/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./lib/qcd/action/fermion/WilsonKernels.cc Copyright (C) 2015 Author: Peter Boyle Author: Peter Boyle Author: paboyle This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #include namespace Grid { namespace QCD { int WilsonKernelsStatic::Opt; #ifdef QPX #include #include #include #include #endif void bgq_l1p_optimisation(int mode) { #ifdef QPX #undef L1P_CFG_PF_USR #define L1P_CFG_PF_USR (0x3fde8000108ll) /* (64 bit reg, 23 bits wide, user/unpriv) */ uint64_t cfg_pf_usr; if ( mode ) { cfg_pf_usr = L1P_CFG_PF_USR_ifetch_depth(0) | L1P_CFG_PF_USR_ifetch_max_footprint(1) | L1P_CFG_PF_USR_pf_stream_est_on_dcbt | L1P_CFG_PF_USR_pf_stream_establish_enable | L1P_CFG_PF_USR_pf_stream_optimistic | L1P_CFG_PF_USR_pf_adaptive_throttle(0xF) ; // if ( sizeof(Float) == sizeof(double) ) { cfg_pf_usr |= L1P_CFG_PF_USR_dfetch_depth(2)| L1P_CFG_PF_USR_dfetch_max_footprint(3) ; // } else { // cfg_pf_usr |= L1P_CFG_PF_USR_dfetch_depth(1)| L1P_CFG_PF_USR_dfetch_max_footprint(2) ; // } } else { cfg_pf_usr = L1P_CFG_PF_USR_dfetch_depth(1) | L1P_CFG_PF_USR_dfetch_max_footprint(2) | L1P_CFG_PF_USR_ifetch_depth(0) | L1P_CFG_PF_USR_ifetch_max_footprint(1) | L1P_CFG_PF_USR_pf_stream_est_on_dcbt | L1P_CFG_PF_USR_pf_stream_establish_enable | L1P_CFG_PF_USR_pf_stream_optimistic | L1P_CFG_PF_USR_pf_stream_prefetch_enable; } *((uint64_t *)L1P_CFG_PF_USR) = cfg_pf_usr; #endif } template WilsonKernels::WilsonKernels(const ImplParams &p) : Base(p){}; //////////////////////////////////////////// // Generic implementation; move to different file? //////////////////////////////////////////// template void WilsonKernels::DiracOptGenericDhopSiteDag(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor *buf, int sF, int sU, const FermionField &in, FermionField &out) { SiteHalfSpinor tmp; SiteHalfSpinor chi; SiteHalfSpinor *chi_p; SiteHalfSpinor Uchi; SiteSpinor result; StencilEntry *SE; int ptype; /////////////////////////// // Xp /////////////////////////// SE = st.GetEntry(ptype, Xp, sF); if (SE->_is_local) { chi_p = χ if (SE->_permute) { spProjXp(tmp, in._odata[SE->_offset]); permute(chi, tmp, ptype); } else { spProjXp(chi, in._odata[SE->_offset]); } } else { chi_p = &buf[SE->_offset]; } Impl::multLink(Uchi, U._odata[sU], *chi_p, Xp, SE, st); spReconXp(result, Uchi); /////////////////////////// // Yp /////////////////////////// SE = st.GetEntry(ptype, Yp, sF); if (SE->_is_local) { chi_p = χ if (SE->_permute) { spProjYp(tmp, in._odata[SE->_offset]); permute(chi, tmp, ptype); } else { spProjYp(chi, in._odata[SE->_offset]); } } else { chi_p = &buf[SE->_offset]; } Impl::multLink(Uchi, U._odata[sU], *chi_p, Yp, SE, st); accumReconYp(result, Uchi); /////////////////////////// // Zp /////////////////////////// SE = st.GetEntry(ptype, Zp, sF); if (SE->_is_local) { chi_p = χ if (SE->_permute) { spProjZp(tmp, in._odata[SE->_offset]); permute(chi, tmp, ptype); } else { spProjZp(chi, in._odata[SE->_offset]); } } else { chi_p = &buf[SE->_offset]; } Impl::multLink(Uchi, U._odata[sU], *chi_p, Zp, SE, st); accumReconZp(result, Uchi); /////////////////////////// // Tp /////////////////////////// SE = st.GetEntry(ptype, Tp, sF); if (SE->_is_local) { chi_p = χ if (SE->_permute) { spProjTp(tmp, in._odata[SE->_offset]); permute(chi, tmp, ptype); } else { spProjTp(chi, in._odata[SE->_offset]); } } else { chi_p = &buf[SE->_offset]; } Impl::multLink(Uchi, U._odata[sU], *chi_p, Tp, SE, st); accumReconTp(result, Uchi); /////////////////////////// // Xm /////////////////////////// SE = st.GetEntry(ptype, Xm, sF); if (SE->_is_local) { chi_p = χ if (SE->_permute) { spProjXm(tmp, in._odata[SE->_offset]); permute(chi, tmp, ptype); } else { spProjXm(chi, in._odata[SE->_offset]); } } else { chi_p = &buf[SE->_offset]; } Impl::multLink(Uchi, U._odata[sU], *chi_p, Xm, SE, st); accumReconXm(result, Uchi); /////////////////////////// // Ym /////////////////////////// SE = st.GetEntry(ptype, Ym, sF); if (SE->_is_local) { chi_p = χ if (SE->_permute) { spProjYm(tmp, in._odata[SE->_offset]); permute(chi, tmp, ptype); } else { spProjYm(chi, in._odata[SE->_offset]); } } else { chi_p = &buf[SE->_offset]; } Impl::multLink(Uchi, U._odata[sU], *chi_p, Ym, SE, st); accumReconYm(result, Uchi); /////////////////////////// // Zm /////////////////////////// SE = st.GetEntry(ptype, Zm, sF); if (SE->_is_local) { chi_p = χ if (SE->_permute) { spProjZm(tmp, in._odata[SE->_offset]); permute(chi, tmp, ptype); } else { spProjZm(chi, in._odata[SE->_offset]); } } else { chi_p = &buf[SE->_offset]; } Impl::multLink(Uchi, U._odata[sU], *chi_p, Zm, SE, st); accumReconZm(result, Uchi); /////////////////////////// // Tm /////////////////////////// SE = st.GetEntry(ptype, Tm, sF); if (SE->_is_local) { chi_p = χ if (SE->_permute) { spProjTm(tmp, in._odata[SE->_offset]); permute(chi, tmp, ptype); } else { spProjTm(chi, in._odata[SE->_offset]); } } else { chi_p = &buf[SE->_offset]; } Impl::multLink(Uchi, U._odata[sU], *chi_p, Tm, SE, st); accumReconTm(result, Uchi); vstream(out._odata[sF], result); }; // Need controls to do interior, exterior, or both template void WilsonKernels::DiracOptGenericDhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor *buf, int sF, int sU, const FermionField &in, FermionField &out) { SiteHalfSpinor tmp; SiteHalfSpinor chi; SiteHalfSpinor *chi_p; SiteHalfSpinor Uchi; SiteSpinor result; StencilEntry *SE; int ptype; /////////////////////////// // Xp /////////////////////////// SE = st.GetEntry(ptype, Xm, sF); if (SE->_is_local) { chi_p = χ if (SE->_permute) { spProjXp(tmp, in._odata[SE->_offset]); permute(chi, tmp, ptype); } else { spProjXp(chi, in._odata[SE->_offset]); } } else { chi_p = &buf[SE->_offset]; } Impl::multLink(Uchi, U._odata[sU], *chi_p, Xm, SE, st); spReconXp(result, Uchi); /////////////////////////// // Yp /////////////////////////// SE = st.GetEntry(ptype, Ym, sF); if (SE->_is_local) { chi_p = χ if (SE->_permute) { spProjYp(tmp, in._odata[SE->_offset]); permute(chi, tmp, ptype); } else { spProjYp(chi, in._odata[SE->_offset]); } } else { chi_p = &buf[SE->_offset]; } Impl::multLink(Uchi, U._odata[sU], *chi_p, Ym, SE, st); accumReconYp(result, Uchi); /////////////////////////// // Zp /////////////////////////// SE = st.GetEntry(ptype, Zm, sF); if (SE->_is_local) { chi_p = χ if (SE->_permute) { spProjZp(tmp, in._odata[SE->_offset]); permute(chi, tmp, ptype); } else { spProjZp(chi, in._odata[SE->_offset]); } } else { chi_p = &buf[SE->_offset]; } Impl::multLink(Uchi, U._odata[sU], *chi_p, Zm, SE, st); accumReconZp(result, Uchi); /////////////////////////// // Tp /////////////////////////// SE = st.GetEntry(ptype, Tm, sF); if (SE->_is_local) { chi_p = χ if (SE->_permute) { spProjTp(tmp, in._odata[SE->_offset]); permute(chi, tmp, ptype); } else { spProjTp(chi, in._odata[SE->_offset]); } } else { chi_p = &buf[SE->_offset]; } Impl::multLink(Uchi, U._odata[sU], *chi_p, Tm, SE, st); accumReconTp(result, Uchi); /////////////////////////// // Xm /////////////////////////// SE = st.GetEntry(ptype, Xp, sF); if (SE->_is_local) { chi_p = χ if (SE->_permute) { spProjXm(tmp, in._odata[SE->_offset]); permute(chi, tmp, ptype); } else { spProjXm(chi, in._odata[SE->_offset]); } } else { chi_p = &buf[SE->_offset]; } Impl::multLink(Uchi, U._odata[sU], *chi_p, Xp, SE, st); accumReconXm(result, Uchi); /////////////////////////// // Ym /////////////////////////// SE = st.GetEntry(ptype, Yp, sF); if (SE->_is_local) { chi_p = χ if (SE->_permute) { spProjYm(tmp, in._odata[SE->_offset]); permute(chi, tmp, ptype); } else { spProjYm(chi, in._odata[SE->_offset]); } } else { chi_p = &buf[SE->_offset]; } Impl::multLink(Uchi, U._odata[sU], *chi_p, Yp, SE, st); accumReconYm(result, Uchi); /////////////////////////// // Zm /////////////////////////// SE = st.GetEntry(ptype, Zp, sF); if (SE->_is_local) { chi_p = χ if (SE->_permute) { spProjZm(tmp, in._odata[SE->_offset]); permute(chi, tmp, ptype); } else { spProjZm(chi, in._odata[SE->_offset]); } } else { chi_p = &buf[SE->_offset]; } Impl::multLink(Uchi, U._odata[sU], *chi_p, Zp, SE, st); accumReconZm(result, Uchi); /////////////////////////// // Tm /////////////////////////// SE = st.GetEntry(ptype, Tp, sF); if (SE->_is_local) { chi_p = χ if (SE->_permute) { spProjTm(tmp, in._odata[SE->_offset]); permute(chi, tmp, ptype); } else { spProjTm(chi, in._odata[SE->_offset]); } } else { chi_p = &buf[SE->_offset]; } Impl::multLink(Uchi, U._odata[sU], *chi_p, Tp, SE, st); accumReconTm(result, Uchi); vstream(out._odata[sF], result); }; template void WilsonKernels::DiracOptDhopDir( StencilImpl &st, DoubledGaugeField &U,SiteHalfSpinor *buf, int sF, int sU, const FermionField &in, FermionField &out, int dir, int gamma) { SiteHalfSpinor tmp; SiteHalfSpinor chi; SiteSpinor result; SiteHalfSpinor Uchi; StencilEntry *SE; int ptype; SE = st.GetEntry(ptype, dir, sF); // Xp if (gamma == Xp) { if (SE->_is_local && SE->_permute) { spProjXp(tmp, in._odata[SE->_offset]); permute(chi, tmp, ptype); } else if (SE->_is_local) { spProjXp(chi, in._odata[SE->_offset]); } else { chi = buf[SE->_offset]; } Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st); spReconXp(result, Uchi); } // Yp if (gamma == Yp) { if (SE->_is_local && SE->_permute) { spProjYp(tmp, in._odata[SE->_offset]); permute(chi, tmp, ptype); } else if (SE->_is_local) { spProjYp(chi, in._odata[SE->_offset]); } else { chi = buf[SE->_offset]; } Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st); spReconYp(result, Uchi); } // Zp if (gamma == Zp) { if (SE->_is_local && SE->_permute) { spProjZp(tmp, in._odata[SE->_offset]); permute(chi, tmp, ptype); } else if (SE->_is_local) { spProjZp(chi, in._odata[SE->_offset]); } else { chi = buf[SE->_offset]; } Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st); spReconZp(result, Uchi); } // Tp if (gamma == Tp) { if (SE->_is_local && SE->_permute) { spProjTp(tmp, in._odata[SE->_offset]); permute(chi, tmp, ptype); } else if (SE->_is_local) { spProjTp(chi, in._odata[SE->_offset]); } else { chi = buf[SE->_offset]; } Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st); spReconTp(result, Uchi); } // Xm if (gamma == Xm) { if (SE->_is_local && SE->_permute) { spProjXm(tmp, in._odata[SE->_offset]); permute(chi, tmp, ptype); } else if (SE->_is_local) { spProjXm(chi, in._odata[SE->_offset]); } else { chi = buf[SE->_offset]; } Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st); spReconXm(result, Uchi); } // Ym if (gamma == Ym) { if (SE->_is_local && SE->_permute) { spProjYm(tmp, in._odata[SE->_offset]); permute(chi, tmp, ptype); } else if (SE->_is_local) { spProjYm(chi, in._odata[SE->_offset]); } else { chi = buf[SE->_offset]; } Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st); spReconYm(result, Uchi); } // Zm if (gamma == Zm) { if (SE->_is_local && SE->_permute) { spProjZm(tmp, in._odata[SE->_offset]); permute(chi, tmp, ptype); } else if (SE->_is_local) { spProjZm(chi, in._odata[SE->_offset]); } else { chi = buf[SE->_offset]; } Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st); spReconZm(result, Uchi); } // Tm if (gamma == Tm) { if (SE->_is_local && SE->_permute) { spProjTm(tmp, in._odata[SE->_offset]); permute(chi, tmp, ptype); } else if (SE->_is_local) { spProjTm(chi, in._odata[SE->_offset]); } else { chi = buf[SE->_offset]; } Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st); spReconTm(result, Uchi); } vstream(out._odata[sF], result); } FermOpTemplateInstantiate(WilsonKernels); AdjointFermOpTemplateInstantiate(WilsonKernels); TwoIndexFermOpTemplateInstantiate(WilsonKernels); }}