/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./tests/Test_dwf_hdcr.cc Copyright (C) 2015 Author: Antonin Portelli Author: Peter Boyle Author: paboyle This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #include #include #include using namespace std; using namespace Grid; /* Params * Grid: * block1(4) * block2(4) * * Subspace * * Fine : Subspace(nbasis,hi,lo,order,first,step) -- 32, 60,0.02,500,100,100 * * Coarse: Subspace(nbasis,hi,lo,order,first,step) -- 32, 18,0.02,500,100,100 * Smoother: * * Fine: Cheby(hi, lo, order) -- 60,0.5,10 * * Coarse: Cheby(hi, lo, order) -- 12,0.1,4 * Lanczos: * CoarseCoarse IRL( Nk, Nm, Nstop, poly(lo,hi,order)) 24,36,24,0.002,4.0,61 */ RealD InverseApproximation(RealD x){ return 1.0/x; } template class ChebyshevSmoother : public LinearFunction { public: typedef LinearOperatorBase FineOperator; Matrix & _SmootherMatrix; FineOperator & _SmootherOperator; Chebyshev Cheby; ChebyshevSmoother(RealD _lo,RealD _hi,int _ord, FineOperator &SmootherOperator,Matrix &SmootherMatrix) : _SmootherOperator(SmootherOperator), _SmootherMatrix(SmootherMatrix), Cheby(_lo,_hi,_ord,InverseApproximation) {}; void operator() (const Field &in, Field &out) { Field tmp(in.Grid()); MdagMLinearOperator MdagMOp(_SmootherMatrix); _SmootherOperator.AdjOp(in,tmp); Cheby(MdagMOp,tmp,out); } }; template class MirsSmoother : public LinearFunction { public: typedef LinearOperatorBase FineOperator; Matrix & SmootherMatrix; FineOperator & SmootherOperator; RealD tol; RealD shift; int maxit; MirsSmoother(RealD _shift,RealD _tol,int _maxit,FineOperator &_SmootherOperator,Matrix &_SmootherMatrix) : shift(_shift),tol(_tol),maxit(_maxit), SmootherOperator(_SmootherOperator), SmootherMatrix(_SmootherMatrix) {}; void operator() (const Field &in, Field &out) { ZeroGuesser Guess; ConjugateGradient CG(tol,maxit,false); Field src(in.Grid()); ShiftedMdagMLinearOperator,Field> MdagMOp(SmootherMatrix,shift); SmootherOperator.AdjOp(in,src); Guess(src,out); CG(MdagMOp,src,out); } }; template class RedBlackSmoother : public LinearFunction { public: typedef LinearOperatorBase FineOperator; Matrix & SmootherMatrix; RealD tol; RealD shift; int maxit; RedBlackSmoother(RealD _shift,RealD _tol,int _maxit,Matrix &_SmootherMatrix) : shift(_shift),tol(_tol),maxit(_maxit), SmootherMatrix(_SmootherMatrix) {}; void operator() (const Field &in, Field &out) { std::cout << " Red Black Smootheer "< CG(tol,maxit,false); out =Zero(); SchurRedBlackDiagMooeeSolve RBSolver(CG); RBSolver(SmootherMatrix,in,out); std::cout << " Red Black Smootheer "< class MultiGridPreconditioner : public LinearFunction< Lattice > { public: typedef Aggregation Aggregates; typedef CoarsenedMatrix CoarseOperator; typedef typename Aggregation::CoarseVector CoarseVector; typedef typename Aggregation::CoarseMatrix CoarseMatrix; typedef typename Aggregation::FineField FineField; typedef LinearOperatorBase FineOperator; typedef LinearFunction FineSmoother; Aggregates & _Aggregates; CoarseOperator & _CoarseOperator; Matrix & _FineMatrix; FineOperator & _FineOperator; Guesser & _Guess; FineSmoother & _Smoother1; FineSmoother & _Smoother2; CoarseSolver & _CoarseSolve; int level; void Level(int lv) {level = lv; }; #define GridLogLevel std::cout << GridLogMessage < block ({2,2,2,2}); const int nbasis= 32; auto clatt = GridDefaultLatt(); for(int d=0;d seeds4({1,2,3,4}); std::vector seeds5({5,6,7,8}); std::vector cseeds({5,6,7,8}); GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5); GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4); GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds); LatticeFermion