/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./tests/Test_dwf_hdcr.cc Copyright (C) 2015 Author: Antonin Portelli <antonin.portelli@me.com> Author: Peter Boyle <paboyle@ph.ed.ac.uk> Author: paboyle <paboyle@ph.ed.ac.uk> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #include <Grid.h> #include <algorithms/iterative/PrecGeneralisedConjugateResidual.h> //#include <algorithms/iterative/PrecConjugateResidual.h> using namespace std; using namespace Grid; using namespace Grid::QCD; class myclass: Serializable { public: GRID_SERIALIZABLE_CLASS_MEMBERS(myclass, int, domaindecompose, int, domainsize, int, order, int, Ls, double, mq, double, lo, double, hi, int, steps); myclass(){}; }; myclass params; RealD InverseApproximation(RealD x){ return 1.0/x; } template<class Fobj,class CComplex,int nbasis, class Matrix> class MultiGridPreconditioner : public LinearFunction< Lattice<Fobj> > { public: typedef Aggregation<Fobj,CComplex,nbasis> Aggregates; typedef CoarsenedMatrix<Fobj,CComplex,nbasis> CoarseOperator; typedef typename Aggregation<Fobj,CComplex,nbasis>::siteVector siteVector; typedef typename Aggregation<Fobj,CComplex,nbasis>::CoarseScalar CoarseScalar; typedef typename Aggregation<Fobj,CComplex,nbasis>::CoarseVector CoarseVector; typedef typename Aggregation<Fobj,CComplex,nbasis>::CoarseMatrix CoarseMatrix; typedef typename Aggregation<Fobj,CComplex,nbasis>::FineField FineField; typedef LinearOperatorBase<FineField> FineOperator; Aggregates & _Aggregates; CoarseOperator & _CoarseOperator; Matrix & _FineMatrix; FineOperator & _FineOperator; Matrix & _SmootherMatrix; FineOperator & _SmootherOperator; // Constructor MultiGridPreconditioner(Aggregates &Agg, CoarseOperator &Coarse, FineOperator &Fine,Matrix &FineMatrix, FineOperator &Smooth,Matrix &SmootherMatrix) : _Aggregates(Agg), _CoarseOperator(Coarse), _FineOperator(Fine), _FineMatrix(FineMatrix), _SmootherOperator(Smooth), _SmootherMatrix(SmootherMatrix) { } void PowerMethod(const FineField &in) { FineField p1(in._grid); FineField p2(in._grid); MdagMLinearOperator<Matrix,FineField> fMdagMOp(_FineMatrix); p1=in; RealD absp2; for(int i=0;i<20;i++){ RealD absp1=std::sqrt(norm2(p1)); fMdagMOp.HermOp(p1,p2);// this is the G5 herm bit // _FineOperator.Op(p1,p2);// this is the G5 herm bit RealD absp2=std::sqrt(norm2(p2)); if(i%10==9) std::cout<<GridLogMessage << "Power method on mdagm "<<i<<" " << absp2/absp1<<std::endl; p1=p2*(1.0/std::sqrt(absp2)); } } void operator()(const FineField &in, FineField & out) { if ( params.domaindecompose ) { operatorSAP(in,out); } else { operatorCheby(in,out); } } //////////////////////////////////////////////////////////////////////// // ADEF2: [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min] // ADEF1: [MP+Q ] in =M [1 - A Q] in + Q in //////////////////////////////////////////////////////////////////////// #if 1 void operatorADEF2(const FineField &in, FineField & out) { CoarseVector Csrc(_CoarseOperator.Grid()); CoarseVector Ctmp(_CoarseOperator.Grid()); CoarseVector Csol(_CoarseOperator.Grid()); ConjugateGradient<CoarseVector> CG(1.0e-10,100000); ConjugateGradient<FineField> fCG(3.0e-2,1000); HermitianLinearOperator<CoarseOperator,CoarseVector> HermOp(_CoarseOperator); MdagMLinearOperator<CoarseOperator,CoarseVector> MdagMOp(_CoarseOperator); MdagMLinearOperator<Matrix,FineField> fMdagMOp(_FineMatrix); FineField