/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: Tests/Hadrons/Test_hadrons_distil.cc Copyright (C) 2015-2019 Author: Felix Erben Author: Michael Marshall This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #include #include #include using namespace Grid; using namespace Hadrons; ///////////////////////////////////////////////////////////// // Test creation of laplacian eigenvectors ///////////////////////////////////////////////////////////// void test_Global(Application &application) { // global parameters Application::GlobalPar globalPar; globalPar.trajCounter.start = 1500; globalPar.trajCounter.end = 1520; globalPar.trajCounter.step = 20; globalPar.runId = "test"; application.setPar(globalPar); } ///////////////////////////////////////////////////////////// // Test creation of laplacian eigenvectors ///////////////////////////////////////////////////////////// void test_LapEvec(Application &application) { const char szGaugeName[] = "gauge"; // gauge field application.createModule(szGaugeName); // Now make an instance of the LapEvec object MDistil::LapEvecPar p; p.ConfigFileDir="/home/dp008/dp008/dc-rich6/Scripts/ConfigsDeflQED/"; p.ConfigFileName="ckpoint_lat.3000"; p.gauge = szGaugeName; //p.EigenPackName = "ePack"; //p.Distil.TI = 8; //p.Distil.LI = 3; //p.Distil.Nnoise = 2; //p.Distil.tSrc = 0; p.Stout.steps = 3; p.Stout.parm = 0.2; p.Cheby.PolyOrder = 11; p.Cheby.alpha = 0.3; p.Cheby.beta = 12.5; p.Lanczos.Nvec = 5; p.Lanczos.Nk = 6; p.Lanczos.Np = 2; p.Lanczos.MaxIt = 1000; p.Lanczos.resid = 1e-2; application.createModule("LapEvec",p); } ///////////////////////////////////////////////////////////// // Perambulators ///////////////////////////////////////////////////////////// void test_Perambulators(Application &application) { // PerambLight parameters MDistil::PerambLight::Par PerambPar; PerambPar.eigenPack="LapEvec"; PerambPar.PerambFileName="peramb.bin"; PerambPar.ConfigFileDir="/home/dp008/dp008/dc-rich6/Scripts/ConfigsDeflQED/"; PerambPar.ConfigFileName="ckpoint_lat.3000"; PerambPar.UniqueIdentifier="full_dilution"; PerambPar.Distil.tsrc = 0; PerambPar.Distil.nnoise = 1; PerambPar.Distil.LI=5; PerambPar.Distil.SI=4; PerambPar.Distil.TI=8; PerambPar.nvec=5; PerambPar.Distil.Ns=4; PerambPar.Distil.Nt=8; PerambPar.Distil.Nt_inv=1; PerambPar.Solver.mass=0.005; PerambPar.Solver.M5=1.8; PerambPar.Ls=16; PerambPar.Solver.CGPrecision=1e-8; PerambPar.Solver.MaxIterations=10000; application.createModule("Peramb",PerambPar); } ///////////////////////////////////////////////////////////// // DistilVectors ///////////////////////////////////////////////////////////// void test_DistilVectors(Application &application) { // DistilVectors parameters MDistil::DistilVectors::Par DistilVecPar; DistilVecPar.noise="Peramb_noise"; DistilVecPar.perambulator="Peramb_perambulator_light"; DistilVecPar.eigenPack="LapEvec"; DistilVecPar.tsrc = 0; DistilVecPar.nnoise = 1; DistilVecPar.LI=5; DistilVecPar.SI=4; DistilVecPar.TI=8; DistilVecPar.nvec=5; DistilVecPar.Ns=4; DistilVecPar.Nt=8; DistilVecPar.Nt_inv=1; application.createModule("DistilVecs",DistilVecPar); } void test_PerambulatorsS(Application &application) { // PerambLight parameters MDistil::PerambLight::Par PerambPar; PerambPar.eigenPack="LapEvec"; PerambPar.PerambFileName="perambS.bin"; PerambPar.ConfigFileDir="/home/dp008/dp008/dc-rich6/Scripts/ConfigsDeflQED/"; PerambPar.ConfigFileName="ckpoint_lat.3000"; PerambPar.UniqueIdentifier="full_dilution"; PerambPar.Distil.tsrc = 0; PerambPar.Distil.nnoise = 1; PerambPar.Distil.LI=3; PerambPar.Distil.SI=4; PerambPar.Distil.TI=8; PerambPar.nvec=3; PerambPar.Distil.Ns=4; PerambPar.Distil.Nt=8; PerambPar.Distil.Nt_inv=1; PerambPar.Solver.mass=0.04; //strange