/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./lib/qcd/action/fermion/WilsonFermion.cc Copyright (C) 2022 Author: Peter Boyle Author: Peter Boyle Author: Peter Boyle Author: paboyle Author: Fabian Joswig This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #include #include NAMESPACE_BEGIN(Grid); ///////////////////////////////// // Constructor and gauge import ///////////////////////////////// //template //WilsonFermion::WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid, // GridRedBlackCartesian &Hgrid, RealD _mass, // const ImplParams &p, // const WilsonAnisotropyCoefficients &anis) // : // Kernels(p), // _grid(&Fgrid), // _cbgrid(&Hgrid), // Stencil(&Fgrid, npoint, Even, directions, displacements,p), // StencilEven(&Hgrid, npoint, Even, directions,displacements,p), // source is Even // StencilOdd(&Hgrid, npoint, Odd, directions,displacements,p), // source is Odd // mass(_mass), // Lebesgue(_grid), // LebesgueEvenOdd(_cbgrid), // Umu(&Fgrid), // UmuEven(&Hgrid), // UmuOdd(&Hgrid), // _tmp(&Hgrid), // anisotropyCoeff(anis) //{ // Stencil.lo = &Lebesgue; // StencilEven.lo = &LebesgueEvenOdd; // StencilOdd.lo = &LebesgueEvenOdd; // // Allocate the required comms buffer // ImportGauge(_Umu); // if (anisotropyCoeff.isAnisotropic){ // diag_mass = mass + 1.0 + (Nd-1)*(anisotropyCoeff.nu / anisotropyCoeff.xi_0); // } else { // diag_mass = 4.0 + mass; // } // // int vol4; // vol4=Fgrid.oSites(); // Stencil.BuildSurfaceList(1,vol4); // vol4=Hgrid.oSites(); // StencilEven.BuildSurfaceList(1,vol4); // StencilOdd.BuildSurfaceList(1,vol4); //} // //template //void WilsonFermion::ImportGauge(const GaugeField &_Umu) //{ // GaugeField HUmu(_Umu.Grid()); // // //Here multiply the anisotropy coefficients // if (anisotropyCoeff.isAnisotropic) // { // // for (int mu = 0; mu < Nd; mu++) // { // GaugeLinkField U_dir = (-0.5)*PeekIndex(_Umu, mu); // if (mu != anisotropyCoeff.t_direction) // U_dir *= (anisotropyCoeff.nu / anisotropyCoeff.xi_0); // // PokeIndex(HUmu, U_dir, mu); // } // } // else // { // HUmu = _Umu * (-0.5); // } // Impl::DoubleStore(GaugeGrid(), Umu, HUmu); // pickCheckerboard(Even, UmuEven, Umu); // pickCheckerboard(Odd, UmuOdd, Umu); //} // /////////////////////////////// //// Implement the interface /////////////////////////////// // //template //void WilsonFermion::M(const FermionField &in, FermionField &out) //{ // out.Checkerboard() = in.Checkerboard(); // Dhop(in, out, DaggerNo); // axpy(out, diag_mass, in, out); //} // //template //void WilsonFermion::Mdag(const FermionField &in, FermionField &out) //{ // out.Checkerboard() = in.Checkerboard(); // Dhop(in, out, DaggerYes); // axpy(out, diag_mass, in, out); //} // //template //void WilsonFermion::Meooe(const FermionField &in, FermionField &out) //{ // if (in.Checkerboard() == Odd) { // DhopEO(in, out, DaggerNo); // } else { // DhopOE(in, out, DaggerNo); // } //} // //template //void WilsonFermion::MeooeDag(const FermionField &in, FermionField &out) //{ // if (in.Checkerboard() == Odd) { // DhopEO(in, out, DaggerYes); // } else { // DhopOE(in, out, DaggerYes); // } //} // //template //void WilsonFermion::Mooee(const FermionField &in, FermionField &out) //{ // out.Checkerboard() = in.Checkerboard(); // typename FermionField::scalar_type scal(diag_mass); // out = scal * in; //} // //template //void WilsonFermion::MooeeDag(const FermionField &in, FermionField &out) //{ // out.Checkerboard() = in.Checkerboard(); // Mooee(in, out); //} // //template //void WilsonFermion::MooeeInv(const FermionField &in, FermionField &out) //{ // out.Checkerboard() = in.Checkerboard(); // out = (1.0/(diag_mass))*in; //} // //template //void WilsonFermion::MooeeInvDag(const FermionField &in, FermionField &out) //{ // out.Checkerboard() = in.Checkerboard(); // MooeeInv(in,out); //} //template //void WilsonFermion::MomentumSpacePropagator(FermionField &out, const FermionField &in,RealD _m,std::vector twist) //{ // typedef typename FermionField::vector_type vector_type; // typedef typename FermionField::scalar_type ScalComplex; // typedef Lattice > LatComplex; // // // what type LatticeComplex // conformable(_grid,out.Grid()); // // Gamma::Algebra Gmu [] = { // Gamma::Algebra::GammaX, // Gamma::Algebra::GammaY, // Gamma::Algebra::GammaZ, // Gamma::Algebra::GammaT // }; // // Coordinate latt_size = _grid->_fdimensions; // // FermionField num (_grid); num = Zero(); // LatComplex wilson(_grid); wilson= Zero(); // LatComplex one (_grid); one = ScalComplex(1.0,0.0); // // LatComplex denom(_grid); denom= Zero(); // LatComplex kmu(_grid); // ScalComplex ci(0.0,1.0); // // momphase = n * 2pi / L // for(int mu=0;mu //void WilsonFermion::DerivInternal(StencilImpl &st, DoubledGaugeField &U, // GaugeField &mat, const FermionField &A, // const FermionField &B, int dag) { // assert((dag == DaggerNo) || (dag == DaggerYes)); // // Compressor compressor(dag); // // FermionField Btilde(B.Grid()); // FermionField Atilde(B.Grid()); // Atilde = A; // // st.HaloExchange(B, compressor); // // for (int mu = 0; mu < Nd; mu++) { // //////////////////////////////////////////////////////////////////////// // // Flip gamma (1+g)<->(1-g) if dag // //////////////////////////////////////////////////////////////////////// // int gamma = mu; // if (!dag) gamma += Nd; // // int Ls=1; // Kernels::DhopDirKernel(st, U, st.CommBuf(), Ls, B.Grid()->oSites(), B, Btilde, mu, gamma); // // ////////////////////////////////////////////////// // // spin trace outer product // ////////////////////////////////////////////////// // Impl::InsertForce4D(mat, Btilde, Atilde, mu); // } //} // //template //void WilsonFermion::DhopDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag) //{ // conformable(U.Grid(), _grid); // conformable(U.Grid(), V.Grid()); // conformable(U.Grid(), mat.Grid()); // // mat.Checkerboard() = U.Checkerboard(); // // DerivInternal(Stencil, Umu, mat, U, V, dag); //} // //template //void WilsonFermion::DhopDerivOE(GaugeField &mat, const FermionField &U, const FermionField &V, int dag) //{ // conformable(U.Grid(), _cbgrid); // conformable(U.Grid(), V.Grid()); // //conformable(U.Grid(), mat.Grid()); not general, leaving as a comment (Guido) // // Motivation: look at the SchurDiff operator // // assert(V.Checkerboard() == Even); // assert(U.Checkerboard() == Odd); // mat.Checkerboard() = Odd; // // DerivInternal(StencilEven, UmuOdd, mat, U, V, dag); //} // //template //void WilsonFermion::DhopDerivEO(GaugeField &mat, const FermionField &U, const FermionField &V, int dag) //{ // conformable(U.Grid(), _cbgrid); // conformable(U.Grid(), V.Grid()); // //conformable(U.Grid(), mat.Grid()); // // assert(V.Checkerboard() == Odd); // assert(U.Checkerboard() == Even); // mat.Checkerboard() = Even; // // DerivInternal(StencilOdd, UmuEven, mat, U, V, dag); //} // //template //void WilsonFermion::Dhop(const FermionField &in, FermionField &out, int dag) //{ // conformable(in.Grid(), _grid); // verifies full grid // conformable(in.Grid(), out.Grid()); // // out.Checkerboard() = in.Checkerboard(); // // DhopInternal(Stencil, Lebesgue, Umu, in, out, dag); //} // //template //void WilsonFermion::DhopOE(const FermionField &in, FermionField &out, int dag) //{ // conformable(in.Grid(), _cbgrid); // verifies half grid // conformable(in.Grid(), out.Grid()); // drops the cb check // // assert(in.Checkerboard() == Even); // out.Checkerboard() = Odd; // // DhopInternal(StencilEven, LebesgueEvenOdd, UmuOdd, in, out, dag); //} // //template //void WilsonFermion::DhopEO(const FermionField &in, FermionField &out,int dag) //{ // conformable(in.Grid(), _cbgrid); // verifies half grid // conformable(in.Grid(), out.Grid()); // drops the cb check // // assert(in.Checkerboard() == Odd); // out.Checkerboard() = Even; // // DhopInternal(StencilOdd, LebesgueEvenOdd, UmuEven, in, out, dag); //} // //template //void WilsonFermion::Mdir(const FermionField &in, FermionField &out, int dir, int disp) //{ // DhopDir(in, out, dir, disp); //} //template //void WilsonFermion::MdirAll(const FermionField &in, std::vector &out) //{ // DhopDirAll(in, out); //} //// //template //void WilsonFermion::DhopDir(const FermionField &in, FermionField &out, int dir, int disp) //{ // Compressor compressor(DaggerNo); // Stencil.HaloExchange(in, compressor); // // int skip = (disp == 1) ? 0 : 1; // int dirdisp = dir + skip * 4; // int gamma = dir + (1 - skip) * 4; // // DhopDirCalc(in, out, dirdisp, gamma, DaggerNo); //}; //template //void WilsonFermion::DhopDirAll(const FermionField &in, std::vector &out) //{ // Compressor compressor(DaggerNo); // Stencil.HaloExchange(in, compressor); // // assert((out.size()==8)||(out.size()==9)); // for(int dir=0;dir //void WilsonFermion::DhopDirCalc(const FermionField &in, FermionField &out,int dirdisp, int gamma, int dag) //{ // int Ls=1; // uint64_t Nsite=in.oSites(); // Kernels::DhopDirKernel(Stencil, Umu, Stencil.CommBuf(), Ls, Nsite, in, out, dirdisp, gamma); //}; // //template //void WilsonFermion::DhopInternal(StencilImpl &st, LebesgueOrder &lo, // DoubledGaugeField &U, // const FermionField &in, // FermionField &out, int dag) //{ //#ifdef GRID_OMP // if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute ) // DhopInternalOverlappedComms(st,lo,U,in,out,dag); // else //#endif // DhopInternalSerial(st,lo,U,in,out,dag); //} // //template //void WilsonFermion::DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, // DoubledGaugeField &U, // const FermionField &in, // FermionField &out, int dag) //{ // GRID_TRACE("DhopOverlapped"); // assert((dag == DaggerNo) || (dag == DaggerYes)); // // Compressor compressor(dag); // int len = U.Grid()->oSites(); // // ///////////////////////////// // // Start comms // Gather intranode and extra node differentiated?? // ///////////////////////////// // std::vector > requests; // st.Prepare(); // { // GRID_TRACE("Gather"); // st.HaloGather(in,compressor); // } // // tracePush("Communication"); // st.CommunicateBegin(requests); // // ///////////////////////////// // // Overlap with comms // ///////////////////////////// // { // GRID_TRACE("MergeSHM"); // st.CommsMergeSHM(compressor); // } // // ///////////////////////////// // // do the compute interior // ///////////////////////////// // int Opt = WilsonKernelsStatic::Opt; // if (dag == DaggerYes) { // GRID_TRACE("DhopDagInterior"); // Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,1,0); // } else { // GRID_TRACE("DhopInterior"); // Kernels::DhopKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,1,0); // } // // ///////////////////////////// // // Complete comms // ///////////////////////////// // st.CommunicateComplete(requests); // tracePop("Communication"); // // { // GRID_TRACE("Merge"); // st.CommsMerge(compressor); // } // ///////////////////////////// // // do the compute exterior // ///////////////////////////// // // if (dag == DaggerYes) { // GRID_TRACE("DhopDagExterior"); // Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,0,1); // } else { // GRID_TRACE("DhopExterior"); // Kernels::DhopKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,0,1); // } //}; //// //template //void WilsonFermion::DhopInternalSerial(StencilImpl &st, LebesgueOrder &lo, // DoubledGaugeField &U, // const FermionField &in, // FermionField &out, int dag) //{ // GRID_TRACE("DhopSerial"); // assert((dag == DaggerNo) || (dag == DaggerYes)); // Compressor compressor(dag); // { // GRID_TRACE("HaloExchange"); // st.HaloExchange(in, compressor); // } // // int Opt = WilsonKernelsStatic::Opt; // if (dag == DaggerYes) { // GRID_TRACE("DhopDag"); // Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out); // } else { // GRID_TRACE("Dhop"); // Kernels::DhopKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out); // } //}; ///*Change ends */ // ///******************************************************************************* // * Conserved current utilities for Wilson fermions, for contracting propagators // * to make a conserved current sink or inserting the conserved current // * sequentially. // ******************************************************************************/ //template //void WilsonFermion::ContractConservedCurrent(PropagatorField &q_in_1, // PropagatorField &q_in_2, // PropagatorField &q_out, // PropagatorField &src, // Current curr_type, // unsigned int mu) //{ // if(curr_type != Current::Vector) // { // std::cout << GridLogError << "Only the conserved vector current is implemented so far." << std::endl; // exit(1); // } // // Gamma g5(Gamma::Algebra::Gamma5); // conformable(_grid, q_in_1.Grid()); // conformable(_grid, q_in_2.Grid()); // conformable(_grid, q_out.Grid()); // auto UGrid= this->GaugeGrid(); // // PropagatorField tmp_shifted(UGrid); // PropagatorField g5Lg5(UGrid); // PropagatorField R(UGrid); // PropagatorField gmuR(UGrid); // // Gamma::Algebra Gmu [] = { // Gamma::Algebra::GammaX, // Gamma::Algebra::GammaY, // Gamma::Algebra::GammaZ, // Gamma::Algebra::GammaT, // }; // Gamma gmu=Gamma(Gmu[mu]); // // g5Lg5=g5*q_in_1*g5; // tmp_shifted=Cshift(q_in_2,mu,1); // Impl::multLinkField(R,this->Umu,tmp_shifted,mu); // gmuR=gmu*R; // // q_out=adj(g5Lg5)*R; // q_out-=adj(g5Lg5)*gmuR; // // tmp_shifted=Cshift(q_in_1,mu,1); // Impl::multLinkField(g5Lg5,this->Umu,tmp_shifted,mu); // g5Lg5=g5*g5Lg5*g5; // R=q_in_2; // gmuR=gmu*R; // // q_out-=adj(g5Lg5)*R; // q_out-=adj(g5Lg5)*gmuR; //} // template void WilsonFermion::SeqConservedCurrent(PropagatorField &q_in, PropagatorField &q_out, PropagatorField &src, Current curr_type, unsigned int mu, unsigned int tmin, unsigned int tmax, ComplexField &lattice_cmplx) { if(curr_type != Current::Vector) { std::cout << GridLogError << "Only the conserved vector current is implemented so far." << std::endl; exit(1); } int tshift = (mu == Nd-1) ? 1 : 0; unsigned int LLt = GridDefaultLatt()[Tp]; conformable(_grid, q_in.Grid()); conformable(_grid, q_out.Grid()); auto UGrid= this->GaugeGrid(); PropagatorField tmp(UGrid); PropagatorField Utmp(UGrid); PropagatorField L(UGrid); PropagatorField zz (UGrid); zz=Zero(); LatticeInteger lcoor(UGrid); LatticeCoordinate(lcoor,Nd-1); Gamma::Algebra Gmu [] = { Gamma::Algebra::GammaX, Gamma::Algebra::GammaY, Gamma::Algebra::GammaZ, Gamma::Algebra::GammaT, }; Gamma gmu=Gamma(Gmu[mu]); tmp = Cshift(q_in,mu,1); Impl::multLinkField(Utmp,this->Umu,tmp,mu); tmp = ( Utmp*lattice_cmplx - gmu*Utmp*lattice_cmplx ); // Forward hop tmp = where((lcoor>=tmin),tmp,zz); // Mask the time // q_out = where((lcoor<=tmax),tmp,zz); // Position of current complicated // // tmp = q_in *lattice_cmplx; // tmp = Cshift(tmp,mu,-1); // Impl::multLinkField(Utmp,this->Umu,tmp,mu+Nd); // Adjoint link // tmp = -( Utmp + gmu*Utmp ); // // Mask the time // if (tmax == LLt - 1 && tshift == 1){ // quick fix to include timeslice 0 if tmax + tshift is over the last timeslice // unsigned int t0 = 0; // tmp = where(((lcoor==t0) || (lcoor>=tmin+tshift)),tmp,zz); // } else { // tmp = where((lcoor>=tmin+tshift),tmp,zz); // } // q_out+= where((lcoor<=tmax+tshift),tmp,zz); // Position of current complicated } template class WilsonFermion; NAMESPACE_END(Grid);