/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./lib/simd/Grid_avx.h Copyright (C) 2015 Author: Azusa Yamaguchi Author: Guido Cossu Author: Peter Boyle Author: neo Author: paboyle This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #include #ifdef AVXFMA4 #include #endif // _mm256_set_m128i(hi,lo); // not defined in all versions of immintrin.h #ifndef _mm256_set_m128i #define _mm256_set_m128i(hi,lo) _mm256_insertf128_si256(_mm256_castsi128_si256(lo),(hi),1) #endif namespace Grid { namespace Optimization { template union uconv { __m256 f; vtype v; }; union u256f { __m256 v; float f[8]; }; union u256d { __m256d v; double f[4]; }; struct Vsplat{ // Complex float inline __m256 operator()(float a, float b) { return _mm256_set_ps(b,a,b,a,b,a,b,a); } // Real float inline __m256 operator()(float a){ return _mm256_set_ps(a,a,a,a,a,a,a,a); } //Complex double inline __m256d operator()(double a, double b){ return _mm256_set_pd(b,a,b,a); } //Real double inline __m256d operator()(double a){ return _mm256_set_pd(a,a,a,a); } //Integer inline __m256i operator()(Integer a){ return _mm256_set1_epi32(a); } }; struct Vstore{ //Float inline void operator()(__m256 a, float* F){ _mm256_store_ps(F,a); } //Double inline void operator()(__m256d a, double* D){ _mm256_store_pd(D,a); } //Integer inline void operator()(__m256i a, Integer* I){ _mm256_store_si256((__m256i*)I,a); } }; struct Vstream{ //Float inline void operator()(float * a, __m256 b){ _mm256_stream_ps(a,b); } //Double inline void operator()(double * a, __m256d b){ _mm256_stream_pd(a,b); } }; struct Vset{ // Complex float inline __m256 operator()(Grid::ComplexF *a){ return _mm256_set_ps(a[3].imag(),a[3].real(),a[2].imag(),a[2].real(),a[1].imag(),a[1].real(),a[0].imag(),a[0].real()); } // Complex double inline __m256d operator()(Grid::ComplexD *a){ return _mm256_set_pd(a[1].imag(),a[1].real(),a[0].imag(),a[0].real()); } // Real float inline __m256 operator()(float *a){ return _mm256_set_ps(a[7],a[6],a[5],a[4],a[3],a[2],a[1],a[0]); } // Real double inline __m256d operator()(double *a){ return _mm256_set_pd(a[3],a[2],a[1],a[0]); } // Integer inline __m256i operator()(Integer *a){ return _mm256_set_epi32(a[7],a[6],a[5],a[4],a[3],a[2],a[1],a[0]); } }; template struct Reduce{ // Need templated class to overload output type // General form must generate error if compiled inline Out_type operator()(In_type in){ printf("Error, using wrong Reduce function\n"); exit(1); return 0; } }; ///////////////////////////////////////////////////// // Arithmetic operations ///////////////////////////////////////////////////// struct Sum{ //Complex/Real float inline __m256 operator()(__m256 a, __m256 b){ return _mm256_add_ps(a,b); } //Complex/Real double inline __m256d operator()(__m256d a, __m256d b){ return _mm256_add_pd(a,b); } //Integer inline __m256i operator()(__m256i a, __m256i b){ #if defined (AVX1) || defined (AVXFMA) || defined (AVXFMA4) __m128i a0,a1; __m128i b0,b1; a0 = _mm256_extractf128_si256(a,0); b0 = _mm256_extractf128_si256(b,0); a1 = _mm256_extractf128_si256(a,1); b1 = _mm256_extractf128_si256(b,1); a0 = _mm_add_epi32(a0,b0); a1 = _mm_add_epi32(a1,b1); return _mm256_set_m128i(a1,a0); #endif #if defined (AVX2) return _mm256_add_epi32(a,b); #endif } }; struct Sub{ //Complex/Real float inline __m256 operator()(__m256 a, __m256 b){ return _mm256_sub_ps(a,b); } //Complex/Real double inline __m256d operator()(__m256d a, __m256d b){ return _mm256_sub_pd(a,b); } //Integer inline __m256i operator()(__m256i a, __m256i b){ #if defined (AVX1) || defined (AVXFMA) || defined (AVXFMA4) __m128i a0,a1; __m128i b0,b1; a0 = _mm256_extractf128_si256(a,0); b0 = _mm256_extractf128_si256(b,0); a1 = _mm256_extractf128_si256(a,1); b1 = _mm256_extractf128_si256(b,1); a0 = _mm_sub_epi32(a0,b0); a1 = _mm_sub_epi32(a1,b1); return _mm256_set_m128i(a1,a0); #endif #if defined (AVX2) return _mm256_sub_epi32(a,b); #endif } }; struct MultRealPart{ inline __m256 operator()(__m256 a, __m256 b){ __m256 ymm0; ymm0 = _mm256_shuffle_ps(a,a,_MM_SELECT_FOUR_FOUR(2,2,0,0)); // ymm0 <- ar ar, return _mm256_mul_ps(ymm0,b); // ymm0 <- ar bi, ar br } inline __m256d operator()(__m256d a, __m256d b){ __m256d ymm0; ymm0 = _mm256_shuffle_pd(a,a,0x0); // ymm0 <- ar ar, ar,ar b'00,00 return _mm256_mul_pd(ymm0,b); // ymm0 <- ar bi, ar br } }; struct MaddRealPart{ inline __m256 operator()(__m256 a, __m256 b, __m256 c){ __m256 ymm0 = _mm256_moveldup_ps(a); // ymm0 <- ar ar, return _mm256_add_ps(_mm256_mul_ps( ymm0, b),c); } inline __m256d operator()(__m256d a, __m256d b, __m256d c){ __m256d ymm0 = _mm256_shuffle_pd( a, a, 0x0 ); return _mm256_add_pd(_mm256_mul_pd( ymm0, b),c); } }; struct MultComplex{ // Complex float inline __m256 operator()(__m256 a, __m256 b){ #if defined (AVX1) __m256 ymm0,ymm1,ymm2; ymm0 = _mm256_shuffle_ps(a,a,_MM_SELECT_FOUR_FOUR(2,2,0,0)); // ymm0 <- ar ar, ymm0 = _mm256_mul_ps(ymm0,b); // ymm0 <- ar bi, ar br // FIXME AVX2 could MAC ymm1 = _mm256_shuffle_ps(b,b,_MM_SELECT_FOUR_FOUR(2,3,0,1)); // ymm1 <- br,bi ymm2 = _mm256_shuffle_ps(a,a,_MM_SELECT_FOUR_FOUR(3,3,1,1)); // ymm2 <- ai,ai ymm1 = _mm256_mul_ps(ymm1,ymm2); // ymm1 <- br ai, ai bi return _mm256_addsub_ps(ymm0,ymm1); #endif #if defined (AVXFMA4) __m256 a_real = _mm256_shuffle_ps(a,a,_MM_SELECT_FOUR_FOUR(2,2,0,0)); // ar ar, __m256 a_imag = _mm256_shuffle_ps(a,a,_MM_SELECT_FOUR_FOUR(3,3,1,1)); // ai ai __m256 tmp = _mm256_shuffle_ps( b,b, _MM_SELECT_FOUR_FOUR(2,3,0,1)); a_imag = _mm256_mul_ps( a_imag,tmp ); // (Ai, Ai) * (Bi, Br) = Ai Bi, Ai Br return _mm256_maddsub_ps( a_real, b, a_imag ); // Ar Br , Ar Bi +- Ai Bi = ArBr-AiBi , ArBi+AiBr #endif #if defined (AVX2) || defined (AVXFMA) __m256 a_real = _mm256_moveldup_ps( a ); // Ar Ar __m256 a_imag = _mm256_movehdup_ps( a ); // Ai Ai a_imag = _mm256_mul_ps( a_imag, _mm256_shuffle_ps( b,b, _MM_SELECT_FOUR_FOUR(2,3,0,1) )); // (Ai, Ai) * (Bi, Br) = Ai Bi, Ai Br return _mm256_fmaddsub_ps( a_real, b, a_imag ); // Ar Br , Ar Bi +- Ai Bi = ArBr-AiBi , ArBi+AiBr #endif } // Complex double inline __m256d operator()(__m256d a, __m256d b) { // Multiplication of (ak+ibk)*(ck+idk) // a + i b can be stored as a data structure // From intel optimisation reference guide /* movsldup xmm0, Src1; load real parts into the destination, ; a1, a1, a0, a0 movaps xmm1, src2; load the 2nd pair of complex values, ; i.e. d1, c1, d0, c0 mulps xmm0, xmm1; temporary results, a1d1, a1c1, a0d0, ; a0c0 shufps xmm1, xmm1, b1; reorder the real and imaginary ; parts, c1, d1, c0, d0 movshdup xmm2, Src1; load the imaginary parts into the ; destination, b1, b1, b0, b0 mulps xmm2, xmm1; temporary results, b1c1, b1d1, b0c0, ; b0d0 addsubps xmm0, xmm2; b1c1+a1d1, a1c1 -b1d1, b0c0+a0d VSHUFPD (VEX.256 encoded version) IF IMM0[0] = 0 THEN DEST[63:0]=SRC1[63:0] ELSE DEST[63:0]=SRC1[127:64] FI; IF IMM0[1] = 0 THEN DEST[127:64]=SRC2[63:0] ELSE DEST[127:64]=SRC2[127:64] FI; IF IMM0[2] = 0 THEN DEST[191:128]=SRC1[191:128] ELSE DEST[191:128]=SRC1[255:192] FI; IF IMM0[3] = 0 THEN DEST[255:192]=SRC2[191:128] ELSE DEST[255:192]=SRC2[255:192] FI; // Ox5 r<->i ; 0xC unchanged */ #if defined (AVX1) __m256d ymm0,ymm1,ymm2; ymm0 = _mm256_shuffle_pd(a,a,0x0); // ymm0 <- ar ar, ar,ar b'00,00 ymm0 = _mm256_mul_pd(ymm0,b); // ymm0 <- ar bi, ar br ymm1 = _mm256_shuffle_pd(b,b,0x5); // ymm1 <- br,bi b'01,01 ymm2 = _mm256_shuffle_pd(a,a,0xF); // ymm2 <- ai,ai b'11,11 ymm1 = _mm256_mul_pd(ymm1,ymm2); // ymm1 <- br ai, ai bi return _mm256_addsub_pd(ymm0,ymm1); #endif #if defined (AVXFMA4) __m256d a_real = _mm256_shuffle_pd(a,a,0x0);//arar __m256d a_imag = _mm256_shuffle_pd(a,a,0xF);//aiai a_imag = _mm256_mul_pd( a_imag, _mm256_permute_pd( b, 0x5 ) ); // (Ai, Ai) * (Bi, Br) = Ai Bi, Ai Br return _mm256_maddsub_pd( a_real, b, a_imag ); // Ar Br , Ar Bi +- Ai Bi = ArBr-AiBi , ArBi+AiBr #endif #if defined (AVX2) || defined (AVXFMA) __m256d a_real = _mm256_movedup_pd( a ); // Ar Ar __m256d a_imag = _mm256_shuffle_pd(a,a,0xF);//aiai a_imag = _mm256_mul_pd( a_imag, _mm256_permute_pd( b, 0x5 ) ); // (Ai, Ai) * (Bi, Br) = Ai Bi, Ai Br return _mm256_fmaddsub_pd( a_real, b, a_imag ); // Ar Br , Ar Bi +- Ai Bi = ArBr-AiBi , ArBi+AiBr #endif } }; #if 0 struct ComplexDot { inline void Prep(__m256 ari,__m256 &air) { cdotRIperm(ari,air); } inline void Mul(__m256 ari,__m256 air,__m256 b,__m256 &riir,__m256 &iirr) { riir=air*b; iirr=arr*b; }; inline