mass??? PerambPar.Solver.M5=1.8; PerambPar.Ls=16; PerambPar.Solver.CGPrecision=1e-8; PerambPar.Solver.MaxIterations=10000; application.createModule("PerambS",PerambPar); } ///////////////////////////////////////////////////////////// // DistilVectors ///////////////////////////////////////////////////////////// void test_DistilVectorsS(Application &application) { // DistilVectors parameters MDistil::DistilVectors::Par DistilVecPar; DistilVecPar.noise="PerambS_noise"; DistilVecPar.perambulator="PerambS_perambulator_light"; DistilVecPar.eigenPack="LapEvec"; DistilVecPar.tsrc = 0; DistilVecPar.nnoise = 1; DistilVecPar.LI=3; DistilVecPar.SI=4; DistilVecPar.TI=8; DistilVecPar.nvec=3; DistilVecPar.Ns=4; DistilVecPar.Nt=8; DistilVecPar.Nt_inv=1; application.createModule("DistilVecsS",DistilVecPar); } ///////////////////////////////////////////////////////////// // MesonSink ///////////////////////////////////////////////////////////// void test_MesonSink(Application &application) { // DistilVectors parameters MContraction::A2AMesonField::Par A2AMesonFieldPar; A2AMesonFieldPar.left="Peramb_unsmeared_sink"; A2AMesonFieldPar.right="Peramb_unsmeared_sink"; A2AMesonFieldPar.output="DistilFields"; A2AMesonFieldPar.gammas="all"; A2AMesonFieldPar.mom={"0 0 0"}; A2AMesonFieldPar.cacheBlock=2; A2AMesonFieldPar.block=4; application.createModule("DistilMesonSink",A2AMesonFieldPar); } ///////////////////////////////////////////////////////////// // MesonFields ///////////////////////////////////////////////////////////// void test_MesonFieldSL(Application &application) { // DistilVectors parameters MContraction::A2AMesonField::Par A2AMesonFieldPar; A2AMesonFieldPar.left="DistilVecsS_phi"; //A2AMesonFieldPar.right="DistilVecs_rho"; A2AMesonFieldPar.right="DistilVecs_phi"; A2AMesonFieldPar.output="DistilFieldsS"; A2AMesonFieldPar.gammas="all"; A2AMesonFieldPar.mom={"0 0 0"}; A2AMesonFieldPar.cacheBlock=2; A2AMesonFieldPar.block=4; application.createModule("DistilMesonFieldS",A2AMesonFieldPar); } ///////////////////////////////////////////////////////////// // MesonFields - phiphi ///////////////////////////////////////////////////////////// void test_MesonField(Application &application) { // DistilVectors parameters MContraction::A2AMesonField::Par A2AMesonFieldPar; A2AMesonFieldPar.left="DistilVecs_phi"; //A2AMesonFieldPar.right="DistilVecs_rho"; A2AMesonFieldPar.right="DistilVecs_phi"; A2AMesonFieldPar.output="MesonSinksPhi"; A2AMesonFieldPar.gammas="all"; A2AMesonFieldPar.mom={"0 0 0"}; A2AMesonFieldPar.cacheBlock=2; A2AMesonFieldPar.block=4; application.createModule("DistilMesonField",A2AMesonFieldPar); } ///////////////////////////////////////////////////////////// // MesonFields - rhorho ///////////////////////////////////////////////////////////// void test_MesonFieldRho(Application &application) { // DistilVectors parameters MContraction::A2AMesonField::Par A2AMesonFieldPar; A2AMesonFieldPar.left="DistilVecs_rho"; //A2AMesonFieldPar.right="DistilVecs_rho"; A2AMesonFieldPar.right="DistilVecs_rho"; A2AMesonFieldPar.output="MesonSinksRho"; A2AMesonFieldPar.gammas="all"; A2AMesonFieldPar.mom={"0 0 0"}; A2AMesonFieldPar.cacheBlock=2; A2AMesonFieldPar.block=4; application.createModule("DistilMesonFieldRho",A2AMesonFieldPar); } ///////////////////////////////////////////////////////////// // BaryonFields - phiphiphi ///////////////////////////////////////////////////////////// void test_BaryonFieldPhi(Application &application) { // DistilVectors parameters MDistil::BContraction::Par BContractionPar; BContractionPar.one="DistilVecs_phi"; BContractionPar.two="DistilVecs_phi"; BContractionPar.three="DistilVecs_phi"; BContractionPar.output="BaryonFieldPhi"; BContractionPar.parity=1; BContractionPar.mom={"0 