/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./tests/Test_hmc_EODWFRatio.cc Copyright (C) 2015-2016 Author: Peter Boyle Author: Guido Cossu This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #include int main(int argc, char **argv) { using namespace Grid; Grid_init(&argc, &argv); CartesianCommunicator::BarrierWorld(); std::cout << GridLogMessage << " Clock skew check" < HMCWrapper; // MD.name = std::string("Leap Frog"); typedef GenericHMCRunner HMCWrapper; MD.name = std::string("Force Gradient"); //typedef GenericHMCRunner HMCWrapper; // MD.name = std::string("MinimumNorm2"); // TrajL = 2 // 4/2 => 0.6 dH // 3/3 => 0.8 dH .. depth 3, slower //MD.MDsteps = 4; MD.MDsteps = 3; MD.trajL = 0.5; HMCparameters HMCparams; HMCparams.StartTrajectory = 1077; HMCparams.Trajectories = 1; HMCparams.NoMetropolisUntil= 0; // "[HotStart, ColdStart, TepidStart, CheckpointStart]\n"; // HMCparams.StartingType =std::string("ColdStart"); HMCparams.StartingType =std::string("CheckpointStart"); HMCparams.MD = MD; HMCWrapper TheHMC(HMCparams); // Grid from the command line arguments --grid and --mpi TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition CheckpointerParameters CPparams; CPparams.config_prefix = "ckpoint_DDHMC_lat"; CPparams.rng_prefix = "ckpoint_DDHMC_rng"; CPparams.saveInterval = 1; CPparams.format = "IEEE64BIG"; TheHMC.Resources.LoadNerscCheckpointer(CPparams); std::cout << "loaded NERSC checpointer"< PlaqObs; TheHMC.Resources.AddObservable(); ////////////////////////////////////////////// const int Ls = 12; RealD M5 = 1.8; RealD b = 1.5; RealD c = 0.5; Real beta = 2.13; // Real light_mass = 5.4e-4; Real light_mass = 7.8e-4; Real light_mass_dir = 0.01; Real strange_mass = 0.0362; Real pv_mass = 1.0; std::vector hasenbusch({ 0.01, 0.045, 0.108, 0.25, 0.51 , pv_mass }); // std::vector hasenbusch({ light_mass, 0.01, 0.045, 0.108, 0.25, 0.51 , pv_mass }); // std::vector hasenbusch({ light_mass, 0.005, 0.0145, 0.045, 0.108, 0.25, 0.51 , pv_mass }); // Updated // std::vector hasenbusch({ light_mass, 0.0145, 0.045, 0.108, 0.25, 0.51 , 0.75 , pv_mass }); int SP_iters=9000; RationalActionParams OFRp; // Up/down OFRp.lo = 6.0e-5; OFRp.hi = 90.0; OFRp.inv_pow = 2; OFRp.MaxIter = SP_iters; // get most shifts by 2000, stop sharing space OFRp.action_tolerance= 1.0e-8; OFRp.action_degree = 18; OFRp.md_tolerance= 1.0e-7; OFRp.md_degree = 14; // OFRp.degree = 20; converges // OFRp.degree = 16; OFRp.precision= 80; OFRp.BoundsCheckFreq=0; std::vector ActionTolByPole({ // 1.0e-8,1.0e-8,1.0e-8,1.0e-8, 3.0e-7,1.0e-7,1.0e-8,1.0e-8, 1.0e-8,1.0e-8,1.0e-8,1.0e-8, 1.0e-8,1.0e-8,1.0e-8,1.0e-8, 1.0e-8,1.0e-8,1.0e-8,1.0e-8, 1.0e-8,1.0e-8 }); std::vector MDTolByPole({ // 1.6e-5,5.0e-6,1.0e-6,3.0e-7, // soften convergence more more // 1.0e-6,3.0e-7,1.0e-7,1.0e-7, 1.0e-5,1.0e-6,1.0e-7,1.0e-7, // soften convergence 1.0e-8,1.0e-8,1.0e-8,1.0e-8, 1.0e-8,1.0e-8,1.0e-8,1.0e-8, 1.0e-8,1.0e-8 }); auto GridPtr = TheHMC.Resources.GetCartesian(); auto GridRBPtr = TheHMC.Resources.GetRBCartesian(); typedef SchurDiagMooeeOperator LinearOperatorD; typedef SchurDiagMooeeOperator LinearOperatorEOFAD; //////////////////////////////////////////////////////////////// // Domain decomposed //////////////////////////////////////////////////////////////// Coordinate latt4 = GridPtr->GlobalDimensions(); Coordinate mpi = GridPtr->ProcessorGrid(); Coordinate shm; GlobalSharedMemory::GetShmDims(mpi,shm); Coordinate CommDim(Nd); for(int d=0;d1 ? 