/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./lib/qcd/action/fermion/WilsonFermion5D.cc Copyright (C) 2015 Author: Azusa Yamaguchi Author: Peter Boyle Author: Peter Boyle Author: Peter Boyle Author: paboyle Author: Guido Cossu Author: Andrew Lawson This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #include #include #include namespace Grid { namespace QCD { // S-direction is INNERMOST and takes no part in the parity. const std::vector WilsonFermion5DStatic::directions ({1,2,3,4, 1, 2, 3, 4}); const std::vector WilsonFermion5DStatic::displacements({1,1,1,1,-1,-1,-1,-1}); // 5d lattice for DWF. template WilsonFermion5D::WilsonFermion5D(GaugeField &_Umu, GridCartesian &FiveDimGrid, GridRedBlackCartesian &FiveDimRedBlackGrid, GridCartesian &FourDimGrid, GridRedBlackCartesian &FourDimRedBlackGrid, RealD _M5,const ImplParams &p) : Kernels(p), _FiveDimGrid (&FiveDimGrid), _FiveDimRedBlackGrid(&FiveDimRedBlackGrid), _FourDimGrid (&FourDimGrid), _FourDimRedBlackGrid(&FourDimRedBlackGrid), Stencil (_FiveDimGrid,npoint,Even,directions,displacements), StencilEven(_FiveDimRedBlackGrid,npoint,Even,directions,displacements), // source is Even StencilOdd (_FiveDimRedBlackGrid,npoint,Odd ,directions,displacements), // source is Odd M5(_M5), Umu(_FourDimGrid), UmuEven(_FourDimRedBlackGrid), UmuOdd (_FourDimRedBlackGrid), Lebesgue(_FourDimGrid), LebesgueEvenOdd(_FourDimRedBlackGrid), _tmp(&FiveDimRedBlackGrid) { // some assertions assert(FiveDimGrid._ndimension==5); assert(FourDimGrid._ndimension==4); assert(FourDimRedBlackGrid._ndimension==4); assert(FiveDimRedBlackGrid._ndimension==5); assert(FiveDimRedBlackGrid._checker_dim==1); // Don't checker the s direction // extent of fifth dim and not spread out Ls=FiveDimGrid._fdimensions[0]; assert(FiveDimRedBlackGrid._fdimensions[0]==Ls); assert(FiveDimGrid._processors[0] ==1); assert(FiveDimRedBlackGrid._processors[0] ==1); // Other dimensions must match the decomposition of the four-D fields for(int d=0;d<4;d++){ assert(FiveDimGrid._processors[d+1] ==FourDimGrid._processors[d]); assert(FiveDimRedBlackGrid._processors[d+1] ==FourDimGrid._processors[d]); assert(FourDimRedBlackGrid._processors[d] ==FourDimGrid._processors[d]); assert(FiveDimGrid._fdimensions[d+1] ==FourDimGrid._fdimensions[d]); assert(FiveDimRedBlackGrid._fdimensions[d+1]==FourDimGrid._fdimensions[d]); assert(FourDimRedBlackGrid._fdimensions[d] ==FourDimGrid._fdimensions[d]); assert(FiveDimGrid._simd_layout[d+1] ==FourDimGrid._simd_layout[d]); assert(FiveDimRedBlackGrid._simd_layout[d+1]==FourDimGrid._simd_layout[d]); assert(FourDimRedBlackGrid._simd_layout[d] ==FourDimGrid._simd_layout[d]); } if (Impl::LsVectorised) { int nsimd = Simd::Nsimd(); // Dimension zero of the five-d is the Ls direction assert(FiveDimGrid._simd_layout[0] ==nsimd); assert(FiveDimRedBlackGrid._simd_layout[0]==nsimd); for(int d=0;d<4;d++){ assert(FourDimGrid._simd_layout[d]=1); assert(FourDimRedBlackGrid._simd_layout[d]=1); assert(FiveDimRedBlackGrid._simd_layout[d+1]==1); } } else { // Dimension zero of the five-d is the Ls direction assert(FiveDimRedBlackGrid._simd_layout[0]==1); assert(FiveDimGrid._simd_layout[0] ==1); } // Allocate the required comms buffer ImportGauge(_Umu); // Build lists of exterior only nodes int LLs = FiveDimGrid._rdimensions[0]; int