/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./tests/Test_padded_cell.cc Copyright (C) 2023 Author: Peter Boyle This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #include #include #include #include using namespace std; using namespace Grid; // Want Op in CoarsenOp to call MatPcDagMatPc template class HermOpAdaptor : public LinearOperatorBase { LinearOperatorBase & wrapped; public: HermOpAdaptor(LinearOperatorBase &wrapme) : wrapped(wrapme) {}; void OpDiag (const Field &in, Field &out) { assert(0); } void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); } void OpDirAll (const Field &in, std::vector &out){ assert(0); }; void Op (const Field &in, Field &out){ wrapped.HermOp(in,out); } void AdjOp (const Field &in, Field &out){ wrapped.HermOp(in,out); } void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); } void HermOp(const Field &in, Field &out){ wrapped.HermOp(in,out); } }; int main (int argc, char ** argv) { Grid_init(&argc,&argv); const int Ls=16; GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi()); GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid); GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid); GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid); // Construct a coarsened grid // 4^4 cell Coordinate clatt = GridDefaultLatt(); for(int d=0;d seeds4({1,2,3,4}); std::vector seeds5({5,6,7,8}); std::vector cseeds({5,6,7,8}); GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5); GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4); GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds); LatticeGaugeField Umu(UGrid); FieldMetaData header; std::string file("ckpoint_lat.4000"); NerscIO::readConfiguration(Umu,header,file); RealD mass=0.01; RealD M5=1.8; RealD b=1.5; RealD c=0.5; MobiusFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c); MobiusFermionD Dpv(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,1.0,M5,b,c); const int nbasis = 4; const int cb = 0 ; LatticeFermion prom(FrbGrid); typedef GeneralCoarsenedMatrix LittleDiracOperator; typedef LittleDiracOperator::CoarseVector CoarseVector; NextToNextToNextToNearestStencilGeometry5D geom; std::cout< HermOpEO(Ddwf); HermOpAdaptor HOA(HermOpEO); // Run power method on HOA?? LatticeFermion result(FrbGrid); result=Zero(); LatticeFermion ref(FrbGrid); ref=Zero(); LatticeFermion tmp(FrbGrid); LatticeFermion err(FrbGrid); { LatticeFermion src(FrbGrid); random(RNG5,src); PowerMethod PM; PM(HermOpEO,src); } // exit(0); // Warning: This routine calls PVdagM.Op, not PVdagM.HermOp typedef Aggregation Subspace; Subspace Aggregates(Coarse5d,FrbGrid,cb); Aggregates.CreateSubspaceChebyshev(RNG5, HermOpEO, nbasis, 90.0, 0.1, 500, 500, 100, 0.0); //////////////////////////////////////////////////////////// // Need to check about red-black grid coarsening //////////////////////////////////////////////////////////// LittleDiracOperator LittleDiracOp(geom,FrbGrid,Coarse5d); LittleDiracOp.CoarsenOperator(HOA,Aggregates); std::cout< subspace(nbasis,FrbGrid); subspace=Aggregates.subspace; Complex one(1.0); c_src = one; // 1 in every element for vector 1. blockPromote(c_src,err,subspace); prom=Zero(); for(int b=0;b Guess; RealD tol = 1.0e-8; int maxit=2000; ConjugateGradient CG(tol,maxit,false); HermitianLinearOperator Hop (LittleDiracOp); CG(Hop, c_src, c_res); Grid_finalize(); return 0; }