src(FGrid); gaussian(RNG5,src);// src=src+g5*src; LatticeFermion result(FGrid); LatticeGaugeField Umu(UGrid); FieldMetaData header; std::string file("./ckpoint_lat"); NerscIO::readConfiguration(Umu,header,file); std::cout< Subspace; typedef CoarsenedMatrix CoarseOperator; typedef CoarseOperator::CoarseVector CoarseVector; typedef CoarseOperator::siteVector siteVector; std::cout< HermDefOp(Ddwf); Subspace Aggregates(Coarse5d,FGrid,0); assert ( (nbasis & 0x1)==0); { int nb=nbasis/2; // Aggregates.CreateSubspaceChebyshev(RNG5,HermDefOp,nb,60.0,0.05,500,200,100,0.0);// 18s // rAggregates.CreateSubspaceChebyshev(RNG5,rHermDefOp,nb,60.0,0.05,500,200,150,0.0);// 15.7 23iter Aggregates.CreateSubspaceChebyshev(RNG5,HermDefOp,nb,60.0,0.05,500,200,150,0.0);// // pad out the rAggregates. // Aggregates.CreateSubspaceChebyshev(RNG5,HermDefOp,nb,60.0,0.05,500,500,150,0.0);// 19s // Aggregates.CreateSubspaceChebyshev(RNG5,HermDefOp,nb,60.0,0.05,500,200,200,0.0); 15.2s // Aggregates.CreateSubspaceChebyshev(RNG5,HermDefOp,nb,60.0,0.05,500,500,200,0.0); 16.3s for(int n=0;n Level1Op; Gamma5R5HermitianLinearOperator HermIndefOp(Ddwf); Level1Op LDOp(*Coarse5d,1); LDOp.CoarsenOperator(FGrid,HermIndefOp,Aggregates); std::cout< IRLHermOp(LDOp); Chebyshev IRLCheby(0.002,12.,151); FunctionHermOp IRLOpCheby(IRLCheby,IRLHermOp); PlainHermOp IRLOp (IRLHermOp); int Nk=48; int Nm=64; int Nstop=48; int Nconv; ImplicitlyRestartedLanczos IRL(IRLOpCheby,IRLOp,Nstop,Nk,Nm,1.0e-3,20); std::vector eval(Nm); std::vector evec(Nm,Coarse5d); CoarseVector c_src(Coarse5d); gaussian(CRNG,c_src); IRL.calc(eval,evec,c_src,Nconv); // ConjugateGradient CoarseCG(0.01,1000); ConjugateGradient CoarseCG(0.02,1000);// 14.7s DeflatedGuesser DeflCoarseGuesser(evec,eval); NormalEquations DeflCoarseCGNE(LDOp,CoarseCG,DeflCoarseGuesser); c_src=1.0; std::cout< PM; PM(HermDefOp,src); std::cout< PosdefLdop(LDOp); PowerMethod cPM; cPM(PosdefLdop,c_src); std::cout< , NormalEquations > TwoLevelMG; // MultiGrid preconditioner acting on the coarse space <-> coarsecoarse space // ChebyshevSmoother FineSmoother(0.5,60.0,14,HermIndefOp,Ddwf); // 72 iter 63s // ChebyshevSmoother FineSmoother(0.1,60.0,20,HermIndefOp,Ddwf); // 66 iter 69s // ChebyshevSmoother FineSmoother(0.5,60.0,20,HermIndefOp,Ddwf); // 63 iter 65 s // ChebyshevSmoother FineSmoother(1.0,60.0,20,HermIndefOp,Ddwf); // 69, 70 // ChebyshevSmoother FineSmoother(1.0,60.0,14,HermIndefOp,Ddwf); // 77 // ChebyshevSmoother FineSmoother(0.5,60.0,10,HermIndefOp,Ddwf); // 23 iter 15.9s // ChebyshevSmoother FineSmoother(0.5,60.0,14,HermIndefOp,Ddwf); // 20, 16.9s ChebyshevSmoother FineSmoother(0.5,60.0,12,HermIndefOp,Ddwf); // 21, 15.6s // MirsSmoother FineCGSmoother(0.05,0.01,20,HermIndefOp,Ddwf); // RedBlackSmoother FineRBSmoother(0.00,0.001,100,Ddwf); // Wrap the 2nd level solver in a MultiGrid preconditioner acting on the fine space ZeroGuesser CoarseZeroGuesser; TwoLevelMG TwoLevelPrecon(Aggregates, LDOp, HermIndefOp,Ddwf, FineSmoother, DeflCoarseGuesser, DeflCoarseCGNE); TwoLevelPrecon.Level(1); // Apply the fine-coarse-coarsecoarse 2 deep MG preconditioner in an outer PGCR on the fine fgrid PrecGeneralisedConjugateResidual l1PGCR(1.0e-8,1000,HermIndefOp,TwoLevelPrecon,16,16); l1PGCR.Level(1); std::cout< FineCG(1.0e-8,10000); SchurDiagMooeeOperator FineDiagMooee(Ddwf); // M_ee - Meo Moo^-1 Moe LatticeFermion f_src_e(FrbGrid); f_src_e=1.0; LatticeFermion f_res_e(FrbGrid); f_res_e=Zero(); FineCG(FineDiagMooee,f_src_e,f_res_e); std::cout<