/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./benchmarks/Benchmark_dwf.cc Copyright (C) 2015 Author: Peter Boyle Author: paboyle This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #include using namespace std; using namespace Grid; using namespace Grid::QCD; template struct scal { d internal; }; Gamma::Algebra Gmu [] = { Gamma::Algebra::GammaX, Gamma::Algebra::GammaY, Gamma::Algebra::GammaZ, Gamma::Algebra::GammaT }; typedef WilsonFermion5D WilsonFermion5DR; typedef WilsonFermion5D WilsonFermion5DF; typedef WilsonFermion5D WilsonFermion5DD; int main (int argc, char ** argv) { Grid_init(&argc,&argv); int threads = GridThread::GetThreads(); std::cout< latt4 = GridDefaultLatt(); const int Ls=8; GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi()); GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid); GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid); GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid); std::cout << GridLogMessage << "Making s innermost grids"< seeds4({1,2,3,4}); std::vector seeds5({5,6,7,8}); GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4); GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5); LatticeFermion src (FGrid); random(RNG5,src); LatticeFermion result(FGrid); result=zero; LatticeFermion ref(FGrid); ref=zero; LatticeFermion tmp(FGrid); LatticeFermion err(FGrid); LatticeGaugeField Umu(UGrid); random(RNG4,Umu); LatticeGaugeField Umu5d(FGrid); // replicate across fifth dimension for(int ss=0;ssoSites();ss++){ for(int s=0;s U(4,FGrid); for(int mu=0;mu(Umu5d,mu); } if (1) { ref = zero; for(int mu=0;mu_Nprocessors; DomainWallFermionR Dw(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5); std::cout << GridLogMessage<< "*****************************************************************" <Barrier(); Dw.ZeroCounters(); double t0=usecond(); for(int i=0;iBarrier(); double volume=Ls; for(int mu=0;mu::Dhop "< WilsonFermion5DR; LatticeFermion ssrc(sFGrid); LatticeFermion sref(sFGrid); LatticeFermion sresult(sFGrid); WilsonFermion5DR sDw(Umu,*sFGrid,*sFrbGrid,*sUGrid,*sUrbGrid,M5); for(int x=0;x site({s,x,y,z,t}); SpinColourVector tmp; peekSite(tmp,src,site); pokeSite(tmp,ssrc,site); }}}}} std::cout<Barrier(); double t0=usecond(); sDw.ZeroCounters(); for(int i=0;iBarrier(); double volume=Ls; for(int mu=0;mu site({s,x,y,z,t}); SpinColourVector normal, simd; peekSite(normal,result,site); peekSite(simd,sresult,site); sum=sum+norm2(normal-simd); if (norm2(normal-simd) > 1.0e-6 ) { std::cout << "site "<::Dhop to naive wilson implementation Dag to verify correctness" << std::endl; sDw.Dhop(ssrc,sresult,1); sum=0; for(int x=0;x site({s,x,y,z,t}); SpinColourVector normal, simd; peekSite(normal,ref,site); peekSite(simd,sresult,site); sum=sum+norm2(normal-simd); if (norm2(normal-simd) > 1.0e-6 ) { std::cout << "site "<::DhopEO "<Barrier(); sDw.ZeroCounters(); sDw.stat.init("DhopEO"); double t0=usecond(); for (int i = 0; i < ncall; i++) { sDw.DhopEO(ssrc_o, sr_e, DaggerNo); } double t1=usecond(); FGrid->Barrier(); sDw.stat.print(); double volume=Ls; for(int mu=0;mu1.0e-4) { setCheckerboard(ssrc,ssrc_o); setCheckerboard(ssrc,ssrc_e); std::cout<< ssrc << std::endl; } // Check the dag std::cout << GridLogMessage << "Compare WilsonFermion5D::DhopEO to Dhop to verify correctness" << std::endl; pickCheckerboard(Even,ssrc_e,ssrc); pickCheckerboard(Odd,ssrc_o,ssrc); sDw.DhopEO(ssrc_o,sr_e,DaggerYes); sDw.DhopOE(ssrc_e,sr_o,DaggerYes); sDw.Dhop (ssrc ,sresult,DaggerYes); pickCheckerboard(Even,ssrc_e,sresult); pickCheckerboard(Odd ,ssrc_o,sresult); ssrc_e = ssrc_e - sr_e; error = norm2(ssrc_e); std::cout<1.0e-4) { setCheckerboard(ssrc,ssrc_o); setCheckerboard(ssrc,ssrc_e); std::cout<< ssrc << std::endl; } } } Dw.Dhop(src,result,1); std::cout << GridLogMessage << "Compare DomainWallFermionR::Dhop to naive wilson implementation Dag to verify correctness" << std::endl; std::cout<Barrier(); double t0=usecond(); for(int i=0;iBarrier(); double volume=Ls; for(int mu=0;mu