void Madd(__m256 ari,__m256 air,__m256 b,__m256 &riir,__m256 &iirr) { mac(riir,air,b); mac(iirr,ari,b); } inline void End(__m256 ari,__m256 &air) { // cdotRI } }; #endif struct Mult{ inline void mac(__m256 &a, __m256 b, __m256 c){ #if defined (AVX1) a= _mm256_add_ps(_mm256_mul_ps(b,c),a); #endif #if defined (AVXFMA4) a= _mm256_macc_ps(b,c,a); #endif #if defined (AVX2) || defined (AVXFMA) a= _mm256_fmadd_ps( b, c, a); #endif } inline void mac(__m256d &a, __m256d b, __m256d c){ #if defined (AVX1) a= _mm256_add_pd(_mm256_mul_pd(b,c),a); #endif #if defined (AVXFMA4) a= _mm256_macc_pd(b,c,a); #endif #if defined (AVX2) || defined (AVXFMA) a= _mm256_fmadd_pd( b, c, a); #endif } // Real float inline __m256 operator()(__m256 a, __m256 b){ return _mm256_mul_ps(a,b); } // Real double inline __m256d operator()(__m256d a, __m256d b){ return _mm256_mul_pd(a,b); } // Integer inline __m256i operator()(__m256i a, __m256i b){ #if defined (AVX1) || defined (AVXFMA) __m128i a0,a1; __m128i b0,b1; a0 = _mm256_extractf128_si256(a,0); b0 = _mm256_extractf128_si256(b,0); a1 = _mm256_extractf128_si256(a,1); b1 = _mm256_extractf128_si256(b,1); a0 = _mm_mullo_epi32(a0,b0); a1 = _mm_mullo_epi32(a1,b1); return _mm256_set_m128i(a1,a0); #endif #if defined (AVX2) return _mm256_mullo_epi32(a,b); #endif } }; struct Div { // Real float inline __m256 operator()(__m256 a, __m256 b) { return _mm256_div_ps(a, b); } // Real double inline __m256d operator()(__m256d a, __m256d b){ return _mm256_div_pd(a,b); } }; struct Conj{ // Complex single inline __m256 operator()(__m256 in){ return _mm256_xor_ps(_mm256_addsub_ps(_mm256_setzero_ps(),in), _mm256_set1_ps(-0.f)); } // Complex double inline __m256d operator()(__m256d in){ return _mm256_xor_pd(_mm256_addsub_pd(_mm256_setzero_pd(),in), _mm256_set1_pd(-0.f)); } // do not define for integer input }; struct TimesMinusI{ //Complex single inline __m256 operator()(__m256 in, __m256 ret){ __m256 tmp =_mm256_addsub_ps(_mm256_setzero_ps(),in); // r,-i return _mm256_shuffle_ps(tmp,tmp,_MM_SELECT_FOUR_FOUR(2,3,0,1)); //-i,r } //Complex double inline __m256d operator()(__m256d in, __m256d ret){ __m256d tmp = _mm256_addsub_pd(_mm256_setzero_pd(),in); // r,-i return _mm256_shuffle_pd(tmp,tmp,0x5); } }; struct TimesI{ //Complex single inline __m256 operator()(__m256 in, __m256 ret){ __m256 tmp =_mm256_shuffle_ps(in,in,_MM_SELECT_FOUR_FOUR(2,3,0,1)); // i,r return _mm256_addsub_ps(_mm256_setzero_ps(),tmp); // i,-r } //Complex double inline __m256d operator()(__m256d in, __m256d ret){ __m256d tmp = _mm256_shuffle_pd(in,in,0x5); return _mm256_addsub_pd(_mm256_setzero_pd(),tmp); // i,-r } }; ////////////////////////////////////////////// // Some Template specialization ////////////////////////////////////////////// struct Permute{ static