vol4; vol4=FourDimGrid.oSites(); Stencil.BuildSurfaceList(LLs,vol4); vol4=FourDimRedBlackGrid.oSites(); StencilEven.BuildSurfaceList(LLs,vol4); StencilOdd.BuildSurfaceList(LLs,vol4); // std::cout << GridLogMessage << " SurfaceLists "<< Stencil.surface_list.size() // <<" " << StencilEven.surface_list.size()< void WilsonFermion5D::Report(void) { RealD NP = _FourDimGrid->_Nprocessors; RealD NN = _FourDimGrid->NodeCount(); RealD volume = Ls; std::vector latt = _FourDimGrid->GlobalDimensions(); for(int mu=0;mu 0 ) { std::cout << GridLogMessage << "#### Dhop calls report " << std::endl; std::cout << GridLogMessage << "WilsonFermion5D Number of DhopEO Calls : " << DhopCalls << std::endl; std::cout << GridLogMessage << "WilsonFermion5D TotalTime /Calls : " << DhopTotalTime / DhopCalls << " us" << std::endl; std::cout << GridLogMessage << "WilsonFermion5D CommTime /Calls : " << DhopCommTime / DhopCalls << " us" << std::endl; std::cout << GridLogMessage << "WilsonFermion5D FaceTime /Calls : " << DhopFaceTime / DhopCalls << " us" << std::endl; std::cout << GridLogMessage << "WilsonFermion5D ComputeTime1/Calls : " << DhopComputeTime / DhopCalls << " us" << std::endl; std::cout << GridLogMessage << "WilsonFermion5D ComputeTime2/Calls : " << DhopComputeTime2/ DhopCalls << " us" << std::endl; // Average the compute time _FourDimGrid->GlobalSum(DhopComputeTime); DhopComputeTime/=NP; RealD mflops = 1344*volume*DhopCalls/DhopComputeTime/2; // 2 for red black counting std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl; std::cout << GridLogMessage << "Average mflops/s per call per rank : " << mflops/NP << std::endl; std::cout << GridLogMessage << "Average mflops/s per call per node : " << mflops/NN << std::endl; RealD Fullmflops = 1344*volume*DhopCalls/(DhopTotalTime)/2; // 2 for red black counting std::cout << GridLogMessage << "Average mflops/s per call (full) : " << Fullmflops << std::endl; std::cout << GridLogMessage << "Average mflops/s per call per rank (full): " << Fullmflops/NP << std::endl; std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NN << std::endl; } if ( DerivCalls > 0 ) { std::cout << GridLogMessage << "#### Deriv calls report "<< std::endl; std::cout << GridLogMessage << "WilsonFermion5D Number of Deriv Calls : " < 0 || DhopCalls > 0){ std::cout << GridLogMessage << "WilsonFermion5D Stencil" < 0){ std::cout << GridLogMessage << "WilsonFermion5D Stencil Reporti()" < void WilsonFermion5D::ZeroCounters(void) { DhopCalls = 0; DhopCommTime = 0; DhopComputeTime = 0; DhopComputeTime2= 0; DhopFaceTime = 0; DhopTotalTime = 0; DerivCalls = 0; DerivCommTime = 0; DerivComputeTime = 0; DerivDhopComputeTime = 0; Stencil.ZeroCounters(); StencilEven.ZeroCounters(); StencilOdd.ZeroCounters(); Stencil.ZeroCountersi(); StencilEven.ZeroCountersi(); StencilOdd.ZeroCountersi(); } template void WilsonFermion5D::ImportGauge(const GaugeField &_Umu) { GaugeField HUmu(_Umu._grid); HUmu = _Umu*(-0.5); Impl::DoubleStore(GaugeGrid(),Umu,HUmu); pickCheckerboard(Even,UmuEven,Umu); pickCheckerboard(Odd ,UmuOdd,Umu); } template void WilsonFermion5D::DhopDir(const FermionField &in, FermionField &out,int dir5,int disp) { int dir = dir5-1; // Maps to the ordering above in "directions" that is passed to stencil // we drop off the innermost fifth dimension // assert( (disp==1)||(disp==-1) ); // assert( (dir>=0)&&(dir<4) ); //must do x,y,z or t; Compressor compressor(DaggerNo); Stencil.HaloExchange(in,compressor); int skip = (disp==1) ? 