0 0"}; application.createModule("BaryonFieldPhi",BContractionPar); } ///////////////////////////////////////////////////////////// // BaryonFields - rhorhorho ///////////////////////////////////////////////////////////// void test_BaryonFieldRho(Application &application) { // DistilVectors parameters MDistil::BContraction::Par BContractionPar; BContractionPar.one="DistilVecs_rho"; BContractionPar.two="DistilVecs_rho"; BContractionPar.three="DistilVecs_rho"; BContractionPar.output="BaryonFieldRho"; BContractionPar.parity=1; BContractionPar.mom={"0 0 0"}; application.createModule("BaryonFieldRho",BContractionPar); } ///////////////////////////////////////////////////////////// // BaryonContraction ///////////////////////////////////////////////////////////// void test_Baryon2pt(Application &application) { // DistilVectors parameters MDistil::Baryon2pt::Par Baryon2ptPar; Baryon2ptPar.inputL="BaryonFieldPhi"; Baryon2ptPar.inputR="BaryonFieldRho"; Baryon2ptPar.quarksL="uud"; Baryon2ptPar.quarksR="uud"; Baryon2ptPar.output="C2_baryon"; application.createModule("C2_b",Baryon2ptPar); } bool bNumber( int &ri, const char * & pstr, bool bGobbleWhiteSpace = true ) { if( bGobbleWhiteSpace ) while( std::isspace(static_cast(*pstr)) ) pstr++; const char * p = pstr; bool bMinus = false; char c = * p++; if( c == '+' ) c = * p++; else if( c == '-' ) { bMinus = true; c = * p++; } int n = c - '0'; if( n < 0 || n > 9 ) return false; while( * p >= '0' && * p <= '9' ) { n = n * 10 + ( * p ) - '0'; p++; } if( bMinus ) n *= -1; ri = n; pstr = p; return true; } #ifdef DEBUG typedef Grid::Hadrons::MDistil::NamedTensor MyTensor; template void DebugShowTensor(T &x, const char * n) { const MyTensor::Index s{x.size()}; std::cout << n << ".size() = " << s << std::endl; std::cout << n << ".NumDimensions = " << x.NumDimensions << " (TensorBase)" << std::endl; std::cout << n << ".NumIndices = " << x.NumIndices << std::endl; const auto d{x.dimensions()}; //std::cout << n << ".dimensions().size() = " << d.size() << std::endl; std::cout << "Dimensions are "; for(auto i = 0; i < x.NumDimensions ; i++) std::cout << "[" << d[i] << "]"; std::cout << std::endl; MyTensor::Index SizeCalculated{1}; std::cout << "Dimensions again"; for(int i=0 ; i < x.NumDimensions ; i++ ) { std::cout << " : [" << i << /*", " << x.IndexNames[i] << */"]=" << x.dimension(i); SizeCalculated *= d[i]; } std::cout << std::endl; std::cout << "SizeCalculated = " << SizeCalculated << std::endl;\ assert( SizeCalculated == s ); // Initialise assert( x.NumDimensions == 3 ); for( int i = 0 ; i < d[0] ; i++ ) for( int j = 0 ; j < d[1] ; j++ ) for( int k = 0 ; k < d[2] ; k++ ) { x(i,j,k) = std::complex(SizeCalculated, -SizeCalculated); SizeCalculated--; } // Show raw data std::cout << "Data follow : " << std::endl; typename T::Scalar * p = x.data(); for( auto i = 0 ; i < s ; i++ ) { if( i ) std::cout << ", "; std::cout << n << ".data()[" << i << "]=" << * p++; } std::cout << std::endl; } // Test whether typedef and underlying types are the same void DebugTestTypeEqualities(void) { Real r1; RealD r2; double r3; const std::type_info &tr1{typeid(r1)}; const std::type_info &tr2{typeid(r2)}; const std::type_info &tr3{typeid(r3)}; if( tr1 == tr2 && tr2 == tr3 ) std::cout << "r1, r2 and r3 are the same type" << std::endl; else std::cout << "r1, r2 and r3 are different types" << std::endl; std::cout << "r1 is a " << tr1.name() << std::endl; std::cout << "r2 is a " << tr2.name() << std::endl; std::cout << "r3 is a " << tr3.name() << std::endl; // These are the same Complex c1; std::complex c2; const