1 = 0; iQ1 < nQ; iQ1++){ for (int iQ2 = 0; iQ2 < nQ; iQ2++){ BaryonUtils::ContractBaryons(q1,q2,q3,GammaA,GammaB,quarks[iQ1].c_str(),quarks[iQ2].c_str(),parity,c2); c+=prefactors[iQ1]*prefactors[iQ2]*c2; } } SinkFnScalar &sink = envGet(SinkFnScalar, par().sink); buf = sink(c); } for (unsigned int t = 0; t < buf.size(); ++t) { result.corr[t] = TensorRemove(buf[t]); } } saveResult(par().output, "baryon", result); } END_MODULE_NAMESPACE END_HADRONS_NAMESPACE #endif // Hadrons_MContraction_Baryon_hpp_