0 : 1; int dirdisp = dir+skip*4; int gamma = dir+(1-skip)*4; assert(dirdisp<=7); assert(dirdisp>=0); parallel_for(int ss=0;ssoSites();ss++){ for(int s=0;s void WilsonFermion5D::DerivInternal(StencilImpl & st, DoubledGaugeField & U, GaugeField &mat, const FermionField &A, const FermionField &B, int dag) { DerivCalls++; assert((dag==DaggerNo) ||(dag==DaggerYes)); conformable(st._grid,A._grid); conformable(st._grid,B._grid); Compressor compressor(dag); FermionField Btilde(B._grid); FermionField Atilde(B._grid); DerivCommTime-=usecond(); st.HaloExchange(B,compressor); DerivCommTime+=usecond(); Atilde=A; int LLs = B._grid->_rdimensions[0]; DerivComputeTime-=usecond(); for (int mu = 0; mu < Nd; mu++) { //////////////////////////////////////////////////////////////////////// // Flip gamma if dag //////////////////////////////////////////////////////////////////////// int gamma = mu; if (!dag) gamma += Nd; //////////////////////// // Call the single hop //////////////////////// DerivDhopComputeTime -= usecond(); parallel_for (int sss = 0; sss < U._grid->oSites(); sss++) { for (int s = 0; s < Ls; s++) { int sU = sss; int sF = s + Ls * sU; assert(sF < B._grid->oSites()); assert(sU < U._grid->oSites()); Kernels::DhopDir(st, U, st.CommBuf(), sF, sU, B, Btilde, mu, gamma); //////////////////////////// // spin trace outer product //////////////////////////// } } //////////////////////////// // spin trace outer product //////////////////////////// DerivDhopComputeTime += usecond(); Impl::InsertForce5D(mat, Btilde, Atilde, mu); } DerivComputeTime += usecond(); } template void WilsonFermion5D::DhopDeriv(GaugeField &mat, const FermionField &A, const FermionField &B, int dag) { conformable(A._grid,FermionGrid()); conformable(A._grid,B._grid); //conformable(GaugeGrid(),mat._grid);// this is not general! leaving as a comment mat.checkerboard = A.checkerboard; DerivInternal(Stencil,Umu,mat,A,B,dag); } template void WilsonFermion5D::DhopDerivEO(GaugeField &mat, const FermionField &A, const FermionField &B, int dag) { conformable(A._grid,FermionRedBlackGrid()); conformable(A._grid,B._grid); assert(B.checkerboard==Odd); assert(A.checkerboard==Even); mat.checkerboard = Even; DerivInternal(StencilOdd,UmuEven,mat,A,B,dag); } template void WilsonFermion5D::DhopDerivOE(GaugeField &mat, const FermionField &A, const FermionField &B, int dag) { conformable(A._grid,FermionRedBlackGrid()); conformable(A._grid,B._grid); assert(B.checkerboard==Even); assert(A.checkerboard==Odd); mat.checkerboard = Odd; DerivInternal(StencilEven,UmuOdd,mat,A,B,dag); } template void WilsonFermion5D::DhopInternal(StencilImpl & st, LebesgueOrder &lo, DoubledGaugeField & U, const FermionField &in, FermionField &out,int dag) { DhopTotalTime-=usecond(); #ifdef GRID_OMP if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute ) DhopInternalOverlappedComms(st,lo,U,in,out,dag); else #endif DhopInternalSerialComms(st,lo,U,in,out,dag); DhopTotalTime+=usecond(); } template void WilsonFermion5D::DhopInternalOverlappedComms(StencilImpl & st, LebesgueOrder &lo, DoubledGaugeField & U, const FermionField &in, FermionField &out,int dag) { #ifdef GRID_OMP // assert((dag==DaggerNo) ||(dag==DaggerYes)); Compressor