std::type_info &tc1{typeid(c1)}; const std::type_info &tc2{typeid(c2)}; const std::type_info &tc3{typeid(SpinVector::scalar_type)}; if( tc1 == tc2 && tc2 == tc3) std::cout << "c1, c2 and SpinVector::scalar_type are the same type" << std::endl; else std::cout << "c1, c2 and SpinVector::scalar_type are different types" << std::endl; std::cout << "c1 is a " << tc1.name() << std::endl; std::cout << "c2 is a " << tc2.name() << std::endl; std::cout << "SpinVector::scalar_type is a " << tc3.name() << std::endl; // These are the same SpinVector s1; iSpinVector s2; iScalar, Ns> > s3; const std::type_info &ts1{typeid(s1)}; const std::type_info &ts2{typeid(s2)}; const std::type_info &ts3{typeid(s3)}; if( ts1 == ts2 && ts2 == ts3 ) std::cout << "s1, s2 and s3 are the same type" << std::endl; else std::cout << "s1, s2 and s3 are different types" << std::endl; std::cout << "s1 is a " << ts1.name() << std::endl; std::cout << "s2 is a " << ts2.name() << std::endl; std::cout << "s3 is a " << ts3.name() << std::endl; // These are the same SpinColourVector sc1; iSpinColourVector sc2; const std::type_info &tsc1{typeid(sc1)}; const std::type_info &tsc2{typeid(sc2)}; if( tsc1 == tsc2 ) std::cout << "sc1 and sc2 are the same type" << std::endl; else std::cout << "sc1 and sc2 are different types" << std::endl; std::cout << "sc1 is a " << tsc1.name() << std::endl; std::cout << "sc2 is a " << tsc2.name() << std::endl; } bool DebugEigenTest() { { Eigen::TensorFixedSize,Eigen::Sizes<3,4,5>> x; DebugShowTensor(x, "fixed"); } const char pszTestFileName[] = "test_tensor.bin"; std::array as={"Alpha", "Beta", "Gamma"}; MyTensor x(as, 2,1,4); DebugShowTensor(x, "x"); x.WriteBinary(pszTestFileName); DebugShowTensor(x, "x"); // Test initialisation of an array of strings for( auto a : as ) std::cout << a << std::endl; Grid::Hadrons::MDistil::Perambulator p{as,2,7,2}; DebugShowTensor(p, "p"); std::cout << "p.IndexNames follow" << std::endl; for( auto a : p.IndexNames ) std::cout << a << std::endl; // Now see whether we can read a tensor back std::array Names2={"Alpha", "Gamma", "Delta"}; MyTensor y(Names2, 2,4,1); y.ReadBinary(pszTestFileName); DebugShowTensor(y, "y"); // Testing whether typedef produces the same type - yes it does DebugTestTypeEqualities(); std::cout << std::endl; // How to access members of SpinColourVector SpinColourVector sc; for( int s = 0 ; s < Ns ; s++ ) { auto cv{sc()(s)}; iVector c2{sc()(s)}; std::cout << " cv is a " << typeid(cv).name() << std::endl; std::cout << " c2 is a " << typeid(c2).name() << std::endl; for( int c = 0 ; c < Nc ; c++ ) { Complex & z{cv(c)}; std::cout << " sc[spin=" << s << ", colour=" << c << "] = " << z << std::endl; } } // We could have removed the Lorentz index independently, but much easier to do as we do above iVector,Ns> sc2{sc()}; std::cout << "sc() is a " << typeid(sc()).name() << std::endl; std::cout << "sc2 is a " << typeid(sc2 ).name() << std::endl; // Or you can access elements directly std::complex z = sc()(0)(0); std::cout << "z = " << z << std::endl; sc()(3)(2) = std::complex{3.141,-3.141}; std::cout << "sc()(3)(2) = " << sc()(3)(2) << std::endl; return true; } template void DebugGridTensorTest_print( int i ) { std::cout << i << " : " << EigenIO::is_tensor::value << ", rank " << EigenIO::Traits::rank << ", rank_non_trivial " << EigenIO::Traits::rank_non_trivial << ", count " << EigenIO::Traits::count << ", scalar_size " << EigenIO::Traits::scalar_size << ", size " << EigenIO::Traits::size << std::endl; } // begin() and end() are the minimum necessary to support range-for loops // should really turn this into an iterator ... template class TestObject { public: using value_type = T; private: