/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./tests/solver/Test_wilsonclover_mg.cc Copyright (C) 2017 Author: Daniel Richtmann This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #include #include using namespace std; using namespace Grid; using namespace Grid::QCD; int main(int argc, char **argv) { Grid_init(&argc, &argv); GridCartesian * FGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi()); GridRedBlackCartesian *FrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(FGrid); std::vector fSeeds({1, 2, 3, 4}); GridParallelRNG fPRNG(FGrid); fPRNG.SeedFixedIntegers(fSeeds); // clang-format off LatticeFermion src(FGrid); gaussian(fPRNG, src); LatticeFermion result(FGrid); result = zero; LatticeGaugeField Umu(FGrid); SU3::HotConfiguration(fPRNG, Umu); // clang-format on RealD mass = -0.25; RealD csw_r = 1.0; RealD csw_t = 1.0; MultiGridParams mgParams; std::string inputXml{"./mg_params.xml"}; if(GridCmdOptionExists(argv, argv + argc, "--inputxml")) { inputXml = GridCmdOptionPayload(argv, argv + argc, "--inputxml"); assert(inputXml.length() != 0); } { XmlWriter writer("mg_params_template.xml"); write(writer, "Params", mgParams); std::cout << GridLogMessage << "Written mg_params_template.xml" << std::endl; XmlReader reader(inputXml); read(reader, "Params", mgParams); std::cout << GridLogMessage << "Read in " << inputXml << std::endl; } checkParameterValidity(mgParams); std::cout << mgParams << std::endl; LevelInfo levelInfo(FGrid, mgParams); // Note: We do chiral doubling, so actually only nbasis/2 full basis vectors are used const int nbasis = 40; RealD toleranceForMGChecks = 1e-13; // TODO: depends on the precision MG precondtioner is run in WilsonCloverFermionR Dwc(Umu, *FGrid, *FrbGrid, mass, csw_r, csw_t); static_assert(std::is_same::value, ""); MdagMLinearOperator MdagMOpDwc(Dwc); std::cout << GridLogMessage << "**************************************************" << std::endl; std::cout << GridLogMessage << "Testing Multigrid for Wilson Clover" << std::endl; std::cout << GridLogMessage << "**************************************************" << std::endl; TrivialPrecon TrivialPrecon; auto MGPreconDwc = createMGInstance(mgParams, levelInfo, Dwc, Dwc); MGPreconDwc->setup(); MGPreconDwc->runChecks(toleranceForMGChecks); std::vector>> solversDwc; solversDwc.emplace_back(new ConjugateGradient(1.0e-12, 50000, false)); solversDwc.emplace_back(new FlexibleGeneralisedMinimalResidual(1.0e-12, 50000, TrivialPrecon, 100, false)); solversDwc.emplace_back(new FlexibleGeneralisedMinimalResidual(1.0e-12, 50000, *MGPreconDwc, 100, false)); for(auto const &solver : solversDwc) { std::cout << std::endl << "Starting with a new solver" << std::endl; result = zero; (*solver)(MdagMOpDwc, src, result); std::cout << std::endl; } MGPreconDwc->reportTimings(); Grid_finalize(); }