/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./lib/qcd/action/fermion/WilsonFermion.cc Copyright (C) 2015 Author: Peter Boyle Author: Peter Boyle Author: Peter Boyle Author: paboyle This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #include #include NAMESPACE_BEGIN(Grid); ///////////////////////////////// // Constructor and gauge import ///////////////////////////////// template WilsonFermion::WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid, GridRedBlackCartesian &Hgrid, RealD _mass, const ImplParams &p, const WilsonAnisotropyCoefficients &anis) : Kernels(p), _grid(&Fgrid), _cbgrid(&Hgrid), Stencil(&Fgrid, npoint, Even, directions, displacements,p), StencilEven(&Hgrid, npoint, Even, directions,displacements,p), // source is Even StencilOdd(&Hgrid, npoint, Odd, directions,displacements,p), // source is Odd mass(_mass), Lebesgue(_grid), LebesgueEvenOdd(_cbgrid), Umu(&Fgrid), UmuEven(&Hgrid), UmuOdd(&Hgrid), _tmp(&Hgrid), anisotropyCoeff(anis) { // Allocate the required comms buffer ImportGauge(_Umu); if (anisotropyCoeff.isAnisotropic){ diag_mass = mass + 1.0 + (Nd-1)*(anisotropyCoeff.nu / anisotropyCoeff.xi_0); } else { diag_mass = 4.0 + mass; } } template void WilsonFermion::ImportGauge(const GaugeField &_Umu) { GaugeField HUmu(_Umu.Grid()); //Here multiply the anisotropy coefficients if (anisotropyCoeff.isAnisotropic) { for (int mu = 0; mu < Nd; mu++) { GaugeLinkField U_dir = (-0.5)*PeekIndex(_Umu, mu); if (mu != anisotropyCoeff.t_direction) U_dir *= (anisotropyCoeff.nu / anisotropyCoeff.xi_0); PokeIndex(HUmu, U_dir, mu); } } else { HUmu = _Umu * (-0.5); } Impl::DoubleStore(GaugeGrid(), Umu, HUmu); pickCheckerboard(Even, UmuEven, Umu); pickCheckerboard(Odd, UmuOdd, Umu); } ///////////////////////////// // Implement the interface ///////////////////////////// template RealD WilsonFermion::M(const FermionField &in, FermionField &out) { out.Checkerboard() = in.Checkerboard(); Dhop(in, out, DaggerNo); return axpy_norm(out, diag_mass, in, out); } template RealD WilsonFermion::Mdag(const FermionField &in, FermionField &out) { out.Checkerboard() = in.Checkerboard(); Dhop(in, out, DaggerYes); return axpy_norm(out, diag_mass, in, out); } template void WilsonFermion::Meooe(const FermionField &in, FermionField &out) { if (in.Checkerboard() == Odd) { DhopEO(in, out, DaggerNo); } else { DhopOE(in, out, DaggerNo); } } template void WilsonFermion::MeooeDag(const FermionField &in, FermionField &out) { if (in.Checkerboard() == Odd) { DhopEO(in, out, DaggerYes); } else { DhopOE(in, out, DaggerYes); } } template void WilsonFermion::Mooee(const FermionField &in, FermionField &out) { out.Checkerboard() = in.Checkerboard(); typename FermionField::scalar_type scal(diag_mass); out = scal * in; } template void WilsonFermion::MooeeDag(const FermionField &in, FermionField &out) { out.Checkerboard() = in.Checkerboard(); Mooee(in, out); } template void WilsonFermion::MooeeInv(const FermionField &in, FermionField &out) { out.Checkerboard() = in.Checkerboard(); out = (1.0/(diag_mass))*in; } template void WilsonFermion::MooeeInvDag(const FermionField &in, FermionField &out) { out.Checkerboard() = in.Checkerboard(); MooeeInv(in,out); } template void WilsonFermion::MomentumSpacePropagator(FermionField &out, const FermionField &in,RealD _m,std::vector twist) { typedef typename FermionField::vector_type vector_type; typedef typename FermionField::scalar_type ScalComplex; typedef Lattice > LatComplex; // what type LatticeComplex conformable(_grid,out.Grid()); Gamma::Algebra Gmu [] = { Gamma::Algebra::GammaX, Gamma::Algebra::GammaY, Gamma::Algebra::GammaZ, Gamma::Algebra::GammaT }; Coordinate latt_size = _grid->_fdimensions; FermionField num (_grid); num = Zero(); LatComplex wilson(_grid); wilson= Zero(); LatComplex one (_grid); one = ScalComplex(1.0,0.0); LatComplex denom(_grid); denom= Zero(); LatComplex kmu(_grid); ScalComplex ci(0.0,1.0); // momphase = n * 2pi / L for(int mu=0;mu void WilsonFermion::DerivInternal(StencilImpl &st, DoubledGaugeField &U, GaugeField &mat, const FermionField &A, const FermionField &B, int dag) { assert((dag == DaggerNo) || (dag == DaggerYes)); Compressor compressor(dag); FermionField