#ifndef _GRID_CSHIFT_COMMON_H_ #define _GRID_CSHIFT_COMMON_H_ namespace Grid { template class SimpleCompressor { public: void Point(int) {}; vobj operator() (const vobj &arg) { return arg; } }; /////////////////////////////////////////////////////////////////// // Gather for when there is no need to SIMD split with compression /////////////////////////////////////////////////////////////////// template void Gather_plane_simple (const Lattice &rhs,std::vector > &buffer,int dimension,int plane,int cbmask,compressor &compress) { int rd = rhs._grid->_rdimensions[dimension]; if ( !rhs._grid->CheckerBoarded(dimension) ) { cbmask = 0x3; } int so = plane*rhs._grid->_ostride[dimension]; // base offset for start of plane PARALLEL_NESTED_LOOP2 for(int n=0;n_slice_nblock[dimension];n++){ for(int b=0;b_slice_block[dimension];b++){ int o = n*rhs._grid->_slice_stride[dimension]; int bo = n*rhs._grid->_slice_block[dimension]; int ocb=1<CheckerBoardFromOindex(o+b);// Could easily be a table lookup if ( ocb &cbmask ) { buffer[bo+b]=compress(rhs._odata[so+o+b]); } } } } /////////////////////////////////////////////////////////////////// // Gather for when there *is* need to SIMD split with compression /////////////////////////////////////////////////////////////////// template void Gather_plane_extract(const Lattice &rhs,std::vector pointers,int dimension,int plane,int cbmask,compressor &compress) { int rd = rhs._grid->_rdimensions[dimension]; if ( !rhs._grid->CheckerBoarded(dimension) ) { cbmask = 0x3; } int so = plane*rhs._grid->_ostride[dimension]; // base offset for start of plane PARALLEL_NESTED_LOOP2 for(int n=0;n_slice_nblock[dimension];n++){ for(int b=0;b_slice_block[dimension];b++){ int o=n*rhs._grid->_slice_stride[dimension]; int offset = b+n*rhs._grid->_slice_block[dimension]; int ocb=1<CheckerBoardFromOindex(o+b); if ( ocb & cbmask ) { cobj temp; temp =compress(rhs._odata[so+o+b]); extract(temp,pointers,offset); } } } } ////////////////////////////////////////////////////// // Gather for when there is no need to SIMD split ////////////////////////////////////////////////////// template void Gather_plane_simple (const Lattice &rhs,std::vector > &buffer, int dimension,int plane,int cbmask) { SimpleCompressor dontcompress; Gather_plane_simple (rhs,buffer,dimension,plane,cbmask,dontcompress); } ////////////////////////////////////////////////////// // Gather for when there *is* need to SIMD split ////////////////////////////////////////////////////// template void Gather_plane_extract(const Lattice &rhs,std::vector pointers,int dimension,int plane,int cbmask) { SimpleCompressor dontcompress; Gather_plane_extract(rhs,pointers,dimension,plane,cbmask,dontcompress); } ////////////////////////////////////////////////////// // Scatter for when there is no need to SIMD split ////////////////////////////////////////////////////// template void Scatter_plane_simple (Lattice &rhs,std::vector > &buffer, int dimension,int plane,int cbmask) { int rd = rhs._grid->_rdimensions[dimension]; if ( !rhs._grid->CheckerBoarded(dimension) ) { cbmask=0x3; } int so = plane*rhs._grid->_ostride[dimension]; // base offset for start of plane PARALLEL_NESTED_LOOP2 for(int n=0;n_slice_nblock[dimension];n++){ for(int b=0;b_slice_block[dimension];b++){ int o =n*rhs._grid->_slice_stride[dimension]; int bo =n*rhs._grid->_slice_block[dimension]; int ocb=1<CheckerBoardFromOindex(o+b);// Could easily be a table lookup if ( ocb & cbmask ) { rhs._odata[so+o+b]=buffer[bo+b]; } } } } ////////////////////////////////////////////////////// // Scatter for when there *is* need to SIMD split ////////////////////////////////////////////////////// template void Scatter_plane_merge(Lattice &rhs,std::vector pointers,int dimension,int plane,int cbmask) { int rd = rhs._grid->_rdimensions[dimension]; if ( !rhs._grid->CheckerBoarded(dimension) ) { cbmask=0x3; } int so = plane*rhs._grid->_ostride[dimension]; // base offset for start of plane PARALLEL_NESTED_LOOP2 for(int n=0;n_slice_nblock[dimension];n++){ for(int b=0;b_slice_block[dimension];b++){ int o = n*rhs._grid->_slice_stride[dimension]; int offset = b+n*rhs._grid->_slice_block[dimension]; int ocb=1<CheckerBoardFromOindex(o+b); if ( ocb&cbmask ) { merge(rhs._odata[so+o+b],pointers,offset); } } } } ////////////////////////////////////////////////////// // local to node block strided copies ////////////////////////////////////////////////////// template void Copy_plane(Lattice& lhs,Lattice &rhs, int dimension,int lplane,int rplane,int cbmask) { int rd = rhs._grid->_rdimensions[dimension]; if ( !rhs._grid->CheckerBoarded(dimension) ) { cbmask=0x3; } int ro = rplane*rhs._grid->_ostride[dimension]; // base offset for start of plane int lo = lplane*lhs._grid->_ostride[dimension]; // base offset for start of plane PARALLEL_NESTED_LOOP2 for(int n=0;n_slice_nblock[dimension];n++){ for(int b=0;b_slice_block[dimension];b++){ /* int o =n*rhs._grid->_slice_stride[dimension]; int ocb=1<CheckerBoardFromOindex(o+b); if ( ocb&cbmask ) { lhs._odata[lo+o+b]=rhs._odata[ro+o+b]; } */ int o =n*rhs._grid->_slice_stride[dimension]+b; int ocb=1<CheckerBoardFromOindex(o); if ( ocb&cbmask ) { //lhs._odata[lo+o]=rhs._odata[ro+o]; vstream(lhs._odata[lo+o],rhs._odata[ro+o]); } } } } template void Copy_plane_permute(Lattice& lhs,Lattice &rhs, int dimension,int lplane,int rplane,int cbmask,int permute_type) { int rd = rhs._grid->_rdimensions[dimension]; if ( !rhs._grid->CheckerBoarded(dimension) ) { cbmask=0x3; } int ro = rplane*rhs._grid->_ostride[dimension]; // base offset for start of plane int lo = lplane*lhs._grid->_ostride[dimension]; // base offset for start of plane PARALLEL_NESTED_LOOP2 for(int n=0;n_slice_nblock[dimension];n++){ for(int b=0;b_slice_block [dimension];b++){ int o =n*rhs._grid->_slice_stride[dimension]; int ocb=1<CheckerBoardFromOindex(o+b); if ( ocb&cbmask ) { permute(lhs._odata[lo+o+b],rhs._odata[ro+o+b],permute_type); } }} } ////////////////////////////////////////////////////// // Local to node Cshift ////////////////////////////////////////////////////// template void Cshift_local(Lattice& ret,Lattice &rhs,int dimension,int shift) { int sshift[2]; sshift[0] = rhs._grid->CheckerBoardShift(rhs.checkerboard,dimension,shift,0); sshift[1] = rhs._grid->CheckerBoardShift(rhs.checkerboard,dimension,shift,1); if ( sshift[0] == sshift[1] ) { Cshift_local(ret,rhs,dimension,shift,0x3); } else { Cshift_local(ret,rhs,dimension,shift,0x1);// if checkerboard is unfavourable take two passes Cshift_local(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration } } template Lattice Cshift_local(Lattice &ret,Lattice &rhs,int dimension,int shift,int cbmask) { GridBase *grid = rhs._grid; int fd = grid->_fdimensions[dimension]; int rd = grid->_rdimensions[dimension]; int ld = grid->_ldimensions[dimension]; int gd = grid->_gdimensions[dimension]; // Map to always positive shift modulo global full dimension. shift = (shift+fd)%fd; ret.checkerboard = grid->CheckerBoardDestination(rhs.checkerboard,shift); // the permute type int permute_dim =grid->PermuteDim(dimension); int permute_type=grid->PermuteType(dimension); for(int x=0;x_ostride[dimension]; int cb= (cbmask==0x2)? 1 : 0; int sshift = grid->CheckerBoardShift(rhs.checkerboard,dimension,shift,cb); int sx = (x+sshift)%rd; int permute_slice=0; if(permute_dim){ int wrap = sshift/rd; int num = sshift%rd; if ( x< rd-num ) permute_slice=wrap; else permute_slice = 1-wrap; } if ( permute_slice ) Copy_plane_permute(ret,rhs,dimension,x,sx,cbmask,permute_type); else Copy_plane(ret,rhs,dimension,x,sx,cbmask); } return ret; } } #endif