value_type * m_p; public: TestObject() { m_p = reinterpret_cast(std::malloc(N * sizeof(value_type))); } ~TestObject() { std::free(m_p); } inline value_type * begin(void) { return m_p; } inline value_type * end(void) { return m_p + N; } }; template void EigenSliceExample() { std::cout << "Eigen example, Options = " << Options << std::endl; using T2 = Eigen::Tensor; T2 a(4, 3); a.setValues({{0, 100, 200}, {300, 400, 500}, {600, 700, 800}, {900, 1000, 1100}}); std::cout << "a\n" << a << std::endl; DumpMemoryOrder( a, "a" ); Eigen::array offsets = {0, 1}; Eigen::array extents = {4, 2}; T2 slice = a.slice(offsets, extents); std::cout << "slice\n" << slice << std::endl; DumpMemoryOrder( slice, "slice" ); std::cout << "\n========================================" << std::endl; } template void EigenSliceExample2() { using TestScalar = std::complex; using T3 = Eigen::Tensor; using T2 = Eigen::Tensor; T3 a(2,3,4); std::cout << "Initialising a:"; for_all( a, [&](TestScalar &c, float f, const std::array &Dims ){ c = TestScalar{f,-f}; std::cout << " a(" << Dims[0] << "," << Dims[1] << "," << Dims[2] << ")=" << c; } ); std::cout << std::endl; //std::cout << "Validating a:"; float z = 0; for( int i = 0 ; i < a.dimension(0) ; i++ ) for( int j = 0 ; j < a.dimension(1) ; j++ ) for( int k = 0 ; k < a.dimension(2) ; k++ ) { TestScalar w{z, -z}; //std::cout << " a(" << i << "," << j << "," << k << ")=" << w; assert( a(i,j,k) == w ); z++; } //std::cout << std::endl; //std::cout << "a initialised to:\n" << a << std::endl; DumpMemoryOrder( a, "a" ); std::cout << "for_all(a):"; for_all( a, [&](TestScalar c, typename T3::Index n, const std::array &Dims ){ std::cout << " (" << Dims[0] << "," << Dims[1] << "," << Dims[2] << ")<" << n << ">=" << c; } ); std::cout << std::endl; Eigen::array offsets = {0,1,1}; Eigen::array extents = {1,2,2}; T3 b; b = a.slice( offsets, extents );//.reshape(NewExtents); std::cout << "b = a.slice( offsets, extents ):\n" << b << std::endl; DumpMemoryOrder( b, "b" ); T2 c(3,4); c = a.chip(0,1); std::cout << "c = a.chip(0,0):\n" << c << std::endl; DumpMemoryOrder( c, "c" ); //T2 d = b.reshape(extents); //std::cout << "b.reshape(extents) is:\n" << d << std::endl; std::cout << "\n========================================" << std::endl; } void DebugFelixTensorTest( void ) { unsigned int Nmom = 2; unsigned int Nt = 2; unsigned int N_1 = 2; unsigned int N_2 = 2; unsigned int N_3 = 2; using BaryonTensorSet = Eigen::Tensor; BaryonTensorSet BField3(Nmom,4,Nt,N_1,N_2,N_3); std::vector Memory(Nmom * Nt * N_1 * N_2 * N_3 * 2); using BaryonTensorMap = Eigen::TensorMap; BaryonTensorMap BField4 (&Memory[0], Nmom,4,Nt,N_1,N_2,N_3); EigenSliceExample(); EigenSliceExample<0>(); EigenSliceExample2(); EigenSliceExample2<0>(); } bool DebugGridTensorTest( void ) { DebugFelixTensorTest(); typedef Complex t1; typedef iScalar t2; typedef iVector t3; typedef iMatrix t4; typedef iVector,4> t5; typedef iScalar t6; typedef iMatrix t7; typedef iMatrix,4>,2> t8; int i = 1; DebugGridTensorTest_print( i++ ); DebugGridTensorTest_print( i++ ); DebugGridTensorTest_print( i++ ); DebugGridTensorTest_print( i++ ); DebugGridTensorTest_print( i++ ); DebugGridTensorTest_print( i++ ); DebugGridTensorTest_print( i++ ); DebugGridTensorTest_print( i++ ); //using TOC7 = TestObject, 7>; using TOC7 = t7; TOC7 toc7; constexpr std::complex Inc{1,-1}; std::complex Start{Inc}; for( auto &x : toc7 ) { x = Start; Start += Inc; } i = 0; std::cout << "toc7:"; for( auto x : toc7 ) std::cout << " [" << i++ << "]=" << x; std::cout << std::endl; t2 o2; auto a2 = TensorRemove(o2); //t3 o3; //t4 o4; //auto a3 = TensorRemove(o3); //auto a4 = TensorRemove(o4); return true; } #endif