tmp(in._grid); FineField res(in._grid); FineField Min(in._grid); // Monitor completeness of low mode space _Aggregates.ProjectToSubspace (Csrc,in); _Aggregates.PromoteFromSubspace(Csrc,out); std::cout<<GridLogMessage<<"Coarse Grid Preconditioner\nCompleteness in: "<<std::sqrt(norm2(out)/norm2(in))<<std::endl; // [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min] _FineOperator.Op(in,tmp);// this is the G5 herm bit fCG(fMdagMOp,tmp,Min); // solves MdagM = g5 M g5M // Monitor completeness of low mode space _Aggregates.ProjectToSubspace (Csrc,Min); _Aggregates.PromoteFromSubspace(Csrc,out); std::cout<<GridLogMessage<<"Completeness Min: "<<std::sqrt(norm2(out)/norm2(Min))<<std::endl; _FineOperator.Op(Min,tmp); tmp = in - tmp; // in - A Min Csol=zero; _Aggregates.ProjectToSubspace (Csrc,tmp); HermOp.AdjOp(Csrc,Ctmp);// Normal equations CG(MdagMOp,Ctmp,Csol); HermOp.Op(Csol,Ctmp); Ctmp=Ctmp-Csrc; std::cout<<GridLogMessage<<"coarse space true residual "<<std::sqrt(norm2(Ctmp)/norm2(Csrc))<<std::endl; _Aggregates.PromoteFromSubspace(Csol,out); _FineOperator.Op(out,res); res=res-tmp; std::cout<<GridLogMessage<<"promoted sol residual "<<std::sqrt(norm2(res)/norm2(tmp))<<std::endl; _Aggregates.ProjectToSubspace (Csrc,res); std::cout<<GridLogMessage<<"coarse space proj of residual "<<norm2(Csrc)<<std::endl; out = out+Min; // additive coarse space correction // out = Min; // no additive coarse space correction _FineOperator.Op(out,tmp); tmp=tmp-in; // tmp is new residual std::cout<<GridLogMessage<< " Preconditioner in " << norm2(in)<<std::endl; std::cout<<GridLogMessage<< " Preconditioner out " << norm2(out)<<std::endl; std::cout<<GridLogMessage<<"preconditioner thinks residual is "<<std::sqrt(norm2(tmp)/norm2(in))<<std::endl; } #endif // ADEF1: [MP+Q ] in =M [1 - A Q] in + Q in #if 1 void operatorADEF1(const FineField &in, FineField & out) { CoarseVector Csrc(_CoarseOperator.Grid()); CoarseVector Ctmp(_CoarseOperator.Grid()); CoarseVector Csol(_CoarseOperator.Grid()); Csol=zero; ConjugateGradient<CoarseVector> CG(1.0e-10,100000); ConjugateGradient<FineField> fCG(3.0e-2,1000); HermitianLinearOperator<CoarseOperator,CoarseVector> HermOp(_CoarseOperator); MdagMLinearOperator<CoarseOperator,CoarseVector> MdagMOp(_CoarseOperator); ShiftedMdagMLinearOperator<Matrix,FineField> fMdagMOp(_FineMatrix,0.1); FineField tmp(in._grid); FineField res(in._grid); FineField Qin(in._grid); // Monitor completeness of low mode space // _Aggregates.ProjectToSubspace (Csrc,in); // _Aggregates.PromoteFromSubspace(Csrc,out); // std::cout<<GridLogMessage<<"Coarse Grid Preconditioner\nCompleteness in: "<<std::sqrt(norm2(out)/norm2(in))<<std::endl; _Aggregates.ProjectToSubspace (Csrc,in); HermOp.AdjOp(Csrc,Ctmp);// Normal equations CG(MdagMOp,Ctmp,Csol); _Aggregates.PromoteFromSubspace(Csol,Qin); // Qin=0; _FineOperator.Op(Qin,tmp);// A Q in tmp = in - tmp; // in - A Q in _FineOperator.Op(tmp,res);// this is the G5 herm bit fCG(fMdagMOp,res,out); // solves MdagM = g5 M g5M out = out + Qin; _FineOperator.Op(out,tmp); tmp=tmp-in; // tmp is new residual std::cout<<GridLogMessage<<"preconditioner thinks residual is "<<std::sqrt(norm2(tmp)/norm2(in))<<std::endl; } #endif void SAP (const FineField & src,FineField & psi){ Lattice<iScalar<vInteger> > coor(src._grid); Lattice<iScalar<vInteger> > subset(src._grid); FineField r(src._grid); FineField zz(src._grid); zz=zero; FineField vec1(src._grid); FineField vec2(src._grid); const Integer block=params.domainsize; subset=zero; for(int mu=0;mu<Nd;mu++){ LatticeCoordinate(coor,mu+1); coor = div(coor,block); subset = subset+coor; } subset = mod(subset,(Integer)2); ShiftedMdagMLinearOperator<Matrix,FineField> fMdagMOp(_SmootherMatrix,0.0); Chebyshev<FineField> Cheby (params.lo,params.hi,params.order,InverseApproximation); RealD resid; for(int i=0;i<params.steps;i++){ // Even domain residual _FineOperator.Op(psi,vec1);// this is the G5 herm bit r= src - vec1 ; resid = norm2(r) /norm2(src); std::cout << "SAP "<<i<<" resid "<<resid<<std::endl; // Even domain solve r= where(subset==(Integer)0,r,zz); _SmootherOperator.AdjOp(r,vec1); Cheby(fMdagMOp,vec1,vec2); // solves MdagM = g5 M g5M psi = psi + vec2; // Odd domain residual _FineOperator.Op(psi,vec1);// this is the G5 herm bit r= src - vec1 ; r= where(subset==(Integer)1,r,zz); resid = norm2(r) /norm2(src); std::cout << "SAP "<<i<<" resid "<<resid<<std::endl; // Odd domain solve _SmootherOperator.AdjOp(r,vec1); Cheby(fMdagMOp,vec1,vec2); // solves MdagM = g5 M g5M psi = psi + vec2; _FineOperator.Op(psi,vec1);// this is the G5 herm bit r= src - vec1 ; resid = norm2(r) /norm2(src); std::cout << "SAP "<<i<<" resid "<<resid<<std::endl; } }; void SmootherTest (const FineField & in){ FineField vec1(in._grid); FineField vec2(in._grid); RealD lo[3] = { 0.5, 1.0, 2.0}; // MdagMLinearOperator<Matrix,FineField> fMdagMOp(_FineMatrix); ShiftedMdagMLinearOperator<Matrix,FineField> fMdagMOp(_SmootherMatrix,0.0); RealD Ni,r; Ni = norm2(in); for(int ilo=0;ilo<3;ilo++){ for(int ord=5;ord<50;ord*=2){ _SmootherOperator.AdjOp(in,vec1); Chebyshev<FineField> Cheby (lo[ilo],70.0,ord,InverseApproximation); Cheby(fMdagMOp,vec1,vec2); // solves MdagM = g5 M g5M _FineOperator.Op(vec2,vec1);// this is the G5 herm bit vec1 = in - vec1; // tmp = in - A Min r=norm2(vec1); std::cout<<GridLogMessage << "Smoother resid "<<std::sqrt(r/Ni)<<std::endl; } } } void operatorCheby(const FineField &in, FineField & out) { CoarseVector Csrc(_CoarseOperator.Grid()); CoarseVector Ctmp(_CoarseOperator.Grid()); CoarseVector Csol(_CoarseOperator.Grid()); Csol=zero; ConjugateGradient<CoarseVector> CG(3.0e-3,100000); // ConjugateGradient<FineField> fCG(3.0e-2,1000); HermitianLinearOperator<CoarseOperator,CoarseVector> HermOp(_CoarseOperator); MdagMLinearOperator<CoarseOperator,CoarseVector> MdagMOp(_CoarseOperator); // MdagMLinearOperator<Matrix,FineField> fMdagMOp(_FineMatrix); ShiftedMdagMLinearOperator<Matrix,FineField> fMdagMOp(_SmootherMatrix,0.0); FineField vec1(in._grid); FineField vec2(in._grid); // Chebyshev<FineField> Cheby (0.5,70.0,30,InverseApproximation); // Chebyshev<FineField> ChebyAccu(0.5,70.0,30,InverseApproximation); Chebyshev<FineField> Cheby (params.lo,params.hi,params.order,InverseApproximation); Chebyshev<FineField> ChebyAccu(params.lo,params.hi,params.order,InverseApproximation); // Cheby.JacksonSmooth(); // ChebyAccu.JacksonSmooth(); // _Aggregates.ProjectToSubspace (Csrc,in); // _Aggregates.PromoteFromSubspace(Csrc,out); // std::cout<<GridLogMessage<<"Completeness: "<<std::sqrt(norm2(out)/norm2(in))<<std::endl; // ofstream fout("smoother"); // Cheby.csv(fout); // V11 