#ifndef _GRID_CSHIFT_COMMON_H_ #define _GRID_CSHIFT_COMMON_H_ ////////////////////////////////////////////////////////////////////////////////////////// // Must not lose sight that goal is to be able to construct really efficient // gather to a point stencil code. CSHIFT is not the best way, so probably need // additional stencil support. // // Stencil based code could pre-exchange haloes and use a table lookup for neighbours // // Lattice could also allocate haloes which get used for stencil code. // // Grid could create a neighbour index table for a given stencil. // Could also implement CovariantCshift. ////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////// // Gather for when there is no need to SIMD split ////////////////////////////////////////////////////// friend void Gather_plane_simple (Lattice &rhs,std::vector > &buffer, int dimension,int plane,int cbmask) { int rd = rhs._grid->_rdimensions[dimension]; if ( !rhs._grid->CheckerBoarded(dimension) ) { int so = plane*rhs._grid->_ostride[dimension]; // base offset for start of plane int o = 0; // relative offset to base within plane int bo = 0; // offset in buffer // Simple block stride gather of SIMD objects #pragma omp parallel for collapse(2) for(int n=0;n_slice_nblock[dimension];n++){ for(int b=0;b_slice_block[dimension];b++){ buffer[bo++]=rhs._odata[so+o+b]; } o +=rhs._grid->_slice_stride[dimension]; } } else { int so = plane*rhs._grid->_ostride[dimension]; // base offset for start of plane int o = 0; // relative offset to base within plane int bo = 0; // offset in buffer #pragma omp parallel for collapse(2) for(int n=0;n_slice_nblock[dimension];n++){ for(int b=0;b_slice_block[dimension];b++){ int ocb=1<CheckerBoardFromOindex(o+b);// Could easily be a table lookup if ( ocb &cbmask ) { buffer[bo]=rhs._odata[so+o+b]; bo++; } } o +=rhs._grid->_slice_stride[dimension]; } } } ////////////////////////////////////////////////////// // Gather for when there *is* need to SIMD split ////////////////////////////////////////////////////// friend void Gather_plane_extract(Lattice &rhs,std::vector pointers,int dimension,int plane,int cbmask) { int rd = rhs._grid->_rdimensions[dimension]; if ( !rhs._grid->CheckerBoarded(dimension) ) { int so = plane*rhs._grid->_ostride[dimension]; // base offset for start of plane int o = 0; // relative offset to base within plane int bo = 0; // offset in buffer // Simple block stride gather of SIMD objects #pragma omp parallel for collapse(2) for(int n=0;n_slice_nblock[dimension];n++){ for(int b=0;b_slice_block[dimension];b++){ extract(rhs._odata[so+o+b],pointers); } o +=rhs._grid->_slice_stride[dimension]; } } else { int so = plane*rhs._grid->_ostride[dimension]; // base offset for start of plane int o = 0; // relative offset to base within plane int bo = 0; // offset in buffer #pragma omp parallel for collapse(2) for(int n=0;n_slice_nblock[dimension];n++){ for(int b=0;b_slice_block[dimension];b++){ int ocb=1<CheckerBoardFromOindex(o+b); if ( ocb & cbmask ) { extract(rhs._odata[so+o+b],pointers); } } o +=rhs._grid->_slice_stride[dimension]; } } } ////////////////////////////////////////////////////// // Scatter for when there is no need to SIMD split ////////////////////////////////////////////////////// friend void Scatter_plane_simple (Lattice &rhs,std::vector > &buffer, int dimension,int plane,int cbmask) { int rd = rhs._grid->_rdimensions[dimension]; if ( !rhs._grid->CheckerBoarded(dimension) ) { int so = plane*rhs._grid->_ostride[dimension]; // base offset for start of plane int o = 0; // relative offset to base within plane int bo = 0; // offset in buffer // Simple block stride gather of SIMD objects #pragma omp parallel for collapse(2) for(int n=0;n_slice_nblock[dimension];n++){ for(int b=0;b_slice_block[dimension];b++){ rhs._odata[so+o+b]=buffer[bo++]; } o +=rhs._grid->_slice_stride[dimension]; } } else { int so = plane*rhs._grid->_ostride[dimension]; // base offset for start of plane int o = 0; // relative offset to base within plane int bo = 0; // offset in buffer #pragma omp parallel for collapse(2) for(int n=0;n_slice_nblock[dimension];n++){ for(int b=0;b_slice_block[dimension];b++){ int ocb=1<CheckerBoardFromOindex(o+b);// Could easily be a table lookup if ( ocb & cbmask ) { rhs._odata[so+o+b]=buffer[bo++]; } } o +=rhs._grid->_slice_stride[dimension]; } } } ////////////////////////////////////////////////////// // Scatter for when there *is* need to SIMD split ////////////////////////////////////////////////////// friend void Scatter_plane_merge(Lattice &rhs,std::vector pointers,int dimension,int plane,int cbmask) { int rd = rhs._grid->_rdimensions[dimension]; if ( !rhs._grid->CheckerBoarded(dimension) ) { int so = plane*rhs._grid->_ostride[dimension]; // base offset for start of plane int o = 0; // relative offset to base within plane int bo = 0; // offset in buffer // Simple block stride gather of SIMD objects #pragma omp parallel for collapse(2) for(int n=0;n_slice_nblock[dimension];n++){ for(int b=0;b_slice_block[dimension];b++){ merge(rhs._odata[so+o+b],pointers); } o +=rhs._grid->_slice_stride[dimension]; } } else { int so = plane*rhs._grid->_ostride[dimension]; // base offset for start of plane int o = 0; // relative offset to base within plane int bo = 0; // offset in buffer #pragma omp parallel for collapse(2) for(int n=0;n_slice_nblock[dimension];n++){ for(int b=0;b_slice_block[dimension];b++){ int ocb=1<CheckerBoardFromOindex(o+b); if ( ocb&cbmask ) { merge(rhs._odata[so+o+b],pointers); } } o +=rhs._grid->_slice_stride[dimension]; } } } ////////////////////////////////////////////////////// // local to node block strided copies ////////////////////////////////////////////////////// // if lhs is odd, rhs even?? friend void Copy_plane(Lattice& lhs,Lattice &rhs, int dimension,int lplane,int rplane,int cbmask) { int rd = rhs._grid->_rdimensions[dimension]; if ( !rhs._grid->CheckerBoarded(dimension) ) { int o = 0; // relative offset to base within plane int ro = rplane*rhs._grid->_ostride[dimension]; // base offset for start of plane int lo = lplane*lhs._grid->_ostride[dimension]; // offset in buffer // Simple block stride gather of SIMD objects #pragma omp parallel for collapse(2) for(int n=0;n_slice_nblock[dimension];n++){ for(int b=0;b_slice_block[dimension];b++){ lhs._odata[lo+o+b]=rhs._odata[ro+o+b]; } o +=rhs._grid->_slice_stride[dimension]; } } else { int ro = rplane*rhs._grid->_ostride[dimension]; // base offset for start of plane int lo = lplane*lhs._grid->_ostride[dimension]; // base offset for start of plane int o = 0; // relative offset to base within plane #pragma omp parallel for collapse(2) for(int n=0;n_slice_nblock[dimension];n++){ for(int b=0;b_slice_block[dimension];b++){ int ocb=1<CheckerBoardFromOindex(o+b); if ( ocb&cbmask ) { lhs._odata[lo+o+b]=rhs._odata[ro+o+b]; } } o +=rhs._grid->_slice_stride[dimension]; } } } friend void Copy_plane_permute(Lattice& lhs,Lattice &rhs, int dimension,int lplane,int rplane,int cbmask,int permute_type) { int rd = rhs._grid->_rdimensions[dimension]; if ( !rhs._grid->CheckerBoarded(dimension) ) { int o = 0; // relative offset to base within plane int ro = rplane*rhs._grid->_ostride[dimension]; // base offset for start of plane int lo = lplane*rhs._grid->_ostride[dimension]; // offset in buffer // Simple block stride gather of SIMD objects #pragma omp parallel for collapse(2) for(int n=0;n_slice_nblock[dimension];n++){ for(int b=0;b_slice_block[dimension];b++){ permute(lhs._odata[lo+o+b],rhs._odata[ro+o+b],permute_type); } o +=rhs._grid->_slice_stride[dimension]; } } else { int ro = rplane*rhs._grid->_ostride[dimension]; // base offset for start of plane int lo = lplane*lhs._grid->_ostride[dimension]; // base offset for start of plane int o = 0; // relative offset to base within plane #pragma omp parallel for collapse(2) for(int n=0;n_slice_nblock[dimension];n++){ for(int b=0;b_slice_block[dimension];b++){ int ocb=1<CheckerBoardFromOindex(o+b); if ( ocb&cbmask ) { permute(lhs._odata[lo+o+b],rhs._odata[ro+o+b],permute_type); } } o +=rhs._grid->_slice_stride[dimension]; } } } ////////////////////////////////////////////////////// // Local to node Cshift ////////////////////////////////////////////////////// // Work out whether to permute // ABCDEFGH -> AE BF CG DH permute wrap num // // Shift 0 AE BF CG DH 0 0 0 0 ABCDEFGH 0 0 // Shift 1 BF CG DH AE 0 0 0 1 BCDEFGHA 0 1 // Shift 2 CG DH AE BF 0 0 1 1 CDEFGHAB 0 2 // Shift 3 DH AE BF CG 0 1 1 1 DEFGHABC 0 3 // Shift 4 AE BF CG DH 1 1 1 1 EFGHABCD 1 0 // Shift 5 BF CG DH AE 1 1 1 0 FGHACBDE 1 1 // Shift 6 CG DH AE BF 1 1 0 0 GHABCDEF 1 2 // Shift 7 DH AE BF CG 1 0 0 0 HABCDEFG 1 3 // Suppose 4way simd in one dim. // ABCDEFGH -> AECG BFDH permute wrap num // Shift 0 AECG BFDH 0,00 0,00 ABCDEFGH 0 0 // Shift 1 BFDH CGEA 0,00 1,01 BCDEFGHA 0 1 // Shift 2 CGEA DHFB 1,01 1,01 CDEFGHAB 1 0 // Shift 3 DHFB EAGC 1,01 1,11 DEFGHABC 1 1 // Shift 4 EAGC FBHD 1,11 1,11 EFGHABCD 2 0 // Shift 5 FBHD GCAE 1,11 1,10 FGHABCDE 2 1 // Shift 6 GCAE HDBF 1,10 1,10 GHABCDEF 3 0 // Shift 7 HDBF AECG 1,10 0,00 HABCDEFG 3 1 // Generalisation to 8 way simd, 16 way simd required. // // Need log2 Nway masks. consisting of // 1 bit 256 bit granule // 2 bit 128 bit granule // 4 bits 64 bit granule // 8 bits 32 bit granules // // 15 bits.... friend void Cshift_local(Lattice& ret,Lattice &rhs,int dimension,int shift) { int sshift[2]; sshift[0] = rhs._grid->CheckerBoardShift(rhs.checkerboard,dimension,shift,0); sshift[1] = rhs._grid->CheckerBoardShift(rhs.checkerboard,dimension,shift,1); if ( sshift[0] == sshift[1] ) { Cshift_local(ret,rhs,dimension,shift,0x3); } else { Cshift_local(ret,rhs,dimension,shift,0x1);// if checkerboard is unfavourable take two passes Cshift_local(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration } } friend Lattice Cshift_local(Lattice &ret,Lattice &rhs,int dimension,int shift,int cbmask) { int fd = rhs._grid->_fdimensions[dimension]; int rd = rhs._grid->_rdimensions[dimension]; int ld = rhs._grid->_ldimensions[dimension]; int gd = rhs._grid->_gdimensions[dimension]; // Map to always positive shift modulo global full dimension. shift = (shift+fd)%fd; ret.checkerboard = rhs._grid->CheckerBoardDestination(rhs.checkerboard,shift); // the permute type int permute_dim =rhs._grid->_simd_layout[dimension]>1 ; int permute_type=0; for(int d=0;d_simd_layout[d]>1 ) permute_type++; } for(int x=0;x_ostride[dimension]; int cb= (cbmask==0x2)? 1 : 0; int sshift = rhs._grid->CheckerBoardShift(rhs.checkerboard,dimension,shift,cb); int sx = (x+sshift)%rd; int permute_slice=0; if(permute_dim){ int wrap = sshift/rd; int num = sshift%rd; if ( x< rd-num ) permute_slice=wrap; else permute_slice = 1-wrap; } if ( permute_slice ) Copy_plane_permute(ret,rhs,dimension,x,sx,cbmask,permute_type); else Copy_plane(ret,rhs,dimension,x,sx,cbmask); } return ret; } #endif