/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./tests/Test_hmc_EODWFRatio.cc Copyright (C) 2015-2016 Author: Peter Boyle Author: Guido Cossu This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #include int main(int argc, char **argv) { using namespace Grid; Grid_init(&argc, &argv); int threads = GridThread::GetThreads(); // Typedefs to simplify notation typedef WilsonImplR FermionImplPolicy; typedef MobiusFermionD FermionAction; typedef typename FermionAction::FermionField FermionField; typedef Grid::XmlReader Serialiser; //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: IntegratorParameters MD; // typedef GenericHMCRunner HMCWrapper; // MD.name = std::string("Leap Frog"); // typedef GenericHMCRunner HMCWrapper; // MD.name = std::string("Force Gradient"); typedef GenericHMCRunner HMCWrapper; MD.name = std::string("MinimumNorm2"); MD.MDsteps = 6; MD.trajL = 1.0; HMCparameters HMCparams; HMCparams.StartTrajectory = 1077; HMCparams.Trajectories = 1; HMCparams.NoMetropolisUntil= 0; // "[HotStart, ColdStart, TepidStart, CheckpointStart]\n"; // HMCparams.StartingType =std::string("ColdStart"); HMCparams.StartingType =std::string("CheckpointStart"); HMCparams.MD = MD; HMCWrapper TheHMC(HMCparams); // Grid from the command line arguments --grid and --mpi TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition CheckpointerParameters CPparams; CPparams.config_prefix = "ckpoint_DDHMC_lat"; CPparams.rng_prefix = "ckpoint_DDHMC_rng"; CPparams.saveInterval = 1; CPparams.format = "IEEE64BIG"; TheHMC.Resources.LoadNerscCheckpointer(CPparams); RNGModuleParameters RNGpar; RNGpar.serial_seeds = "1 2 3 4 5"; RNGpar.parallel_seeds = "6 7 8 9 10"; TheHMC.Resources.SetRNGSeeds(RNGpar); // Construct observables // here there is too much indirection typedef PlaquetteMod PlaqObs; TheHMC.Resources.AddObservable(); ////////////////////////////////////////////// const int Ls = 12; RealD M5 = 1.8; RealD b = 1.5; RealD c = 0.5; // Real beta = 2.31; // Real light_mass = 5.4e-4; Real beta = 2.13; Real light_mass = 7.8e-4; Real strange_mass = 0.02132; Real pv_mass = 1.0; // std::vector hasenbusch({ light_mass, 3.8e-3, 0.0145, 0.045, 0.108, 0.25, 0.51 , pv_mass }); std::vector hasenbusch({ light_mass, 0.0145, 0.045, 0.108, 0.25, 0.51 , pv_mass }); // FIXME: // Same in MC and MD // Need to mix precision too OneFlavourRationalParams SFRp; // Strange SFRp.lo = 4.0e-3; SFRp.hi = 90.0; SFRp.MaxIter = 60000; SFRp.tolerance= 1.0e-8; SFRp.mdtolerance= 1.0e-4; SFRp.degree = 12; SFRp.precision= 50; SFRp.BoundsCheckFreq=0; OneFlavourRationalParams OFRp; // Up/down OFRp.lo = 2.0e-5; OFRp.hi = 90.0; OFRp.MaxIter = 60000; OFRp.tolerance= 1.0e-7; OFRp.mdtolerance= 1.0e-4; // OFRp.degree = 20; converges // OFRp.degree = 16; OFRp.degree = 12; OFRp.precision= 80; OFRp.BoundsCheckFreq=0; auto GridPtr = TheHMC.Resources.GetCartesian(); auto GridRBPtr = TheHMC.Resources.GetRBCartesian(); //////////////////////////////////////////////////////////////// // Domain decomposed //////////////////////////////////////////////////////////////// Coordinate latt4 = GridPtr->GlobalDimensions(); Coordinate mpi = GridPtr->ProcessorGrid(); Coordinate shm; GlobalSharedMemory::GetShmDims(mpi,shm); Coordinate CommDim(Nd); for(int d=0;d1 ? 1 : 0; Coordinate NonDirichlet(Nd+1,0); Coordinate Dirichlet(Nd+1,0); Dirichlet[1] = CommDim[0]*latt4[0]/mpi[0] * shm[0]; Dirichlet[2] = CommDim[1]*latt4[1]/mpi[1] * shm[1]; Dirichlet[3] = CommDim[2]*latt4[2]/mpi[2] * shm[2]; Dirichlet[4] = CommDim[3]*latt4[3]/mpi[3] * shm[3]; Coordinate Block4(Nd); // Block4[0] = Dirichlet[1]; // Block4[1] = Dirichlet[2]; // Block4[2] = Dirichlet[3]; Block4[0] = 0; Block4[1] = 0; Block4[2] = 0; Block4[3] = Dirichlet[4]; int Width=3; TheHMC.Resources.SetMomentumFilter(new DDHMCFilter(Block4,Width)); ////////////////////////// // Fermion Grid ////////////////////////// auto FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtr); auto FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtr); IwasakiGaugeActionR GaugeAction(beta); // temporarily need a