compressor(dag); int LLs = in._grid->_rdimensions[0]; int len = U._grid->oSites(); DhopFaceTime-=usecond(); st.HaloExchangeOptGather(in,compressor); st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms DhopFaceTime+=usecond(); double ctime=0; double ptime=0; ////////////////////////////////////////////////////////////////////////////////////////////////////// // Ugly explicit thread mapping introduced for OPA reasons. ////////////////////////////////////////////////////////////////////////////////////////////////////// #pragma omp parallel reduction(max:ctime) reduction(max:ptime) { int tid = omp_get_thread_num(); int nthreads = omp_get_num_threads(); int ncomms = CartesianCommunicator::nCommThreads; if (ncomms == -1) ncomms = 1; assert(nthreads > ncomms); if (tid >= ncomms) { double start = usecond(); nthreads -= ncomms; int ttid = tid - ncomms; int n = U._grid->oSites(); int chunk = n / nthreads; int rem = n % nthreads; int myblock, myn; if (ttid < rem) { myblock = ttid * chunk + ttid; myn = chunk+1; } else { myblock = ttid*chunk + rem; myn = chunk; } // do the compute if (dag == DaggerYes) { for (int ss = myblock; ss < myblock+myn; ++ss) { int sU = ss; int sF = LLs * sU; Kernels::DhopSiteDag(st,lo,U,st.CommBuf(),sF,sU,LLs,1,in,out,1,0); } } else { for (int ss = myblock; ss < myblock+myn; ++ss) { int sU = ss; int sF = LLs * sU; Kernels::DhopSite(st,lo,U,st.CommBuf(),sF,sU,LLs,1,in,out,1,0); } } ptime = usecond() - start; } { double start = usecond(); st.CommunicateThreaded(); ctime = usecond() - start; } } DhopCommTime += ctime; DhopComputeTime+=ptime; // First to enter, last to leave timing st.CollateThreads(); DhopFaceTime-=usecond(); st.CommsMerge(compressor); DhopFaceTime+=usecond(); DhopComputeTime2-=usecond(); if (dag == DaggerYes) { int sz=st.surface_list.size(); parallel_for (int ss = 0; ss < sz; ss++) { int sU = st.surface_list[ss]; int sF = LLs * sU; Kernels::DhopSiteDag(st,lo,U,st.CommBuf(),sF,sU,LLs,1,in,out,0,1); } } else { int sz=st.surface_list.size(); parallel_for (int ss = 0; ss < sz; ss++) { int sU = st.surface_list[ss]; int sF = LLs * sU; Kernels::DhopSite(st,lo,U,st.CommBuf(),sF,sU,LLs,1,in,out,0,1); } } DhopComputeTime2+=usecond(); #else assert(0); #endif } template void WilsonFermion5D::DhopInternalSerialComms(StencilImpl & st, LebesgueOrder &lo, DoubledGaugeField & U, const FermionField &in, FermionField &out,int dag) { // assert((dag==DaggerNo) ||(dag==DaggerYes)); Compressor compressor(dag); int LLs = in._grid->_rdimensions[0]; DhopCommTime-=usecond(); st.HaloExchangeOpt(in,compressor); DhopCommTime+=usecond(); DhopComputeTime-=usecond(); // Dhop takes the 4d grid from U, and makes a 5d index for fermion if (dag == DaggerYes) { parallel_for (int ss = 0; ss < U._grid->oSites(); ss++) { int sU = ss; int sF = LLs * sU; Kernels::DhopSiteDag(st,lo,U,st.CommBuf(),sF,sU,LLs,1,in,out); } } else { parallel_for (int ss = 0; ss < U._grid->oSites(); ss++) { int sU = ss; int sF = LLs * sU; Kernels::DhopSite(st,lo,U,st.CommBuf(),sF,sU,LLs,1,in,out); } } DhopComputeTime+=usecond(); } template void WilsonFermion5D::DhopOE(const FermionField &in, FermionField &out,int dag) { DhopCalls++; conformable(in._grid,FermionRedBlackGrid()); // verifies half grid conformable(in._grid,out._grid); // drops the cb check assert(in.checkerboard==Even); out.checkerboard = Odd; DhopInternal(StencilEven,LebesgueEvenOdd,UmuOdd,in,out,dag); } template void WilsonFermion5D::DhopEO(const FermionField &in, FermionField &out,int dag) { DhopCalls++; conformable(in._grid,FermionRedBlackGrid()); // verifies half grid conformable(in._grid,out._grid); // drops the cb check assert(in.checkerboard==Odd); out.checkerboard = Even; DhopInternal(StencilOdd,LebesgueEvenOdd,UmuEven,in,out,dag); } template void WilsonFermion5D::Dhop(const FermionField &in, FermionField &out,int dag) { DhopCalls+=2; conformable(in._grid,FermionGrid()); // verifies full grid conformable(in._grid,out._grid); out.checkerboard = in.checkerboard; DhopInternal(Stencil,Lebesgue,Umu,in,out,dag); } template void WilsonFermion5D::DW(const FermionField &in, FermionField &out,int dag) { out.checkerboard=in.checkerboard; Dhop(in,out,dag); // -0.5 is included axpy(out,4.0-M5,in,out); } template void WilsonFermion5D::MomentumSpacePropagatorHt(FermionField &out,const FermionField &in, RealD mass) { // what type LatticeComplex GridBase *_grid = _FourDimGrid; conformable(_grid,out._grid); typedef typename FermionField::vector_type vector_type; typedef typename FermionField::scalar_type ScalComplex; typedef iSinglet Tcomplex; typedef Lattice > LatComplex; Gamma::Algebra Gmu [] = { Gamma::Algebra::GammaX, Gamma::Algebra::GammaY, Gamma::Algebra::GammaZ, Gamma::Algebra::GammaT }; std::vector latt_size = _grid->_fdimensions; FermionField num (_grid); num = zero; LatComplex sk(_grid); sk = zero; LatComplex sk2(_grid); sk2= zero; LatComplex W(_grid); W= zero; LatComplex a(_grid); a= zero; LatComplex one (_grid); one = ScalComplex(1.0,0.0); LatComplex denom(_grid); denom= zero; LatComplex cosha(_grid); LatComplex kmu(_grid); LatComplex Wea(_grid); LatComplex Wema(_grid); ScalComplex ci(0.0,1.0); for(int mu=0;mu alpha //////////////////////////////////////////// cosha = (one + W*W + sk) / (W*2.0); // FIXME Need a Lattice acosh for(int idx=0;idx<_grid->lSites();idx++){ std::vector lcoor(Nd); Tcomplex cc; RealD sgn; _grid->LocalIndexToLocalCoor(idx,lcoor); peekLocalSite(cc,cosha,lcoor); assert((double)real(cc)>=1.0); assert(fabs((double)imag(cc))<=1.0e-15); cc = ScalComplex(::acosh(real(cc)),0.0); pokeLocalSite(cc,a,lcoor); } Wea = ( exp( a) * W ); Wema= ( exp(-a) * W ); num = num + ( one - Wema ) * mass * in; denom= ( Wea - one ) + mass*mass * (one - Wema); out = num/denom; } template void WilsonFermion5D::MomentumSpacePropagatorHw(FermionField &out,const FermionField &in,RealD mass) { Gamma::Algebra Gmu [] = { Gamma::Algebra::GammaX, Gamma::Algebra::GammaY, Gamma::Algebra::GammaZ, Gamma::Algebra::GammaT }; GridBase *_grid = _FourDimGrid; conformable(_grid,out._grid); typedef typename FermionField::vector_type vector_type; typedef typename FermionField::scalar_type ScalComplex; typedef Lattice > LatComplex; std::vector latt_size = _grid->_fdimensions; LatComplex sk(_grid); sk = zero; LatComplex sk2(_grid); sk2= zero; LatComplex w_k(_grid); w_k= zero; LatComplex b_k(_grid); b_k= zero; LatComplex one (_grid); one = ScalComplex(1.0,0.0); FermionField num (_grid); num = zero; LatComplex denom(_grid); denom= zero; LatComplex kmu(_grid); ScalComplex ci(0.0,1.0); for(int mu=0;mu qSiteVec(Nsimd); \ extract(qSite, qSiteVec); \ for (int i = 0; i < Nsimd / 2; ++i) \ { \ typename SitePropagator::scalar_object tmp = qSiteVec[i]; \ qSiteVec[i] = qSiteVec[Nsimd - i - 1]; \ qSiteVec[Nsimd - i - 1] = tmp; \ } \ merge(qSiteRev, qSiteVec); \ } template void WilsonFermion5D::ContractConservedCurrent(PropagatorField &q_in_1, PropagatorField &q_in_2, PropagatorField &q_out, Current curr_type, unsigned int mu) { conformable(q_in_1._grid, FermionGrid()); conformable(q_in_1._grid, q_in_2._grid); conformable(_FourDimGrid, q_out._grid); PropagatorField tmp1(FermionGrid()), tmp2(FermionGrid()); unsigned int LLs = q_in_1._grid->_rdimensions[0]; q_out = zero; // Forward, need q1(x + mu, s), q2(x, Ls - 1 - s). Backward, need q1(x, s), // q2(x + mu, Ls - 1 - s). 5D lattice so shift 4D coordinate mu by one. tmp1 = Cshift(q_in_1, mu + 1, 1); tmp2 = Cshift(q_in_2, mu + 1, 1); parallel_for (unsigned int sU = 0; sU < Umu._grid->oSites(); ++sU) { unsigned int sF1 = sU * LLs; unsigned int sF2 = (sU + 1) * LLs - 1; for (unsigned int s = 0; s < LLs; ++s) { bool axial_sign = ((curr_type == Current::Axial) && \ (s < (LLs / 2))); SitePropagator qSite2, qmuSite2; // If vectorised in 5th dimension, reverse q2 vector to match up // sites correctly. if (Impl::LsVectorised) { REVERSE_LS(q_in_2._odata[sF2], qSite2, Ls / LLs); REVERSE_LS(tmp2._odata[sF2], qmuSite2, Ls / LLs); } else { qSite2 = q_in_2._odata[sF2]; qmuSite2 = tmp2._odata[sF2]; } Kernels::ContractConservedCurrentSiteFwd(tmp1._odata[sF1], qSite2, q_out._odata[sU], Umu, sU, mu, axial_sign); Kernels::ContractConservedCurrentSiteBwd(q_in_1._odata[sF1], qmuSite2, q_out._odata[sU], Umu, sU, mu, axial_sign); sF1++; sF2--; } } } //template //void WilsonFermion5D::SeqConservedCurrent(PropagatorField &q_in, // PropagatorField &q_out, // Current curr_type, // unsigned int mu, // std::vector mom, // unsigned int tmin, // unsigned int tmax) //{ // conformable(q_in._grid, FermionGrid()); // conformable(q_in._grid, q_out._grid); // Lattice> ph(FermionGrid()), coor(FermionGrid()); // PropagatorField tmpFwd(FermionGrid()), tmpBwd(FermionGrid()), // tmp(FermionGrid()); // Complex i(0.0, 1.0); // unsigned int tshift = (mu == Tp) ? 1 : 0; // unsigned int LLs = q_in._grid->_rdimensions[0]; // unsigned int LLt = GridDefaultLatt()[Tp]; // // // Momentum projection. // ph = zero; // for(unsigned int nu = 0; nu < Nd - 1; nu++) // { // // Shift coordinate lattice index by 1 to account for 5th dimension. // LatticeCoordinate(coor, nu + 1); // ph = ph + mom[nu]*coor*((1./(_FourDimGrid->_fdimensions[nu]))); // } // ph = exp((Real)(2*M_PI)*i*ph); // // q_out = zero; // LatticeInteger coords(_FourDimGrid); // LatticeCoordinate(coords, Tp); // // // // Need q(x + mu, s) and q(x - mu, s). 5D lattice so shift 4D coordinate mu // // by one. // tmp = Cshift(q_in, mu + 1, 1); // tmpFwd = tmp*ph; // tmp = ph*q_in; // tmpBwd = Cshift(tmp, mu + 1, -1); // // parallel_for (unsigned int sU = 0; sU < Umu._grid->oSites(); ++sU) // { // // Compute the sequential conserved current insertion only if our simd // // object contains a timeslice we need. // vInteger t_mask = ((coords._odata[sU] >= tmin) && // (coords._odata[sU] <= tmax)); // Integer timeSlices = Reduce(t_mask); // // if (timeSlices > 0) // { // unsigned int sF = sU * LLs; // for (unsigned int s = 0; s < LLs; ++s) // { // bool axial_sign = ((curr_type == Current::Axial) && (s < (LLs / 2))); // bool tadpole_sign = (curr_type == Current::Tadpole); // bool switch_sgn = tadpole_sign || axial_sign; // // Kernels::SeqConservedCurrentSiteFwd(tmpFwd._odata[sF], // q_out._odata[sF], Umu, sU, // mu, t_mask, switch_sgn); // ++sF; // } // } // // // Repeat for backward direction. // t_mask = ((coords._odata[sU] >= (tmin + tshift)) && // (coords._odata[sU] <= (tmax + tshift))); // // //if tmax = LLt-1 (last timeslice) include timeslice 0 if the time is shifted (mu=3) // unsigned int t0 = 0; // if((tmax==LLt-1) && (tshift==1)) t_mask = (t_mask || (coords._odata[sU] == t0 )); // // timeSlices = Reduce(t_mask); // // if (timeSlices > 0) // { // unsigned int sF = sU * LLs; // for (unsigned int s = 0; s < LLs; ++s) // { // bool axial_sign = ((curr_type == Current::Axial) && (s < (LLs / 2))); // Kernels::SeqConservedCurrentSiteBwd(tmpBwd._odata[sF], // q_out._odata[sF], Umu, sU, // mu, t_mask, axial_sign); // ++sF; // } // } // } //} template void WilsonFermion5D::SeqConservedCurrent(PropagatorField &q_in, PropagatorField &q_out, Current curr_type, unsigned int mu, unsigned int tmin, unsigned int tmax, Lattice> &lattice_cmplx) { conformable(q_in._grid, FermionGrid()); conformable(q_in._grid, q_out._grid); PropagatorField tmpFwd(FermionGrid()), tmpBwd(FermionGrid()), tmp(FermionGrid()); Complex i(0.0, 1.0); unsigned int tshift = (mu == Tp) ? 1 : 0; unsigned int LLs = q_in._grid->_rdimensions[0]; unsigned int LLt = GridDefaultLatt()[Tp]; q_out = zero; LatticeInteger coords(_FourDimGrid); LatticeCoordinate(coords, Tp); //QED: photon field is 4dim, but need a 5dim object to multiply to // DWF PropagatorField Lattice> lattice_cmplx_5d(FermionGrid()); for (unsigned int s = 0; s < LLs; ++s) { InsertSlice(lattice_cmplx,lattice_cmplx_5d, s, 0); } // Need q(x + mu, s) and q(x - mu, s). 5D lattice so shift 4D coordinate mu // by one. tmp = Cshift(q_in, mu + 1, 1); tmpFwd = tmp*lattice_cmplx_5d; tmp = lattice_cmplx_5d*q_in; tmpBwd = Cshift(tmp, mu + 1, -1); parallel_for (unsigned int sU = 0; sU < Umu._grid->oSites(); ++sU) { // Compute the sequential conserved current insertion only if our simd // object contains a timeslice we need. vInteger t_mask = ((coords._odata[sU] >= tmin) && (coords._odata[sU] <= tmax)); Integer timeSlices = Reduce(t_mask); if (timeSlices > 0) { unsigned int sF = sU * LLs; for (unsigned int s = 0; s < LLs; ++s) { bool axial_sign = ((curr_type == Current::Axial) && (s < (LLs / 2))); bool tadpole_sign = (curr_type == Current::Tadpole); bool switch_sgn = tadpole_sign || axial_sign; Kernels::SeqConservedCurrentSiteFwd(tmpFwd._odata[sF], q_out._odata[sF], Umu, sU, mu, t_mask, switch_sgn); ++sF; } } // Repeat for backward direction. t_mask = ((coords._odata[sU] >= (tmin + tshift)) && (coords._odata[sU] <= (tmax + tshift))); //if tmax = LLt-1 (last timeslice) include timeslice 0 if the time is shifted (mu=3) unsigned int t0 = 0; if((tmax==LLt-1) && (tshift==1)) t_mask = (t_mask || (coords._odata[sU] == t0 )); timeSlices = Reduce(t_mask); if (timeSlices > 0) { unsigned int sF = sU * LLs; for (unsigned int s = 0; s < LLs; ++s) { bool axial_sign = ((curr_type == Current::Axial) && (s < (LLs / 2))); Kernels::SeqConservedCurrentSiteBwd(tmpBwd._odata[sF], q_out._odata[sF], Umu, sU, mu, t_mask, axial_sign); ++sF; } } } } FermOpTemplateInstantiate(WilsonFermion5D); GparityFermOpTemplateInstantiate(WilsonFermion5D); }}