inline __m256 Permute0(__m256 in){ return _mm256_permute2f128_ps(in,in,0x01); //ABCD EFGH -> EFGH ABCD }; static inline __m256 Permute1(__m256 in){ return _mm256_shuffle_ps(in,in,_MM_SELECT_FOUR_FOUR(1,0,3,2)); //ABCD EFGH -> CDAB GHEF }; static inline __m256 Permute2(__m256 in){ return _mm256_shuffle_ps(in,in,_MM_SELECT_FOUR_FOUR(2,3,0,1)); //ABCD EFGH -> BADC FEHG }; static inline __m256 Permute3(__m256 in){ return in; }; static inline __m256d Permute0(__m256d in){ return _mm256_permute2f128_pd(in,in,0x01); //AB CD -> CD AB }; static inline __m256d Permute1(__m256d in){ //AB CD -> BA DC return _mm256_shuffle_pd(in,in,0x5); }; static inline __m256d Permute2(__m256d in){ return in; }; static inline __m256d Permute3(__m256d in){ return in; }; }; #define USE_FP16 struct PrecisionChange { static inline __m256i StoH (__m256 a,__m256 b) { __m256i h; #ifdef USE_FP16 __m128i ha = _mm256_cvtps_ph(a,0); __m128i hb = _mm256_cvtps_ph(b,0); h =(__m256i) _mm256_castps128_ps256((__m128)ha); h =(__m256i) _mm256_insertf128_ps((__m256)h,(__m128)hb,1); #else assert(0); #endif return h; } static inline void HtoS (__m256i h,__m256 &sa,__m256 &sb) { #ifdef USE_FP16 sa = _mm256_cvtph_ps((__m128i)_mm256_extractf128_ps((__m256)h,0)); sb = _mm256_cvtph_ps((__m128i)_mm256_extractf128_ps((__m256)h,1)); #else assert(0); #endif } static inline __m256 DtoS (__m256d a,__m256d b) { __m128 sa = _mm256_cvtpd_ps(a); __m128 sb = _mm256_cvtpd_ps(b); __m256 s = _mm256_castps128_ps256(sa); s = _mm256_insertf128_ps(s,sb,1); return s; } static inline void StoD (__m256 s,__m256d &a,__m256d &b) { a = _mm256_cvtps_pd(_mm256_extractf128_ps(s,0)); b = _mm256_cvtps_pd(_mm256_extractf128_ps(s,1)); } static inline __m256i DtoH (__m256d a,__m256d b,__m256d c,__m256d d) { __m256 sa,sb; sa = DtoS(a,b); sb = DtoS(c,d); return StoH(sa,sb); } static inline void HtoD (__m256i h,__m256d &a,__m256d &b,__m256d &c,__m256d &d) { __m256 sa,sb; HtoS(h,sa,sb); StoD(sa,a,b); StoD(sb,c,d); } }; struct Exchange{ // 3210 ordering static inline void Exchange0(__m256 &out1,__m256 &out2,__m256 in1,__m256 in2){ //Invertible //AB CD -> AC BD //AC BD -> AB CD out1= _mm256_permute2f128_ps(in1,in2,0x20); out2= _mm256_permute2f128_ps(in1,in2,0x31); }; static inline void Exchange1(__m256 &out1,__m256 &out2,__m256 in1,__m256 in2){ //Invertible // ABCD EFGH ->ABEF CDGH // ABEF CDGH ->ABCD EFGH out1= _mm256_shuffle_ps(in1,in2,_MM_SELECT_FOUR_FOUR(1,0,1,0)); out2= _mm256_shuffle_ps(in1,in2,_MM_SELECT_FOUR_FOUR(3,2,3,2)); }; static inline void Exchange2(__m256 &out1,__m256 &out2,__m256 in1,__m256 in2){ // Invertible ? // ABCD EFGH -> ACEG BDFH // ACEG BDFH -> AEBF CGDH // out1= _mm256_shuffle_ps(in1,in2,_MM_SELECT_FOUR_FOUR(2,0,2,0)); // out2= _mm256_shuffle_ps(in1,in2,_MM_SELECT_FOUR_FOUR(3,1,3,1)); // Bollocks; need // AECG BFDH -> ABCD EFGH out1= _mm256_shuffle_ps(in1,in2,_MM_SELECT_FOUR_FOUR(2,0,2,0)); /*ACEG*/ out2= _mm256_shuffle_ps(in1,in2,_MM_SELECT_FOUR_FOUR(3,1,3,1)); /*BDFH*/ out1= _mm256_shuffle_ps(out1,out1,_MM_SELECT_FOUR_FOUR(3,1,2,0)); /*AECG*/ out2= _mm256_shuffle_ps(out2,out2,_MM_SELECT_FOUR_FOUR(3,1,2,0)); /*AECG*/ }; static inline void Exchange3(__m256 &out1,__m256 &out2,__m256 in1,__m256 in2){ assert(0); return; }; static inline void Exchange0(__m256d &out1,__m256d &out2,__m256d in1,__m256d in2){ out1= _mm256_permute2f128_pd(in1,in2,0x20); out2= _mm256_permute2f128_pd(in1,in2,0x31); return; }; static inline void Exchange1(__m256d &out1,__m256d &out2,__m256d in1,__m256d in2){ out1= _mm256_shuffle_pd(in1,in2,0x0); out2= _mm256_shuffle_pd(in1,in2,0xF); }; static inline void Exchange2(__m256d &out1,__m256d &out2,__m256d in1,__m256d in2){ assert(0); return; }; static inline void Exchange3(__m256d &out1,__m256d &out2,__m256d in1,__m256d in2){ assert(0); return; }; }; #if defined (AVX2) #define _mm256_alignr_epi32_grid(ret,a,b,n) ret=(__m256) _mm256_alignr_epi8((__m256i)a,(__m256i)b,(n*4)%16) #define _mm256_alignr_epi64_grid(ret,a,b,n) ret=(__m256d) _mm256_alignr_epi8((__m256i)a,(__m256i)b,(n*8)%16) #endif #if defined (AVX1) || defined (AVXFMA) #define _mm256_alignr_epi32_grid(ret,a,b,n) { \ __m128 aa, bb; \ \ aa = _mm256_extractf128_ps(a,1); \ bb = _mm256_extractf128_ps(b,1); \ aa = (__m128)_mm_alignr_epi8((__m128i)aa,(__m128i)bb,(n*4)%16); \ ret = _mm256_insertf128_ps(ret,aa,1); \ \ aa = _mm256_extractf128_ps(a,0); \ bb = _mm256_extractf128_ps(b,0); \ aa = (__m128)_mm_alignr_epi8((__m128i)aa,(__m128i)bb,(n*4)%16); \ ret = _mm256_insertf128_ps(ret,aa,0); \ } #define _mm256_alignr_epi64_grid(ret,a,b,n) { \ __m128d aa, bb; \ \ aa = _mm256_extractf128_pd(a,1); \ bb = _mm256_extractf128_pd(b,1); \ aa = (__m128d)_mm_alignr_epi8((__m128i)aa,(__m128i)bb,(n*8)%16); \ ret = _mm256_insertf128_pd(ret,aa,1); \ \ aa = _mm256_extractf128_pd(a,0); \ bb = _mm256_extractf128_pd(b,0); \ aa = (__m128d)_mm_alignr_epi8((__m128i)aa,(__m128i)bb,(n*8)%16); \ ret = _mm256_insertf128_pd(ret,aa,0); \ } #endif struct Rotate{ static inline __m256 rotate(__m256 in,int n){ switch(n){ case 0: return tRotate<0>(in);break; case 1: return tRotate<1>(in);break; case 2: return tRotate<2>(in);break; case 3: return tRotate<3>(in);break; case 4: return tRotate<4>(in);break; case 5: return tRotate<5>(in);break; case 6: return tRotate<6>(in);break; case 7: return tRotate<7>(in);break; default: assert(0); } } static inline __m256d rotate(__m256d in,int n){ switch(n){ case 0: return tRotate<0>(in);break; case 1: return tRotate<1>(in);break; case 2: return tRotate<2>(in);break; case 3: return tRotate<3>(in);break; default: assert(0); } } template static inline __m256 