/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./tests/Test_serialisation.cc Copyright (C) 2015-2016 Author: Guido Cossu Author: Antonin Portelli Author: Peter Boyle This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #include using namespace Grid; using namespace Grid::QCD; GRID_SERIALIZABLE_ENUM(myenum, undef, red, 1, blue, 2, green, 3); class myclass: Serializable { public: GRID_SERIALIZABLE_CLASS_MEMBERS(myclass, myenum, e, std::vector, ve, std::string, name, int, x, double, y, bool , b, std::vector, array, std::vector >, twodimarray, std::vector > >, cmplx3darray, SpinColourMatrix, scm ); myclass() {} myclass(int i) : array(4,5.1) , twodimarray(3,std::vector(5, 1.23456)) , cmplx3darray(3,std::vector>(5, std::vector(7, Complex(1.2, 3.4)))) , ve(2, myenum::blue) { e=myenum::red; x=i; y=2*i; b=true; name="bother said pooh"; scm()(0, 1)(2, 1) = 2.356; scm()(3, 0)(1, 1) = 1.323; scm()(2, 1)(0, 1) = 5.3336; scm()(0, 2)(1, 1) = 6.336; scm()(2, 1)(2, 2) = 7.344; scm()(1, 1)(2, 0) = 8.3534; } }; int16_t i16 = 1; uint16_t u16 = 2; int32_t i32 = 3; uint32_t u32 = 4; int64_t i64 = 5; uint64_t u64 = 6; float f = M_PI; double d = 2*M_PI; bool b = false; template void ioTest(const std::string &filename, const O &object, const std::string &name, const char * tag = "testobject" ) { std::cout << "IO test: " << name << " -> " << filename << " ..."; // writer needs to be destroyed so that writing physically happens { W writer(filename); write(writer, tag , object); } std::cout << " done. reading..."; R reader(filename); std::unique_ptr buf( new O ); // In case object too big for stack read(reader, tag, *buf); bool good = Serializable::CompareMember(object, *buf); if (!good) { std::cout << " failure!" << std::endl; if (EigenIO::is_tensor::value) dump_tensor(*buf,"???"); exit(EXIT_FAILURE); } std::cout << " done." << std::endl; } #ifdef HAVE_HDF5 typedef std::complex TestScalar; typedef Eigen::TensorFixedSize> TensorRank5UShort; typedef Eigen::TensorFixedSize, Eigen::StorageOptions::RowMajor> TensorRank5UShortAlt; typedef Eigen::Tensor TensorRank3; typedef Eigen::TensorFixedSize, Eigen::StorageOptions::RowMajor> Tensor_9_4_2; typedef std::vector aTensor_9_4_2; typedef Eigen::TensorFixedSize> LSCTensor; #ifdef DEBUG typedef Eigen::TensorFixedSize,2>,7>,3>, Eigen::Sizes<2,2,11,10,9>, Eigen::StorageOptions::RowMajor> LCMTensor; #endif class PerambIOTestClass: Serializable { public: using PerambTensor = Eigen::Tensor; GRID_SERIALIZABLE_CLASS_MEMBERS(PerambIOTestClass , SpinColourVector, spinColourVector , SpinColourMatrix, spinColourMatrix , std::vector, DistilParameterNames , std::vector, DistilParameterValues , PerambTensor, Perambulator , PerambTensor, Perambulator2 , TensorRank5UShort, tensorRank5UShort , TensorRank3, tensorRank3 , Tensor_9_4_2, tensor_9_4_2 , aTensor_9_4_2, atensor_9_4_2 , LSCTensor, MyLSCTensor #ifdef DEBUG , LCMTensor, MyLCMTensor #endif ); PerambIOTestClass() : DistilParameterNames {"alpha", "beta", "gamma", "delta", "epsilon", "zeta"} , DistilParameterValues{2,3,1,4,5,1} , Perambulator(2,3,1,4,5,1) , Perambulator2(7,1,6,1,5,1) , tensorRank3(7,3,2) , atensor_9_4_2(3) { Grid_complex Flag{1,-3.1415927}; SequentialInit(Perambulator, Flag); SequentialInit(Perambulator2, Flag); SequentialInit(tensorRank5UShort); SequentialInit(tensorRank3, Flag); SequentialInit(tensor_9_4_2, Flag); for( auto &t : atensor_9_4_2 ) SequentialInit(t, Flag); SequentialInit( MyLSCTensor ); #ifdef DEBUG SequentialInit( MyLCMTensor ); #endif } }; #define RDR_ Hdf5Reader #define WTR_ Hdf5Writer #define TensorWriteReadInnerNoInit( T ) \ filename = "iotest_"s + std::to_string(++TestNum) + "_" #T ".h5"; \ ioTest(filename, t, #T, #T); #define TensorWriteReadInner( T ) SequentialInit( t ); TensorWriteReadInnerNoInit( T ) #define TensorWriteRead( T ) { T t ; TensorWriteReadInner( T ) } #define TensorWriteReadV(T, ... ) { T t( __VA_ARGS__ ); TensorWriteReadInner( T ) } #define TensorWriteReadLarge( T ) { std::unique_ptr p{new T}; T &t{*p}; TensorWriteReadInnerNoInit(T) } void EigenHdf5IOTest(void) { using namespace std::string_literals; unsigned int TestNum = 0; std::string filename; using TensorSingle = Eigen::TensorFixedSize>; TensorWriteRead( TensorSingle ) using TensorSimple = Eigen::Tensor, 6>; TensorWriteReadV( TensorSimple, 1, 1, 1, 1, 1, 1 ) TensorWriteReadV( TensorRank3, 6, 3, 2 ) TensorWriteRead ( Tensor_9_4_2 ) { TensorRank5UShort t; TensorWriteReadInner ( TensorRank5UShort ); std::cout << " Testing alternate memory order read ... "; TensorRank5UShortAlt t2; RDR_ reader(filename); read(reader, "TensorRank5UShort", t2); bool good = true; for_all( t2, [&](unsigned short c, unsigned short n, const std::array &Dims ) { good = good && ( c == n ); } ); if (!good) { std::cout << " failure!" << std::endl; dump_tensor(t2,"t2"); exit(EXIT_FAILURE); } std::cout << " done." << std::endl; } TensorWriteRead ( LSCTensor ) TensorWriteReadLarge( PerambIOTestClass ) #ifdef DEBUG std::cout << "sizeof( LCMTensor ) = " << sizeof( LCMTensor ) / 1024 / 1024 << " MB" << std::endl; TensorWriteReadLarge ( LCMTensor ) // Also write > 4GB of complex numbers (I suspect this will fail inside Hdf5) { static constexpr size_t Num = 0x11000000; std::cout << "Stress test: " << Num * sizeof( Grid_complex ) / 1024 / 1024 << " MB array of complex" << std::endl; using Stress = std::vector>; Stress t (Num); TensorWriteReadInnerNoInit( Stress ); } #endif } #endif template void tensorConvTestFn(GridSerialRNG &rng, const std::string label) { T t, ft; Real n; bool good; random(rng, t); auto tv = tensorToVec(t); vecToTensor(ft, tv); n = norm2(t - ft); good = (n == 0); std::cout << label << " norm 2 diff: " << n << " -- " << (good ? "success" : "failure") << std::endl; } #define tensorConvTest(rng, type) tensorConvTestFn(rng, #type) int main(int argc,char **argv) { Grid_init(&argc,&argv); std::cout << std::boolalpha << "==== basic IO" << std::endl; // display true / false for boolean GridSerialRNG rng; rng.SeedFixedIntegers(std::vector({42,10,81,9})); XmlWriter WR("bother.xml"); // test basic type writing std::cout << "-- basic writing to 'bother.xml'..." << std::endl; push(WR,"BasicTypes"); write(WR,std::string("i16"),i16); write(WR,"u16",u16); write(WR,"i32",i32); write(WR,"u32",u32); write(WR,"i64",i64); write(WR,"u64",u64); write(WR,"f",f); write(WR,"d",d); write(WR,"b",b); pop(WR); // test serializable class writing myclass obj(1234); // non-trivial constructor std::vector vec; std::cout << "-- serialisable class writing to 'bother.xml'..." << std::endl; write(WR,"obj",obj); WR.write("obj2", obj); vec.push_back(obj); vec.push_back(myclass(5678)); vec.push_back(myclass(3838)); write(WR, "objvec", vec); std::cout << "-- serialisable class writing to std::cout:" << std::endl; std::cout << obj << std::endl; std::cout << "-- serialisable class comparison:" << std::endl; std::cout << "vec[0] == obj: " << (vec[0] == obj) << std::endl; std::cout << "vec[1] == obj: " << (vec[1] == obj) << std::endl; std::cout << "-- pair writing to std::cout:" << std::endl; std::pair pair = std::make_pair(myenum::red, myenum::blue); std::cout << pair << std::endl; // read tests std::cout << "\n==== IO self-consistency tests" << std::endl; //// XML ioTest("iotest.xml", obj, "XML (object) "); ioTest("iotest.xml", vec, "XML (vector of objects)"); //// binary ioTest("iotest.bin", obj, "binary (object) "); ioTest("iotest.bin", vec, "binary (vector of objects)"); //// text ioTest("iotest.dat", obj, "text (object) "); ioTest("iotest.dat", vec, "text (vector of objects)"); //// text ioTest("iotest.json", obj, "JSON (object) "); ioTest("iotest.json", vec, "JSON (vector of objects)"); //// HDF5 #ifdef HAVE_HDF5 ioTest("iotest.h5", obj, "HDF5 (object) "); ioTest("iotest.h5", vec, "HDF5 (vector of objects)"); std::cout << "\n==== detailed Hdf5 tensor tests (Grid::EigenIO)" << std::endl; EigenHdf5IOTest(); #endif std::cout << "\n==== vector flattening/reconstruction" << std::endl; typedef std::vector>> vec3d; vec3d dv, buf; double d = 0.; dv.resize(4); for (auto &v1: dv) { v1.resize(3); for (auto &v2: v1) { v2.resize(5); for (auto &x: v2) { x = d++; } } } std::cout << "original 3D vector:" << std::endl; std::cout << dv << std::endl; Flatten flatdv(dv); std::cout << "\ndimensions:" << std::endl; std::cout << flatdv.getDim() << std::endl; std::cout << "\nflattened vector:" << std::endl; std::cout << flatdv.getFlatVector() << std::endl; Reconstruct rec(flatdv.getFlatVector(), flatdv.getDim()); std::cout << "\nreconstructed vector:" << std::endl; std::cout << flatdv.getVector() << std::endl; std::cout << std::endl; std::cout << "==== Grid tensor to vector test" << std::endl; tensorConvTest(rng, SpinColourMatrix); tensorConvTest(rng, SpinColourVector); tensorConvTest(rng, ColourMatrix); tensorConvTest(rng, ColourVector); tensorConvTest(rng, SpinMatrix); tensorConvTest(rng, SpinVector); Grid_finalize(); }