1 : 0; Coordinate NonDirichlet(Nd+1,0); Coordinate Dirichlet(Nd+1,0); Dirichlet[1] = CommDim[0]*latt4[0]/mpi[0] * shm[0]; Dirichlet[2] = CommDim[1]*latt4[1]/mpi[1] * shm[1]; Dirichlet[3] = CommDim[2]*latt4[2]/mpi[2] * shm[2]; Dirichlet[4] = CommDim[3]*latt4[3]/mpi[3] * shm[3]; //Dirichlet[1] = 0; //Dirichlet[2] = 0; //Dirichlet[3] = 0; // Coordinate Block4(Nd); Block4[0] = Dirichlet[1]; Block4[1] = Dirichlet[2]; Block4[2] = Dirichlet[3]; Block4[3] = Dirichlet[4]; int Width=4; TheHMC.Resources.SetMomentumFilter(new DDHMCFilter(Block4,Width)); ////////////////////////// // Fermion Grids ////////////////////////// auto FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtr); auto FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtr); IwasakiGaugeActionR GaugeAction(beta); // temporarily need a gauge field LatticeGaugeFieldD U(GridPtr); U=Zero(); std::cout << GridLogMessage << " Running the HMC "<< std::endl; TheHMC.ReadCommandLine(argc,argv); // params on CML or from param file TheHMC.initializeGaugeFieldAndRNGs(U); std::cout << "loaded NERSC gauge field"< boundary = {1,1,1,-1}; FermionAction::ImplParams Params(boundary); FermionAction::ImplParams ParamsDir(boundary); Params.dirichlet=NonDirichlet; ParamsDir.dirichlet=Dirichlet; ParamsDir.partialDirichlet=0; std::cout << GridLogMessage<< "Partial Dirichlet depth is "< CG(StoppingCondition,MaxCGIterations); ConjugateGradient MDCG(MDStoppingCondition,MaxCGIterations); //////////////////////////////////// // Collect actions //////////////////////////////////// ActionLevel Level1(1); ActionLevel Level2(3); ActionLevel Level3(15); //////////////////////////////////// // Strange action //////////////////////////////////// FermionAction StrangeOp (U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,strange_mass,M5,b,c, Params); FermionAction StrangePauliVillarsOp(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,pv_mass, M5,b,c, Params); // Probably dominates the force - back to EOFA. OneFlavourRationalParams SFRp; SFRp.lo = 0.1; SFRp.hi = 25.0; SFRp.MaxIter = 10000; SFRp.tolerance= 1.0e-8; SFRp.mdtolerance= 2.0e-6; SFRp.degree = 12; SFRp.precision= 50; MobiusEOFAFermionD Strange_Op_L (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , strange_mass, strange_mass, pv_mass, 0.0, -1, M5, b, c); MobiusEOFAFermionD Strange_Op_R (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , pv_mass, strange_mass, pv_mass, -1.0, 1, M5, b, c); ConjugateGradient ActionCG(StoppingCondition,MaxCGIterations); ConjugateGradient DerivativeCG(MDStoppingCondition,MaxCGIterations); LinearOperatorEOFAD Strange_LinOp_L (Strange_Op_L); LinearOperatorEOFAD Strange_LinOp_R (Strange_Op_R); ExactOneFlavourRatioPseudoFermionAction EOFA(Strange_Op_L, Strange_Op_R, ActionCG, ActionCG, ActionCG, DerivativeCG, DerivativeCG, SFRp, true); Level2.push_back(&EOFA); //////////////////////////////////// // up down action //////////////////////////////////// std::vector light_den; std::vector light_num; std::vector dirichlet_den; std::vector dirichlet_num; int n_hasenbusch = hasenbusch.size(); light_den.push_back(light_mass); dirichlet_den.push_back(0); for(int h=0;h Numerators; std::vector Denominators; std::vector *> Quotients; std::vector *> Bdys; typedef SchurDiagMooeeOperator LinearOperatorD; std::vector LinOpD; for(int h=0;h(*Numerators[h],*Denominators[h],MDCG,CG)); } else { Bdys.push_back( new GeneralEvenOddRatioRationalPseudoFermionAction(*Numerators[h],*Denominators[h],OFRp)); Bdys.push_back( new GeneralEvenOddRatioRationalPseudoFermionAction(*Numerators[h],*Denominators[h],OFRp)); } } for(int h=0;hSetTolerances(ActionTolByPole,MDTolByPole); } int nquo=Quotients.size(); Level1.push_back(Bdys[0]); Level1.push_back(Bdys[1]); Level2.push_back(Quotients[0]); for(int h=1;h