tRotate(__m256 in){ __m256 tmp = Permute::Permute0(in); __m256 ret; if ( n > 3 ) { _mm256_alignr_epi32_grid(ret,in,tmp,n); } else { _mm256_alignr_epi32_grid(ret,tmp,in,n); } return ret; } template static inline __m256d tRotate(__m256d in){ __m256d tmp = Permute::Permute0(in); __m256d ret; if ( n > 1 ) { _mm256_alignr_epi64_grid(ret,in,tmp,n); } else { _mm256_alignr_epi64_grid(ret,tmp,in,n); } return ret; }; }; //Complex float Reduce template<> inline Grid::ComplexF Reduce::operator()(__m256 in){ __m256 v1,v2; v1=Optimization::Permute::Permute0(in); // avx 256; quad complex single v1= _mm256_add_ps(v1,in); v2=Optimization::Permute::Permute1(v1); v1 = _mm256_add_ps(v1,v2); u256f conv; conv.v = v1; return Grid::ComplexF(conv.f[0],conv.f[1]); } //Real float Reduce template<> inline Grid::RealF Reduce::operator()(__m256 in){ __m256 v1,v2; v1 = Optimization::Permute::Permute0(in); // avx 256; octo-double v1 = _mm256_add_ps(v1,in); v2 = Optimization::Permute::Permute1(v1); v1 = _mm256_add_ps(v1,v2); v2 = Optimization::Permute::Permute2(v1); v1 = _mm256_add_ps(v1,v2); u256f conv; conv.v=v1; return conv.f[0]; } //Complex double Reduce template<> inline Grid::ComplexD Reduce::operator()(__m256d in){ __m256d v1; v1 = Optimization::Permute::Permute0(in); // sse 128; paired complex single v1 = _mm256_add_pd(v1,in); u256d conv; conv.v = v1; return Grid::ComplexD(conv.f[0],conv.f[1]); } //Real double Reduce template<> inline Grid::RealD Reduce::operator()(__m256d in){ __m256d v1,v2; v1 = Optimization::Permute::Permute0(in); // avx 256; quad double v1 = _mm256_add_pd(v1,in); v2 = Optimization::Permute::Permute1(v1); v1 = _mm256_add_pd(v1,v2); u256d conv; conv.v = v1; return conv.f[0]; } //Integer Reduce template<> inline Integer Reduce::operator()(__m256i in){ // FIXME unimplemented printf("Reduce : Missing integer implementation -> FIX\n"); assert(0); } } ////////////////////////////////////////////////////////////////////////////////////// // Here assign types typedef __m256i SIMD_Htype; // Single precision type typedef __m256 SIMD_Ftype; // Single precision type typedef __m256d SIMD_Dtype; // Double precision type typedef __m256i SIMD_Itype; // Integer type // prefecthing inline void v_prefetch0(int size, const char *ptr){ for(int i=0;i using ReduceSIMD = Optimization::Reduce; // Arithmetic operations typedef Optimization::Sum SumSIMD; typedef Optimization::Sub SubSIMD; typedef Optimization::Div DivSIMD; typedef Optimization::Mult MultSIMD; typedef Optimization::MultComplex MultComplexSIMD; typedef Optimization::MultRealPart MultRealPartSIMD; typedef Optimization::MaddRealPart MaddRealPartSIMD; typedef Optimization::Conj ConjSIMD; typedef Optimization::TimesMinusI TimesMinusISIMD; typedef Optimization::TimesI TimesISIMD; } // namespace Grid