#ifndef QCD_PSEUDOFERMION_TWO_FLAVOUR_RATIO_H #define QCD_PSEUDOFERMION_TWO_FLAVOUR_RATIO_H namespace Grid{ namespace QCD{ /////////////////////////////////////// // Two flavour ratio /////////////////////////////////////// template class TwoFlavourRatioPseudoFermionAction : public Action { public: INHERIT_IMPL_TYPES(Impl); private: FermionOperator & NumOp;// the basic operator FermionOperator & DenOp;// the basic operator OperatorFunction &DerivativeSolver; OperatorFunction &ActionSolver; FermionField Phi; // the pseudo fermion field for this trajectory public: TwoFlavourRatioPseudoFermionAction(FermionOperator &_NumOp, FermionOperator &_DenOp, OperatorFunction & DS, OperatorFunction & AS ) : NumOp(_NumOp), DenOp(_DenOp), DerivativeSolver(DS), ActionSolver(AS), Phi(_NumOp.FermionGrid()) {}; virtual void init(const GaugeField &U, GridParallelRNG& pRNG) { // P(phi) = e^{- phi^dag V (MdagM)^-1 Vdag phi} // // NumOp == V // DenOp == M // // Take phi = Vdag^{-1} Mdag eta ; eta = Mdag^{-1} Vdag Phi // // P(eta) = e^{- eta^dag eta} // // e^{x^2/2 sig^2} => sig^2 = 0.5. // // So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707.... // RealD scale = std::sqrt(0.5); FermionField eta(NumOp.FermionGrid()); FermionField tmp(NumOp.FermionGrid()); gaussian(pRNG,eta); NumOp.ImportGauge(U); DenOp.ImportGauge(U); // Note: this hard codes normal equations type solvers; alternate implementation needed for // non-herm style solvers. MdagMLinearOperator ,FermionField> MdagMOp(NumOp); DenOp.Mdag(eta,Phi); // Mdag eta ActionSolver(MdagMOp,Phi,tmp); // (VdagV)^-1 Mdag eta = V^-1 Vdag^-1 Mdag eta NumOp.M(tmp,Phi); // Vdag^-1 Mdag eta Phi=Phi*scale; }; ////////////////////////////////////////////////////// // S = phi^dag V (Mdag M)^-1 Vdag phi ////////////////////////////////////////////////////// virtual RealD S(const GaugeField &U) { NumOp.ImportGauge(U); DenOp.ImportGauge(U); FermionField X(NumOp.FermionGrid()); FermionField Y(NumOp.FermionGrid()); MdagMLinearOperator ,FermionField> MdagMOp(DenOp); X=zero; NumOp.Mdag(Phi,Y); // Y= Vdag phi ActionSolver(MdagMOp,Y,X); // X= (MdagM)^-1 Vdag phi DenOp.M(X,Y); // Y= Mdag^-1 Vdag phi RealD action = norm2(Y); return action; }; ////////////////////////////////////////////////////// // dS/du = phi^dag dV (Mdag M)^-1 V^dag phi // - phi^dag V (Mdag M)^-1 [ Mdag dM + dMdag M ] (Mdag M)^-1 V^dag phi // + phi^dag V (Mdag M)^-1 dV^dag phi ////////////////////////////////////////////////////// virtual void deriv(const GaugeField &U,GaugeField & dSdU) { NumOp.ImportGauge(U); DenOp.ImportGauge(U); MdagMLinearOperator ,FermionField> MdagMOp(DenOp); FermionField X(NumOp.FermionGrid()); FermionField Y(NumOp.FermionGrid()); FermionField f1(NumOp.FermionGrid()); GaugeField force(NumOp.GaugeGrid()); X=zero; //Y=Vdag phi //X = (Mdag M)^-1 V^dag phi //Y = (Mdag)^-1 V^dag phi NumOp.Mdag(Phi,Y); // Y= Vdag phi DerivativeSolver(MdagMOp,Y,X); // X= (MdagM)^-1 Vdag phi DenOp.M(X,Y); // Y= Mdag^-1 Vdag phi // phi^dag V (Mdag M)^-1 dV^dag phi NumOp.MDeriv(force , X, Phi, DaggerYes ); dSdU=force; // phi^dag dV (Mdag M)^-1 V^dag phi NumOp.MDeriv(force , Phi, X ,DaggerNo ); dSdU=dSdU+force; // - phi^dag V (Mdag M)^-1 Mdag dM (Mdag M)^-1 V^dag phi // - phi^dag V (Mdag M)^-1 dMdag M (Mdag M)^-1 V^dag phi DenOp.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU-force; DenOp.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU-force; dSdU = - dSdU; dSdU = Ta(dSdU); }; }; } } #endif