int main(int argc, char *argv[]) { #ifdef DEBUG // Debug only - test of Eigen::Tensor std::cout << "sizeof(int) = " << sizeof(int) << ", sizeof(long) = " << sizeof(long) << ", sizeof(size_t) = " << sizeof(size_t) << ", sizeof(std::size_t) = " << sizeof(std::size_t) << ", sizeof(std::streamsize) = " << sizeof(std::streamsize) << ", sizeof(Eigen::Index) = " << sizeof(Eigen::Index) << ", sizeof(hsize_t) = " << sizeof(hsize_t) << ", sizeof(unsigned long long) = " << sizeof(unsigned long long) << std::endl; if( DebugEigenTest() ) return 0; if(DebugGridTensorTest()) return 0; #endif // Decode command-line parameters. 1st one is which test to run int iTestNum = -1; for(int i = 1 ; i < argc ; i++ ) { std::cout << "argv[" << i << "]=\"" << argv[i] << "\"" << std::endl; const char * p = argv[i]; if( * p == '/' || * p == '-' ) { p++; char c = * p++; switch(toupper(c)) { case 'T': if( bNumber( iTestNum, p ) ) { std::cout << "Test " << iTestNum << " requested"; if( * p ) std::cout << " (ignoring trailer \"" << p << "\")"; std::cout << std::endl; } else std::cout << "Invalid test \"" << &argv[i][2] << "\"" << std::endl; break; default: std::cout << "Ignoring switch \"" << &argv[i][1] << "\"" << std::endl; break; } } } // initialization ////////////////////////////////////////////////////////// Grid_init(&argc, &argv); HadronsLogError.Active(GridLogError.isActive()); HadronsLogWarning.Active(GridLogWarning.isActive()); HadronsLogMessage.Active(GridLogMessage.isActive()); HadronsLogIterative.Active(GridLogIterative.isActive()); HadronsLogDebug.Active(GridLogDebug.isActive()); LOG(Message) << "Grid initialized" << std::endl; // run setup /////////////////////////////////////////////////////////////// Application application; // For now perform free propagator test - replace this with distillation test(s) LOG(Message) << "====== Creating xml for test " << iTestNum << " ======" << std::endl; //const unsigned int nt = GridDefaultLatt()[Tp]; switch(iTestNum) { case 1: test_Global( application ); test_LapEvec( application ); break; case 2: test_Global( application ); test_LapEvec( application ); test_Perambulators( application ); break; case 3: // 3 test_Global( application ); test_LapEvec( application ); test_Perambulators( application ); test_DistilVectors( application ); break; default: // 4 test_Global( application ); test_LapEvec( application ); test_Perambulators( application ); test_DistilVectors( application ); test_MesonField( application ); break; case 5: // 3 test_Global( application ); test_LapEvec( application ); test_Perambulators( application ); test_DistilVectors( application ); test_PerambulatorsS( application ); test_DistilVectorsS( application ); test_MesonFieldSL( application ); break; case 6: // 3 test_Global( application ); test_LapEvec( application ); test_Perambulators( application ); test_MesonSink( application ); break; case 7: // 3 test_Global( application ); test_LapEvec( application ); test_Perambulators( application ); test_DistilVectors( application ); test_BaryonFieldPhi( application ); test_BaryonFieldRho( application ); break; case 8: // 3 test_Global( application ); test_LapEvec( application ); test_Perambulators( application ); test_DistilVectors( application ); test_MesonField( application ); test_MesonFieldRho( application ); break; case 9: // 3 test_Global( application ); test_Baryon2pt( application ); break; } LOG(Message) << "====== XML creation for test " << iTestNum << " complete ======" << std::endl; // execution application.saveParameterFile("test_hadrons_distil.xml"); application.run(); // epilogue LOG(Message) << "Grid is finalizing now" << std::endl; Grid_finalize(); return EXIT_SUCCESS; }