/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: extras/Hadrons/Application.cc Copyright (C) 2015 Copyright (C) 2016 Author: Antonin Portelli This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #include #include using namespace Grid; using namespace QCD; using namespace Hadrons; #define BIG_SEP "===============" #define SEP "---------------" /****************************************************************************** * Application implementation * ******************************************************************************/ // constructors //////////////////////////////////////////////////////////////// Application::Application(void) : env_(Environment::getInstance()) { LOG(Message) << "Modules available:" << std::endl; auto list = ModuleFactory::getInstance().getBuilderList(); for (auto &m: list) { LOG(Message) << " " << m << std::endl; } auto dim = GridDefaultLatt(), mpi = GridDefaultMpi(), loc(dim); locVol_ = 1; for (unsigned int d = 0; d < dim.size(); ++d) { loc[d] /= mpi[d]; locVol_ *= loc[d]; } LOG(Message) << "Global lattice: " << dim << std::endl; LOG(Message) << "MPI partition : " << mpi << std::endl; LOG(Message) << "Local lattice : " << loc << std::endl; } Application::Application(const Application::GlobalPar &par) : Application() { setPar(par); } Application::Application(const std::string parameterFileName) : Application() { parameterFileName_ = parameterFileName; } // access ////////////////////////////////////////////////////////////////////// void Application::setPar(const Application::GlobalPar &par) { par_ = par; env_.setSeed(strToVec(par_.seed)); } const Application::GlobalPar & Application::getPar(void) { return par_; } // execute ///////////////////////////////////////////////////////////////////// void Application::run(void) { if (!parameterFileName_.empty() and (env_.getNModule() == 0)) { parseParameterFile(parameterFileName_); } if (!scheduled_) { schedule(); } printSchedule(); configLoop(); } // parse parameter file //////////////////////////////////////////////////////// class ObjectId: Serializable { public: GRID_SERIALIZABLE_CLASS_MEMBERS(ObjectId, std::string, name, std::string, type); }; void Application::parseParameterFile(const std::string parameterFileName) { XmlReader reader(parameterFileName); GlobalPar par; ObjectId id; LOG(Message) << "Building application from '" << parameterFileName << "'..." << std::endl; read(reader, "parameters", par); setPar(par); push(reader, "modules"); push(reader, "module"); do { read(reader, "id", id); env_.createModule(id.name, id.type, reader); } while (reader.nextElement("module")); pop(reader); pop(reader); } void Application::saveParameterFile(const std::string parameterFileName) { XmlWriter writer(parameterFileName); ObjectId id; const unsigned int nMod = env_.getNModule(); LOG(Message) << "Saving application to '" << parameterFileName << "'..." << std::endl; write(writer, "parameters", getPar()); push(writer, "modules"); for (unsigned int i = 0; i < nMod; ++i) { push(writer, "module"); id.name = env_.getModuleName(i); id.type = env_.getModule(i)->getRegisteredName(); write(writer, "id", id); env_.getModule(i)->saveParameters(writer, "options"); pop(writer); } pop(writer); pop(writer); } // schedule computation //////////////////////////////////////////////////////// #define MEM_MSG(size)\ sizeString((size)*locVol_) << " (" << sizeString(size) << "/site)" #define DEFINE_MEMPEAK \ auto memPeak = [this](const std::vector &program)\ {\ unsigned int memPeak;\ bool msg;\ \ msg = HadronsLogMessage.isActive();\ HadronsLogMessage.Active(false);\ env_.dryRun(true);\ memPeak = env_.executeProgram(program);\ env_.dryRun(false);\ env_.freeAll();\ HadronsLogMessage.Active(true);\ \ return memPeak;\ } void Application::schedule(void) { DEFINE_MEMPEAK; // build module dependency graph LOG(Message) << "Building module graph..." << std::endl; auto graph = env_.makeModuleGraph(); auto con = graph.getConnectedComponents(); // constrained topological sort using a genetic algorithm LOG(Message) << "Scheduling computation..." << std::endl; LOG(Message) << " #module= " << graph.size() << std::endl; LOG(Message) << " population size= " << par_.genetic.popSize << std::endl; LOG(Message) << " max. generation= " << par_.genetic.maxGen << std::endl; LOG(Message) << " max. cst. generation= " << par_.genetic.maxCstGen << std::endl; LOG(Message) << " mutation rate= " << par_.genetic.mutationRate << std::endl; unsigned int k = 0, gen, prevPeak, nCstPeak = 0; std::random_device rd; GeneticScheduler::Parameters par; par.popSize = par_.genetic.popSize; par.mutationRate = par_.genetic.mutationRate; par.seed = rd(); memPeak_ = 0; CartesianCommunicator::BroadcastWorld(0, &(par.seed), sizeof(par.seed)); for (unsigned int i = 0; i < con.size(); ++i) { GeneticScheduler scheduler(con[i], memPeak, par); gen = 0; do { LOG(Debug) << "Generation " << gen << ":" << std::endl; scheduler.nextGeneration(); if (gen != 0) { if (prevPeak == scheduler.getMinValue()) { nCstPeak++; } else { nCstPeak = 0; } } prevPeak = scheduler.getMinValue(); if (gen % 10 == 0) { LOG(Iterative) << "Generation " << gen << ": " << MEM_MSG(scheduler.getMinValue()) << std::endl; } gen++; } while ((gen < par_.genetic.maxGen) and (nCstPeak < par_.genetic.maxCstGen)); auto &t = scheduler.getMinSchedule(); if (scheduler.getMinValue() > memPeak_) { memPeak_ = scheduler.getMinValue(); } for (unsigned int j = 0; j < t.size(); ++j) { program_.push_back(t[j]); } } scheduled_ = true; } void Application::saveSchedule(const std::string filename) { TextWriter writer(filename); std::vector program; if (!scheduled_) { HADRON_ERROR("Computation not scheduled"); } LOG(Message) << "Saving current schedule to '" << filename << "'..." << std::endl; for (auto address: program_) { program.push_back(env_.getModuleName(address)); } write(writer, "schedule", program); } void Application::loadSchedule(const std::string filename) { DEFINE_MEMPEAK; TextReader reader(filename); std::vector program; LOG(Message) << "Loading schedule from '" << filename << "'..." << std::endl; read(reader, "schedule", program); program_.clear(); for (auto &name: program) { program_.push_back(env_.getModuleAddress(name)); } scheduled_ = true; memPeak_ = memPeak(program_); } void Application::printSchedule(void) { if (!scheduled_) { HADRON_ERROR("Computation not scheduled"); } LOG(Message) << "Schedule (memory peak: " << MEM_MSG(memPeak_) << "):" << std::endl; for (unsigned int i = 0; i < program_.size(); ++i) { LOG(Message) << std::setw(4) << i + 1 << ": " << env_.getModuleName(program_[i]) << std::endl; } } // loop on configurations ////////////////////////////////////////////////////// void Application::configLoop(void) { auto range = par_.trajCounter; for (unsigned int t = range.start; t < range.end; t += range.step) { LOG(Message) << BIG_SEP << " Starting measurement for trajectory " << t << " " << BIG_SEP << std::endl; env_.setTrajectory(t); env_.executeProgram(program_); } LOG(Message) << BIG_SEP << " End of measurement " << BIG_SEP << std::endl; env_.freeAll(); }