gauge field LatticeGaugeField U(GridPtr); std::cout << GridLogMessage << " Running the HMC "<< std::endl; TheHMC.ReadCommandLine(argc,argv); // params on CML or from param file TheHMC.initializeGaugeFieldAndRNGs(U); // These lines are unecessary if BC are all periodic std::vector boundary = {1,1,1,-1}; FermionAction::ImplParams Params(boundary); Params.dirichlet=NonDirichlet; FermionAction::ImplParams ParamsDir(boundary); ParamsDir.dirichlet=Dirichlet; // double StoppingCondition = 1e-14; // double MDStoppingCondition = 1e-9; double StoppingCondition = 1e-8; double MDStoppingCondition = 1e-6; double MaxCGIterations = 300000; ConjugateGradient CG(StoppingCondition,MaxCGIterations); ConjugateGradient MDCG(MDStoppingCondition,MaxCGIterations); //////////////////////////////////// // Collect actions //////////////////////////////////// ActionLevel Level1(1); ActionLevel Level2(4); ActionLevel Level3(8); //////////////////////////////////// // Strange action //////////////////////////////////// FermionAction StrangeOp (U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,strange_mass,M5,b,c, Params); FermionAction StrangePauliVillarsOp(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,pv_mass, M5,b,c, Params); FermionAction StrangeOpDir (U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,strange_mass,M5,b,c, ParamsDir); FermionAction StrangePauliVillarsOpDir(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,pv_mass, M5,b,c, ParamsDir); OneFlavourEvenOddRatioRationalPseudoFermionAction StrangePseudoFermionBdy(StrangeOpDir,StrangeOp,SFRp); OneFlavourEvenOddRatioRationalPseudoFermionAction StrangePseudoFermionLocal(StrangePauliVillarsOpDir,StrangeOpDir,SFRp); OneFlavourEvenOddRatioRationalPseudoFermionAction StrangePseudoFermionPVBdy(StrangePauliVillarsOp,StrangePauliVillarsOpDir,SFRp); Level1.push_back(&StrangePseudoFermionBdy); Level2.push_back(&StrangePseudoFermionLocal); Level1.push_back(&StrangePseudoFermionPVBdy); //////////////////////////////////// // up down action //////////////////////////////////// std::vector light_den; std::vector light_num; std::vector dirichlet_den; std::vector dirichlet_num; int n_hasenbusch = hasenbusch.size(); light_den.push_back(light_mass); dirichlet_den.push_back(0); for(int h=0;h Numerators; std::vector Denominators; std::vector *> Quotients; std::vector *> Bdys; for(int h=0;h(*Numerators[h],*Denominators[h],MDCG,CG)); } else { Bdys.push_back( new OneFlavourEvenOddRatioRationalPseudoFermionAction(*Numerators[h],*Denominators[h],OFRp)); Bdys.push_back( new OneFlavourEvenOddRatioRationalPseudoFermionAction(*Numerators[h],*Denominators[h],OFRp)); } } int nquo=Quotients.size(); Level1.push_back(Bdys[0]); Level1.push_back(Bdys[1]); for(int h=0;h SdagS(StrangeOp); HighBoundCheck(SdagS,vec,SFRp.hi); ChebyBoundsCheck(SdagS,vec,SFRp.lo,SFRp.hi); std::cout << "Strange inversion"<Mass() < UdagU(*Denominators[0]); HighBoundCheck(UdagU,vec,OFRp.hi); ChebyBoundsCheck(UdagU,vec,OFRp.lo,OFRp.hi); std::cout << "light inversion"< SddagSd(StrangeOpDir); HighBoundCheck(SddagSd,vec,SFRp.hi); ChebyBoundsCheck(SddagSd,vec,SFRp.lo,SFRp.hi); std::cout << "strange dirichlet inversion"<Mass()< UddagUd(*Numerators[0]); HighBoundCheck(UddagUd,vec,OFRp.hi); ChebyBoundsCheck(UddagUd,vec,OFRp.lo,OFRp.hi); std::cout << "light dirichlet inversion"< Cheby(bound,90.,order); FunctionHermOp OpCheby(Cheby,UddagUd); PlainHermOp Op (UddagUd); ImplicitlyRestartedLanczos IRL(OpCheby,Op,Nstop,Nk,Nm,resid,MaxIt); std::vector eval(Nm); std::vector evec(Nm,rbgrid); FermionField src(rbgrid);src = 1.0; IRL.calc(eval,evec,src,Nconv); FermionField tmp(rbgrid); FermionField ftmp(grid); FermionField ftmp4(grid4); for(int ev=0;ev Cheby(bound,90.,order); FunctionHermOp OpCheby(Cheby,UdagU); PlainHermOp Op (UdagU); ImplicitlyRestartedLanczos IRL(OpCheby,Op,Nstop,Nk,Nm,resid,MaxIt); std::vector eval(Nm); std::vector evec(Nm,rbgrid); FermionField src(rbgrid); src = 1.0; IRL.calc(eval,evec,src,Nconv); FermionField tmp(rbgrid); FermionField ftmp(grid); FermionField ftmp4(grid4); for(int e=0;e