/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: Hadrons/Modules/MContraction/Baryon.hpp Copyright (C) 2015-2019 Author: Antonin Portelli Author: Felix Erben This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #ifndef Hadrons_MContraction_Baryon_hpp_ #define Hadrons_MContraction_Baryon_hpp_ #include #include #include #include BEGIN_HADRONS_NAMESPACE /****************************************************************************** * Baryon * ******************************************************************************/ BEGIN_MODULE_NAMESPACE(MContraction) class BaryonPar: Serializable { public: GRID_SERIALIZABLE_CLASS_MEMBERS(BaryonPar, std::string, q1, std::string, q2, std::string, q3, std::string, gamma, std::string, output); }; template class TBaryon: public Module { public: FERM_TYPE_ALIASES(FImpl1, 1); FERM_TYPE_ALIASES(FImpl2, 2); FERM_TYPE_ALIASES(FImpl3, 3); class Result: Serializable { public: GRID_SERIALIZABLE_CLASS_MEMBERS(Result, std::vector, corr); }; public: // constructor TBaryon(const std::string name); // destructor virtual ~TBaryon(void) {}; // dependency relation virtual std::vector getInput(void); virtual std::vector getOutput(void); protected: // setup virtual void setup(void); // execution virtual void execute(void); }; MODULE_REGISTER_TMP(Baryon, ARG(TBaryon), MContraction); /****************************************************************************** * TBaryon implementation * ******************************************************************************/ // constructor ///////////////////////////////////////////////////////////////// template TBaryon::TBaryon(const std::string name) : Module(name) {} // dependencies/products /////////////////////////////////////////////////////// template std::vector TBaryon::getInput(void) { std::vector input = {par().q1, par().q2, par().q3}; return input; } template std::vector TBaryon::getOutput(void) { std::vector out = {}; return out; } // setup /////////////////////////////////////////////////////////////////////// template void TBaryon::setup(void) { envTmpLat(LatticeComplex, "c"); envTmpLat(LatticeComplex, "diquark"); } // execution /////////////////////////////////////////////////////////////////// template void TBaryon::execute(void) { LOG(Message) << "Computing nucleon contractions '" << getName() << "' using" << " quarks '" << par().q1 << "', '" << par().q2 << "', and '" << par().q3 << "'" << std::endl; auto &q1 = envGet(PropagatorField1, par().q1); auto &q2 = envGet(PropagatorField2, par().q2); auto &q3 = envGet(PropagatorField3, par().q2); envGetTmp(LatticeComplex, c); envGetTmp(LatticeComplex, diquark); Result result; int nt = env().getDim(Tp); result.corr.resize(nt); const std::string gamma{ par().gamma }; std::vector buf; // C = i gamma_2 gamma_4 => C gamma_5 = - i gamma_1 gamma_3 /* Gamma GammaA(Gamma::Algebra::Identity); //Still hardcoded 1 Gamma GammaB(Gamma::Algebra::SigmaXZ); //Still hardcoded Cg5 Gamma g4(Gamma::Algebra::GammaT); //needed for parity P_\pm = 0.5*(1 \pm \gamma_4) std::vector> epsilon = {{0,1,2},{1,2,0},{2,0,1},{0,2,1},{2,1,0},{1,0,2}}; std::vector epsilon_sgn = {1,1,1,-1,-1,-1}; char left[] = "uud"; char right[] = "uud"; std::vector wick_contraction = {0,0,0,0,0,0}; for (int ie=0; ie < 6 ; ie++) if (left[0] == right[epsilon[ie][0]] && left[1] == right[epsilon[ie][1]] && left[2] == right[epsilon[ie][2]]) wick_contraction[ie]=1; int parity = 1; for (int ie_src=0; ie_src < 6 ; ie_src++){ int a_src = epsilon[ie_src][0]; //a int b_src = epsilon[ie_src][1]; //b int c_src = epsilon[ie_src][2]; //c for (int ie_snk=0; ie_snk < 6 ; ie_snk++){ int a_snk = epsilon[ie_snk][0]; //a' int b_snk = epsilon[ie_snk][1]; //b' int c_snk = epsilon[ie_snk][2]; //c' auto Daa = peekColour(q2,a_snk,a_src); //D_{alpha' alpha} auto Dbb = peekColour(q3,b_snk,b_src); //D_{beta' beta} auto Dcc = peekColour(q1,c_snk,c_src); //D_{gamma' gamma} auto Dab = peekColour(q2,a_snk,b_src); //D_{alpha' beta} auto Dac = peekColour(q2,a_snk,c_src); //D_{alpha' gamma} auto Dba = peekColour(q3,b_snk,a_src); //D_{beta' alpha} auto Dbc = peekColour(q3,b_snk,c_src); //D_{beta' gamma} auto Dca = peekColour(q1,c_snk,a_src); //D_{gamma' alpha} auto Dcb = peekColour(q1,c_snk,b_src); //D_{gamma' beta} // This is the \delta_{123}^{123} part if (wick_contraction[0]){ diquark = trace(GammaB * Daa * GammaB * Dbb); //1st GammaB and Daa transposed???? auto temp = GammaA * Dcc * diquark; auto g4_temp = GammaA * g4 * temp; c += epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * 0.5 * trace(GammaA * temp + (double)parity * g4_temp); } // This is the \delta_{123}^{231} part if (wick_contraction[1]){ auto temp = GammaA * Dca * GammaB * Dab * GammaB * Dbc; //Dab transposed??? auto g4_temp = GammaA * g4 * temp; c += epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * 0.5 * trace(GammaA * temp + (double)parity * g4_temp); } // This is the \delta_{123}^{312} part if (wick_contraction[2]){ auto temp = GammaA * Dcb * GammaB * Dba * GammaB * Dac; //both GammaB and Dba transposed??? auto g4_temp = GammaA * g4 * temp; c += epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * 0.5 * trace(GammaA * temp + (double)parity * g4_temp); } // This is the \delta_{123}^{132} part if (wick_contraction[3]){ diquark = trace(GammaB * Dba * GammaB * Dab); //2nd GammaB and Dab transposed???? auto temp = GammaA * Dcc * diquark; auto g4_temp = GammaA * g4 * temp; c -= epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * 0.5 * trace(GammaA * temp + (double)parity * g4_temp); } // This is the \delta_{123}^{321} part if (wick_contraction[4]){ auto temp = GammaA * Dcb * GammaB * Daa * GammaB * Dbc; //1st GammaB and Daa transposed??? auto g4_temp = GammaA * g4 * temp; c -= epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * 0.5 * trace(GammaA * temp + (double)parity * g4_temp); } // This is the \delta_{123}^{213} part if (wick_contraction[5]){ auto temp = GammaA * Dca * GammaB * Dbb * GammaB * Dac; //(Dbb*GammaB) transposed??? auto g4_temp = GammaA * g4 * temp; c -= epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * 0.5 * trace(GammaA * temp + (double)parity * g4_temp); } } } */ Gamma GammaA(Gamma::Algebra::Identity); Gamma GammaB(Gamma::Algebra::SigmaXZ); //Still hardcoded Cg5 if (gamma.compare("X") ==0){ std::cout << "using interpolator C gamma_X"; Gamma GammaB(Gamma::Algebra::GammaZGamma5); //Still hardcoded CgX = i gamma_3 gamma_5 } if (gamma.compare("Y") ==0){ std::cout << "using interpolator C gamma_Y"; Gamma GammaB(Gamma::Algebra::GammaT); //Still hardcoded CgX = - gamma_4 } if (gamma.compare("Z")==0){ std::cout << "using interpolator C gamma_Z"; Gamma GammaB(Gamma::Algebra::GammaXGamma5); //Still hardcoded CgX = i gamma_1 gamma_5 } BaryonUtils::ContractBaryons(q1,q2,q3,GammaA,GammaB,c); sliceSum(c,buf,Tp); for (unsigned int t = 0; t < buf.size(); ++t) { result.corr[t] = TensorRemove(buf[t]); } saveResult(par().output, "baryon", result); } END_MODULE_NAMESPACE END_HADRONS_NAMESPACE #endif // Hadrons_MContraction_Baryon_hpp_