/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./lib/algorithms/iterative/MinimalResidual.h Copyright (C) 2015 Author: Daniel Richtmann This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #ifndef GRID_MINIMAL_RESIDUAL_H #define GRID_MINIMAL_RESIDUAL_H namespace Grid { ///////////////////////////////////////////////////////////// // Base classes for iterative processes based on operators // single input vec, single output vec. ///////////////////////////////////////////////////////////// template class MinimalResidual : public OperatorFunction { public: bool ErrorOnNoConverge; // throw an assert when the MR fails to converge. // Defaults true. RealD Tolerance; Integer MaxIterations; Integer IterationsToComplete; // Number of iterations the MR took to finish. // Filled in upon completion MinimalResidual(RealD tol, Integer maxit, bool err_on_no_conv = true) : Tolerance(tol), MaxIterations(maxit), ErrorOnNoConverge(err_on_no_conv){}; void operator()(LinearOperatorBase &Linop, const Field &src, Field &psi) { psi.checkerboard = src.checkerboard; conformable(psi, src); Complex a, c; RealD d; Field Mr(src); Field r(src); // Initial residual computation & set up RealD guess = norm2(psi); assert(std::isnan(guess) == 0); RealD ssq = norm2(src); // flopcount.addSiteFlops(4*Nc*Ns,s); RealD rsq = Tolerance * Tolerance * ssq; // flopcount.addSiteFlops(4*Nc*Ns,s); Linop.Op(psi, Mr); // flopcount.addFlops(M.nFlops()); r = src - Mr; // flopcount.addSiteFlops(2*Nc*Ns,s); RealD cp = norm2(r); // Cp = |r[0]|^2 // 2 Nc Ns flops // flopcount.addSiteFlops(4*Nc*Ns, s); std::cout << GridLogIterative << std::setprecision(4) << "MinimalResidual: guess " << guess << std::endl; std::cout << GridLogIterative << std::setprecision(4) << "MinimalResidual: src " << ssq << std::endl; std::cout << GridLogIterative << std::setprecision(4) << "MinimalResidual: mp " << d << std::endl; std::cout << GridLogIterative << std::setprecision(4) << "MinimalResidual: cp,r " << cp << std::endl; if (cp <= rsq) { return; } std::cout << GridLogIterative << std::setprecision(4) << "MinimalResidual: k=0 residual " << cp << " target " << rsq << std::endl; GridStopWatch LinalgTimer; GridStopWatch MatrixTimer; GridStopWatch SolverTimer; SolverTimer.Start(); int k; for (k = 1; k <= MaxIterations; k++) { // a[k-1] := < M.r[k-1], r[k-1] >/ < M.r[k-1], M.r[k-1] > MatrixTimer.Start(); Linop.Op(r, Mr); // Mr = M * r // flopcount.addFlops(M.nFlops()); MatrixTimer.Stop(); LinalgTimer.Start(); c = innerProduct(Mr, r); // c = < M.r, r > // // flopcount.addSiteFlops(4*Nc*Ns,s); d = norm2(Mr); // d = | M.r | ** 2 // // flopcount.addSiteFlops(4*Nc*Ns,s); a = c / d; // a = a * MRovpar; // a[k-1] *= MRovpar // from chroma code. TODO: check what to do with this psi = psi + r * a; // Psi[k] += a[k-1] r[k-1] ; // flopcount.addSiteFlops(4*Nc*Ns,s); r = r - Mr * a; // r[k] -= a[k-1] M . r[k-1] ; // flopcount.addSiteFlops(4*Nc*Ns,s); cp = norm2(r); // cp = | r[k] |**2 // flopcount.addSiteFlops(4*Nc*Ns,s); LinalgTimer.Stop(); std::cout << GridLogIterative << "MinimalResidual: Iteration " << k << " residual " << cp << " target " << rsq << std::endl; std::cout << GridLogDebug << "a = " << a << " c = " << c << " d = " << d << std::endl; // Stopping condition if (cp <= rsq) { SolverTimer.Stop(); Linop.Op(psi, Mr); r = src - Mr; RealD srcnorm = sqrt(ssq); RealD resnorm = sqrt(norm2(r)); RealD true_residual = resnorm / srcnorm; std::cout << GridLogMessage << "MinimalResidual Converged on iteration " << k << std::endl; std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp / ssq) << std::endl; std::cout << GridLogMessage << "\tTrue residual " << true_residual << std::endl; std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl; std::cout << GridLogMessage << "Time breakdown " << std::endl; std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() << std::endl; std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() << std::endl; std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() << std::endl; if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0); IterationsToComplete = k; return; } } std::cout << GridLogMessage << "MinimalResidual did NOT converge" << std::endl; if (ErrorOnNoConverge) assert(0); IterationsToComplete = k; } }; } // namespace Grid #endif