multigrid. // Use a fixed chebyshev and hope hermiticity helps. // To make a working smoother for indefinite operator // must multiply by "Mdag" (ouch loses all low mode content) // and apply to poly approx of (mdagm)^-1. // so that we end up with an odd polynomial. RealD Ni = norm2(in); _SmootherOperator.AdjOp(in,vec1);// this is the G5 herm bit ChebyAccu(fMdagMOp,vec1,out); // solves MdagM = g5 M g5M std::cout<<GridLogMessage << "Smoother norm "<<norm2(out)<<std::endl; // Update with residual for out _FineOperator.Op(out,vec1);// this is the G5 herm bit vec1 = in - vec1; // tmp = in - A Min RealD r = norm2(vec1); std::cout<<GridLogMessage << "Smoother resid "<<std::sqrt(r/Ni)<< " " << r << " " << Ni <<std::endl; _Aggregates.ProjectToSubspace (Csrc,vec1); HermOp.AdjOp(Csrc,Ctmp);// Normal equations CG(MdagMOp,Ctmp,Csol); _Aggregates.PromoteFromSubspace(Csol,vec1); // Ass^{-1} [in - A Min]_s // Q = Q[in - A Min] out = out+vec1; // Three preconditioner smoothing -- hermitian if C3 = C1 // Recompute error _FineOperator.Op(out,vec1);// this is the G5 herm bit vec1 = in - vec1; // tmp = in - A Min r=norm2(vec1); std::cout<<GridLogMessage << "Coarse resid "<<std::sqrt(r/Ni)<<std::endl; // Reapply smoother _SmootherOperator.Op(vec1,vec2); // this is the G5 herm bit ChebyAccu(fMdagMOp,vec2,vec1); // solves MdagM = g5 M g5M out =out+vec1; vec1 = in - vec1; // tmp = in - A Min r=norm2(vec1); std::cout<<GridLogMessage << "Smoother resid "<<std::sqrt(r/Ni)<<std::endl; } void operatorSAP(const FineField &in, FineField & out) { CoarseVector Csrc(_CoarseOperator.Grid()); CoarseVector Ctmp(_CoarseOperator.Grid()); CoarseVector Csol(_CoarseOperator.Grid()); Csol=zero; ConjugateGradient<CoarseVector> CG(1.0e-3,100000); HermitianLinearOperator<CoarseOperator,CoarseVector> HermOp(_CoarseOperator); MdagMLinearOperator<CoarseOperator,CoarseVector> MdagMOp(_CoarseOperator); FineField vec1(in._grid); FineField vec2(in._grid); _Aggregates.ProjectToSubspace (Csrc,in); _Aggregates.PromoteFromSubspace(Csrc,out); std::cout<<GridLogMessage<<"Completeness: "<<std::sqrt(norm2(out)/norm2(in))<<std::endl; // To make a working smoother for indefinite operator // must multiply by "Mdag" (ouch loses all low mode content) // and apply to poly approx of (mdagm)^-1. // so that we end up with an odd polynomial. SAP(in,out); // Update with residual for out _FineOperator.Op(out,vec1);// this is the G5 herm bit vec1 = in - vec1; // tmp = in - A Min RealD r = norm2(vec1); RealD Ni = norm2(in); std::cout<<GridLogMessage << "SAP resid "<<std::sqrt(r/Ni)<< " " << r << " " << Ni <<std::endl; _Aggregates.ProjectToSubspace (Csrc,vec1); HermOp.AdjOp(Csrc,Ctmp);// Normal equations CG(MdagMOp,Ctmp,Csol); _Aggregates.PromoteFromSubspace(Csol,vec1); // Ass^{-1} [in - A Min]_s // Q = Q[in - A Min] out = out+vec1; // Three preconditioner smoothing -- hermitian if C3 = C1 // Recompute error _FineOperator.Op(out,vec1);// this is the G5 herm bit vec1 = in - vec1; // tmp = in - A Min r=norm2(vec1); std::cout<<GridLogMessage << "Coarse resid "<<std::sqrt(r/Ni)<<std::endl; // Reapply smoother SAP(vec1,vec2); out =out+vec2; // Update with residual for out _FineOperator.Op(out,vec1);// this is the G5 herm bit vec1 = in - vec1; // tmp = in - A Min r = norm2(vec1); Ni = norm2(in); std::cout<<GridLogMessage << "SAP