/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./lib/qcd/action/pseudofermion/TwoFlavour.h Copyright (C) 2015 Author: Peter Boyle Author: Peter Boyle This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #ifndef QCD_PSEUDOFERMION_TWO_FLAVOUR_H #define QCD_PSEUDOFERMION_TWO_FLAVOUR_H namespace Grid { namespace QCD { //////////////////////////////////////////////////////////////////////// // Two flavour pseudofermion action for any dop //////////////////////////////////////////////////////////////////////// template class TwoFlavourPseudoFermionAction : public Action { public: INHERIT_IMPL_TYPES(Impl); private: FermionOperator &FermOp; // the basic operator OperatorFunction &DerivativeSolver; OperatorFunction &ActionSolver; FermionField Phi; // the pseudo fermion field for this trajectory public: ///////////////////////////////////////////////// // Pass in required objects. ///////////////////////////////////////////////// TwoFlavourPseudoFermionAction(FermionOperator &Op, OperatorFunction &DS, OperatorFunction &AS) : FermOp(Op), DerivativeSolver(DS), ActionSolver(AS), Phi(Op.FermionGrid()){}; virtual std::string action_name(){return "TwoFlavourPseudoFermionAction";} ////////////////////////////////////////////////////////////////////////////////////// // Push the gauge field in to the dops. Assume any BC's and smearing already // applied ////////////////////////////////////////////////////////////////////////////////////// virtual void refresh(const GaugeField &U, GridParallelRNG &pRNG) { // P(phi) = e^{- phi^dag (MdagM)^-1 phi} // Phi = Mdag eta // P(eta) = e^{- eta^dag eta} // // e^{x^2/2 sig^2} => sig^2 = 0.5. // // So eta should be of width sig = 1/sqrt(2). // and must multiply by 0.707.... // // Chroma has this scale factor: two_flavor_monomial_w.h // IroIro: does not use this scale. It is absorbed by a change of vars // in the Phi integral, and thus is only an irrelevant prefactor for // the partition function. // RealD scale = std::sqrt(0.5); FermionField eta(FermOp.FermionGrid()); gaussian(pRNG, eta); FermOp.ImportGauge(U); FermOp.Mdag(eta, Phi); Phi = Phi * scale; }; ////////////////////////////////////////////////////// // S = phi^dag (Mdag M)^-1 phi ////////////////////////////////////////////////////// virtual RealD S(const GaugeField &U) { FermOp.ImportGauge(U); FermionField X(FermOp.FermionGrid()); FermionField Y(FermOp.FermionGrid()); MdagMLinearOperator, FermionField> MdagMOp(FermOp); X = zero; ActionSolver(MdagMOp, Phi, X); MdagMOp.Op(X, Y); RealD action = norm2(Y); std::cout << GridLogMessage << "Pseudofermion action " << action << std::endl; return action; }; ////////////////////////////////////////////////////// // dS/du = - phi^dag (Mdag M)^-1 [ Mdag dM + dMdag M ] (Mdag M)^-1 phi // = - phi^dag M^-1 dM (MdagM)^-1 phi - phi^dag (MdagM)^-1 dMdag dM // (Mdag)^-1 phi // // = - Ydag dM X - Xdag dMdag Y // ////////////////////////////////////////////////////// virtual void deriv(const GaugeField &U, GaugeField &dSdU) { FermOp.ImportGauge(U); FermionField X(FermOp.FermionGrid()); FermionField Y(FermOp.FermionGrid()); GaugeField tmp(FermOp.GaugeGrid()); MdagMLinearOperator, FermionField> MdagMOp(FermOp); X = zero; DerivativeSolver(MdagMOp, Phi, X); // X = (MdagM)^-1 phi MdagMOp.Op(X, Y); // Y = M X = (Mdag)^-1 phi // Our conventions really make this UdSdU; We do not differentiate wrt Udag // here. // So must take dSdU - adj(dSdU) and left multiply by mom to get dS/dt. FermOp.MDeriv(tmp, Y, X, DaggerNo); dSdU = tmp; FermOp.MDeriv(tmp, X, Y, DaggerYes); dSdU = dSdU + tmp; // not taking here the traceless antihermitian component }; }; } } #endif