/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./lib/algorithms/iterative/NormalEquations.h Copyright (C) 2015 Author: Peter Boyle This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #ifndef GRID_NORMAL_EQUATIONS_H #define GRID_NORMAL_EQUATIONS_H NAMESPACE_BEGIN(Grid); /////////////////////////////////////////////////////////////////////////////////////////////////////// // Take a matrix and form an NE solver calling a Herm solver /////////////////////////////////////////////////////////////////////////////////////////////////////// template class NormalEquations : public OperatorFunction{ private: SparseMatrixBase & _Matrix; OperatorFunction & _HermitianSolver; public: ///////////////////////////////////////////////////// // Wrap the usual normal equations trick ///////////////////////////////////////////////////// NormalEquations(SparseMatrixBase &Matrix, OperatorFunction &HermitianSolver) : _Matrix(Matrix), _HermitianSolver(HermitianSolver) {}; void operator() (const Field &in, Field &out){ Field src(in._grid); _Matrix.Mdag(in,src); _HermitianSolver(src,out); // Mdag M out = Mdag in } }; NAMESPACE_END(Grid); #endif