resid(post) "<<std::sqrt(r/Ni)<< " " << r << " " << Ni <<std::endl; } }; int main (int argc, char ** argv) { Grid_init(&argc,&argv); XmlReader RD("params.xml"); read(RD,"params",params); std::cout<<"Params: Order "<<params.order<<"["<<params.lo<<","<<params.hi<<"]"<< " steps "<<params.steps<<std::endl; const int Ls=params.Ls; GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi()); GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid); GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid); GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid); /////////////////////////////////////////////////// // Construct a coarsened grid; utility for this? /////////////////////////////////////////////////// std::vector<int> block ({2,2,2,2}); const int nbasis= 32; std::vector<int> clatt = GridDefaultLatt(); for(int d=0;d<clatt.size();d++){ clatt[d] = clatt[d]/block[d]; } GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());; GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d); std::vector<int> seeds4({1,2,3,4}); std::vector<int> seeds5({5,6,7,8}); std::vector<int> cseeds({5,6,7,8}); GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5); GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4); GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds); Gamma g5(Gamma::Gamma5); LatticeFermion src(FGrid); gaussian(RNG5,src);// src=src+g5*src; LatticeFermion result(FGrid); result=zero; LatticeFermion ref(FGrid); ref=zero; LatticeFermion tmp(FGrid); LatticeFermion err(FGrid); LatticeGaugeField Umu(UGrid); LatticeGaugeField UmuDD(UGrid); LatticeColourMatrix U(UGrid); LatticeColourMatrix zz(UGrid); NerscField header; std::string file("./ckpoint_lat.4000"); NerscIO::readConfiguration(Umu,header,file); if ( params.domaindecompose ) { Lattice<iScalar<vInteger> > coor(UGrid); zz=zero; for(int mu=0;mu<Nd;mu++){ LatticeCoordinate(coor,mu); U = PeekIndex<LorentzIndex>(Umu,mu); U = where(mod(coor,params.domainsize)==(Integer)0,zz,U); PokeIndex<LorentzIndex>(UmuDD,U,mu); } } else { UmuDD = Umu; } // SU3::ColdConfiguration(RNG4,Umu); // SU3::TepidConfiguration(RNG4,Umu); // SU3::HotConfiguration(RNG4,Umu); // Umu=zero; RealD mass=params.mq; RealD M5=1.8; std::cout<<GridLogMessage << "**************************************************"<< std::endl; std::cout<<GridLogMessage << "Building g5R5 hermitian DWF operator" <<std::endl; std::cout<<GridLogMessage << "**************************************************"<< std::endl; DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5); DomainWallFermionR DdwfDD(UmuDD,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5); typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace; typedef CoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> CoarseOperator; typedef CoarseOperator::CoarseVector CoarseVector; std::cout<<GridLogMessage << "**************************************************"<< std::endl; std::cout<<GridLogMessage << "Calling Aggregation class to build subspace" <<std::endl; std::cout<<GridLogMessage << "**************************************************"<< std::endl; MdagMLinearOperator<DomainWallFermionR,LatticeFermion> HermDefOp(Ddwf); Subspace Aggregates(Coarse5d,FGrid); // Aggregates.CreateSubspace(RNG5,HermDefOp,nbasis); assert ( (nbasis & 0x1)==0); int nb=nbasis/2; std::cout<<GridLogMessage << " nbasis/2 = "<<nb<<std::endl; // Aggregates.CreateSubspace(RNG5,HermDefOp,nb); Aggregates.CreateSubspaceLanczos(RNG5,HermDefOp,nb); for(int n=0;n<nb;n++){ G5R5(Aggregates.subspace[n+nb],Aggregates.subspace[n]); std::cout<<GridLogMessage<<n<<" subspace "<<norm2(Aggregates.subspace[n+nb])<<" "<<norm2(Aggregates.subspace[n]) <<std::endl; } for(int n=0;n<nbasis;n++){ std::cout<<GridLogMessage << "vec["<<n<<"] = "<<norm2(Aggregates.subspace[n]) <<std::endl; } // for(int i=0;i<nbasis;i++){ // result = Aggregates.subspace[i]; // Aggregates.subspace[i]=result+g5*result; // } result=zero; std::cout<<GridLogMessage << "**************************************************"<< std::endl; std::cout<<GridLogMessage << "Building coarse representation of Indef operator" <<std::endl; std::cout<<GridLogMessage << "**************************************************"<< std::endl; Gamma5R5HermitianLinearOperator<DomainWallFermionR,LatticeFermion> HermIndefOp(Ddwf); Gamma5R5HermitianLinearOperator<DomainWallFermionR,LatticeFermion> HermIndefOpDD(DdwfDD); CoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LDOp(*Coarse5d); LDOp.CoarsenOperator(FGrid,HermIndefOp,Aggregates); std::cout<<GridLogMessage << "**************************************************"<< std::endl; std::cout<<GridLogMessage << "Testing some coarse space solvers " <<std::endl; std::cout<<GridLogMessage << "**************************************************"<< std::endl; CoarseVector c_src (Coarse5d); CoarseVector c_res (Coarse5d); gaussian(CRNG,c_src); c_res=zero; std::cout<<GridLogMessage << "**************************************************"<< std::endl; std::cout<<GridLogMessage << "Solving posdef-CG on coarse space "<< std::endl; std::cout<<GridLogMessage << "**************************************************"<< std::endl; MdagMLinearOperator<CoarseOperator,CoarseVector> PosdefLdop(LDOp); ConjugateGradient<CoarseVector> CG(1.0e-6,100000); // CG(PosdefLdop,c_src,c_res); // std::cout<<GridLogMessage << "**************************************************"<< std::endl; // std::cout<<GridLogMessage << "Solving indef-MCR on coarse space "<< std::endl; // std::cout<<GridLogMessage << "**************************************************"<< std::endl; // HermitianLinearOperator<CoarseOperator,CoarseVector> HermIndefLdop(LDOp); // ConjugateResidual<CoarseVector> MCR(1.0e-6,100000); //MCR(HermIndefLdop,c_src,c_res); std::cout<<GridLogMessage << "**************************************************"<< std::endl; std::cout<<GridLogMessage << "Building deflation preconditioner "<< std::endl; std::cout<<GridLogMessage << "**************************************************"<< std::endl; MultiGridPreconditioner <vSpinColourVector,vTComplex,nbasis,DomainWallFermionR> Precon (Aggregates, LDOp, HermIndefOp,Ddwf, HermIndefOp,Ddwf); MultiGridPreconditioner <vSpinColourVector,vTComplex,nbasis,DomainWallFermionR> PreconDD(Aggregates, LDOp, HermIndefOp,Ddwf, HermIndefOpDD,DdwfDD); TrivialPrecon<LatticeFermion> simple; std::cout<<GridLogMessage << "**************************************************"<< std::endl; std::cout<<GridLogMessage << "Testing smoother efficacy"<< std::endl; std::cout<<GridLogMessage << "**************************************************"<< std::endl; // Precon.SmootherTest(src); std::cout<<GridLogMessage << "**************************************************"<< std::endl; std::cout<<GridLogMessage << "Testing DD smoother efficacy"<< std::endl; std::cout<<GridLogMessage << "**************************************************"<< std::endl; // PreconDD.SmootherTest(src); std::cout<<GridLogMessage << "**************************************************"<< std::endl; std::cout<<GridLogMessage << "Testing SAP smoother efficacy"<< std::endl; std::cout<<GridLogMessage << "**************************************************"<< std::endl; // PreconDD.SAP(src,result); std::cout<<GridLogMessage << "**************************************************"<< std::endl; std::cout<<GridLogMessage << "Unprec CG "<< std::endl; std::cout<<GridLogMessage << "**************************************************"<< std::endl; // TrivialPrecon<LatticeFermion> simple; // ConjugateGradient<LatticeFermion> fCG(1.0e-8,100000); // fCG(HermDefOp,src,result); // exit(0); std::cout<<GridLogMessage << "**************************************************"<< std::endl; std::cout<<GridLogMessage << "Testing GCR on indef matrix "<< std::endl; std::cout<<GridLogMessage << "**************************************************"<< std::endl; // PrecGeneralisedConjugateResidual<LatticeFermion> UPGCR(1.0e-8,100000,simple,8,128); // UPGCR(HermIndefOp,src,result); /// Get themax eval std::cout<<GridLogMessage << "**************************************************"<< std::endl; std::cout<<GridLogMessage <<" Applying power method to find spectral range "<<std::endl; std::cout<<GridLogMessage << "**************************************************"<< std::endl; Precon.PowerMethod(src); std::cout<<GridLogMessage << "**************************************************"<< std::endl; std::cout<<GridLogMessage << "Building a two level DDPGCR "<< std::endl; std::cout<<GridLogMessage << "**************************************************"<< std::endl; // PrecGeneralisedConjugateResidual<LatticeFermion> PGCRDD(1.0e-8,100000,PreconDD,8,128); // result=zero; // std::cout<<GridLogMessage<<"checking norm src "<<norm2(src)<<std::endl; // PGCRDD(HermIndefOp,src,result); std::cout<<GridLogMessage << "**************************************************"<< std::endl; std::cout<<GridLogMessage << "Building a two level PGCR "<< std::endl; std::cout<<GridLogMessage << "**************************************************"<< std::endl; PrecGeneralisedConjugateResidual<LatticeFermion> PGCR(1.0e-8,100000,Precon,8,8); std::cout<<GridLogMessage<<"checking norm src "<<norm2(src)<<std::endl; result=zero; PGCR(HermIndefOp,src,result); std::cout<<GridLogMessage << "**************************************************"<< std::endl; std::cout<<GridLogMessage << "Red Black Prec CG "<< std::endl; std::cout<<GridLogMessage << "**************************************************"<< std::endl; SchurDiagMooeeOperator<DomainWallFermionR,LatticeFermion> HermOpEO(Ddwf); ConjugateGradient<LatticeFermion> pCG(1.0e-8,10000); LatticeFermion src_o(FrbGrid); LatticeFermion result_o(FrbGrid); pickCheckerboard(Odd,src_o,src); result_o=zero; pCG(HermOpEO,src_o,result_o); std::cout<<GridLogMessage << "**************************************************"<< std::endl; std::cout<<GridLogMessage << "Done "<< std::endl; std::cout<<GridLogMessage << "**************************************************"<< std::endl; Grid_finalize(); }