Btilde(B.Grid()); FermionField Atilde(B.Grid()); Atilde = A; st.HaloExchange(B, compressor); for (int mu = 0; mu < Nd; mu++) { //////////////////////////////////////////////////////////////////////// // Flip gamma (1+g)<->(1-g) if dag //////////////////////////////////////////////////////////////////////// int gamma = mu; if (!dag) gamma += Nd; int Ls=1; Kernels::DhopDirKernel(st, U, st.CommBuf(), Ls, B.Grid()->oSites(), B, Btilde, mu, gamma); ////////////////////////////////////////////////// // spin trace outer product ////////////////////////////////////////////////// Impl::InsertForce4D(mat, Btilde, Atilde, mu); } } template void WilsonFermion::DhopDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag) { conformable(U.Grid(), _grid); conformable(U.Grid(), V.Grid()); conformable(U.Grid(), mat.Grid()); mat.Checkerboard() = U.Checkerboard(); DerivInternal(Stencil, Umu, mat, U, V, dag); } template void WilsonFermion::DhopDerivOE(GaugeField &mat, const FermionField &U, const FermionField &V, int dag) { conformable(U.Grid(), _cbgrid); conformable(U.Grid(), V.Grid()); //conformable(U.Grid(), mat.Grid()); not general, leaving as a comment (Guido) // Motivation: look at the SchurDiff operator assert(V.Checkerboard() == Even); assert(U.Checkerboard() == Odd); mat.Checkerboard() = Odd; DerivInternal(StencilEven, UmuOdd, mat, U, V, dag); } template void WilsonFermion::DhopDerivEO(GaugeField &mat, const FermionField &U, const FermionField &V, int dag) { conformable(U.Grid(), _cbgrid); conformable(U.Grid(), V.Grid()); //conformable(U.Grid(), mat.Grid()); assert(V.Checkerboard() == Odd); assert(U.Checkerboard() == Even); mat.Checkerboard() = Even; DerivInternal(StencilOdd, UmuEven, mat, U, V, dag); } template void WilsonFermion::Dhop(const FermionField &in, FermionField &out, int dag) { conformable(in.Grid(), _grid); // verifies full grid conformable(in.Grid(), out.Grid()); out.Checkerboard() = in.Checkerboard(); DhopInternal(Stencil, Lebesgue, Umu, in, out, dag); } template void WilsonFermion::DhopOE(const FermionField &in, FermionField &out, int dag) { conformable(in.Grid(), _cbgrid); // verifies half grid conformable(in.Grid(), out.Grid()); // drops the cb check assert(in.Checkerboard() == Even); out.Checkerboard() = Odd; DhopInternal(StencilEven, LebesgueEvenOdd, UmuOdd, in, out, dag); } template void WilsonFermion::DhopEO(const FermionField &in, FermionField &out,int dag) { conformable(in.Grid(), _cbgrid); // verifies half grid conformable(in.Grid(), out.Grid()); // drops the cb check assert(in.Checkerboard() == Odd); out.Checkerboard() = Even; DhopInternal(StencilOdd, LebesgueEvenOdd, UmuEven, in, out, dag); } template void WilsonFermion::Mdir(const FermionField &in, FermionField &out, int dir, int disp) { DhopDir(in, out, dir, disp); } template void WilsonFermion::DhopDir(const FermionField &in, FermionField &out, int dir, int disp) { int skip = (disp == 1) ? 0 : 1; int dirdisp = dir + skip * 4; int gamma = dir + (1 - skip) * 4; DhopDirDisp(in, out, dirdisp, gamma, DaggerNo); }; template void WilsonFermion::DhopDirDisp(const FermionField &in, FermionField &out,int dirdisp, int gamma, int dag) { Compressor compressor(dag); Stencil.HaloExchange(in, compressor); int Ls=1; int Nsite=in.oSites(); Kernels::DhopDirKernel(Stencil, Umu, Stencil.CommBuf(), Ls, Nsite, in, out, dirdisp, gamma); }; template void WilsonFermion::DhopInternal(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, const FermionField &in, FermionField &out, int dag) { #ifdef GRID_OMP if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute ) DhopInternalOverlappedComms(st,lo,U,in,out,dag); else #endif DhopInternalSerial(st,lo,U,in,out,dag); } template void WilsonFermion::DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, const FermionField &in, FermionField &out, int dag) { assert((dag == DaggerNo) || (dag == DaggerYes)); Compressor compressor(dag); int len = U.Grid()->oSites(); ///////////////////////////// // Start comms // Gather intranode and extra node differentiated?? ///////////////////////////// std::vector > requests; st.Prepare(); st.HaloGather(in,compressor); st.CommunicateBegin(requests); ///////////////////////////// // Overlap with comms ///////////////////////////// st.CommsMergeSHM(compressor); ///////////////////////////// // do the compute interior ///////////////////////////// int Opt = WilsonKernelsStatic::Opt; if (dag == DaggerYes) { Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,1,0); } else { Kernels::DhopKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,1,0); } ///////////////////////////// // Complete comms ///////////////////////////// st.CommunicateComplete(requests); st.CommsMerge(compressor); ///////////////////////////// // do the compute exterior ///////////////////////////// if (dag == DaggerYes) { Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,0,1); } else { Kernels::DhopKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,0,1); } }; template void WilsonFermion::DhopInternalSerial(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, const FermionField &in, FermionField &out, int dag) { assert((dag == DaggerNo) || (dag == DaggerYes)); Compressor compressor(dag); st.HaloExchange(in, compressor); int Opt = WilsonKernelsStatic::Opt; if (dag == DaggerYes) { Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out); } else { Kernels::DhopKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out); } }; /*Change ends */ /******************************************************************************* * Conserved current utilities for Wilson fermions, for contracting propagators * to make a conserved current sink or inserting the conserved current * sequentially. ******************************************************************************/ template void WilsonFermion::ContractConservedCurrent(PropagatorField &q_in_1, PropagatorField &q_in_2, PropagatorField &q_out, Current curr_type, unsigned int mu) { Gamma g5(Gamma::Algebra::Gamma5); conformable(_grid, q_in_1.Grid()); conformable(_grid, q_in_2.Grid()); conformable(_grid, q_out.Grid()); PropagatorField tmp1(_grid), tmp2(_grid); q_out = Zero(); // Forward, need q1(x + mu), q2(x). Backward, need q1(x), q2(x + mu). // Inefficient comms method but not performance critical. tmp1 = Cshift(q_in_1, mu, 1); tmp2 = Cshift(q_in_2, mu, 1); auto tmp1_v = tmp1.View(); auto tmp2_v = tmp2.View(); auto q_in_1_v=q_in_1.View(); auto q_in_2_v=q_in_2.View(); auto q_out_v = q_out.View(); auto Umu_v = Umu.View(); thread_for(sU, Umu.Grid()->oSites(),{ Kernels::ContractConservedCurrentSiteFwd(tmp1_v[sU], q_in_2_v[sU], q_out_v[sU], Umu_v, sU, mu); Kernels::ContractConservedCurrentSiteBwd(q_in_1_v[sU], tmp2_v[sU], q_out_v[sU], Umu_v, sU, mu); }); } template void WilsonFermion::SeqConservedCurrent(PropagatorField &q_in, PropagatorField &q_out, Current curr_type, unsigned int mu, unsigned int tmin, unsigned int tmax, ComplexField &lattice_cmplx) { conformable(_grid, q_in.Grid()); conformable(_grid, q_out.Grid()); // Lattice> ph(_grid), coor(_grid); Complex i(0.0,1.0); PropagatorField tmpFwd(_grid), tmpBwd(_grid), tmp(_grid); unsigned int tshift = (mu == Tp) ? 1 : 0; unsigned int LLt = GridDefaultLatt()[Tp]; q_out = Zero(); LatticeInteger coords(_grid); LatticeCoordinate(coords, Tp); // Need q(x + mu) and q(x - mu). tmp = Cshift(q_in, mu, 1); tmpFwd = tmp*lattice_cmplx; tmp = lattice_cmplx*q_in; tmpBwd = Cshift(tmp, mu, -1); auto coords_v = coords.View(); auto tmpFwd_v = tmpFwd.View(); auto tmpBwd_v = tmpBwd.View(); auto Umu_v = Umu.View(); auto q_out_v = q_out.View(); thread_for(sU, Umu.Grid()->oSites(), { // Compute the sequential conserved current insertion only if our simd // object contains a timeslice we need. vPredicate t_mask; t_mask() = ((coords_v[sU] >= tmin) && (coords_v[sU] <= tmax)); Integer timeSlices = Reduce(t_mask()); if (timeSlices > 0) { Kernels::SeqConservedCurrentSiteFwd(tmpFwd_v[sU], q_out_v[sU], Umu_v, sU, mu, t_mask); } // Repeat for backward direction. t_mask() = ((coords_v[sU] >= (tmin + tshift)) && (coords_v[sU] <= (tmax + tshift))); //if tmax = LLt-1 (last timeslice) include timeslice 0 if the time is shifted (mu=3) unsigned int t0 = 0; if((tmax==LLt-1) && (tshift==1)) t_mask() = (t_mask() || (coords_v[sU] == t0 )); timeSlices = Reduce(t_mask()); if (timeSlices > 0) { Kernels::SeqConservedCurrentSiteBwd(tmpBwd_v[sU], q_out_v[sU], Umu_v, sU, mu, t_mask); } }); } NAMESPACE_END(Grid);