/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./tests/solver/Test_multigrid_common.h Copyright (C) 2015-2018 Author: Daniel Richtmann This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #ifndef GRID_TEST_MULTIGRID_COMMON_H #define GRID_TEST_MULTIGRID_COMMON_H namespace Grid { Zero zero; // TODO: Can think about having one parameter struct per level and then a // vector of these structs. How well would that work together with the // serialization strategy of Grid? // clang-format off struct MultiGridParams : Serializable { public: GRID_SERIALIZABLE_CLASS_MEMBERS(MultiGridParams, int, nLevels, std::vector>, blockSizes, // size == nLevels - 1 std::vector, smootherTol, // size == nLevels - 1 std::vector, smootherMaxOuterIter, // size == nLevels - 1 std::vector, smootherMaxInnerIter, // size == nLevels - 1 bool, kCycle, std::vector, kCycleTol, // size == nLevels - 1 std::vector, kCycleMaxOuterIter, // size == nLevels - 1 std::vector, kCycleMaxInnerIter, // size == nLevels - 1 double, coarseSolverTol, int, coarseSolverMaxOuterIter, int, coarseSolverMaxInnerIter); // constructor with default values MultiGridParams(int _nLevels = 2, std::vector> _blockSizes = {{4, 4, 4, 4}}, std::vector _smootherTol = {1e-14}, std::vector _smootherMaxOuterIter = {4}, std::vector _smootherMaxInnerIter = {4}, bool _kCycle = true, std::vector _kCycleTol = {1e-1}, std::vector _kCycleMaxOuterIter = {2}, std::vector _kCycleMaxInnerIter = {5}, double _coarseSolverTol = 5e-2, int _coarseSolverMaxOuterIter = 10, int _coarseSolverMaxInnerIter = 500) : nLevels(_nLevels) , blockSizes(_blockSizes) , smootherTol(_smootherTol) , smootherMaxOuterIter(_smootherMaxOuterIter) , smootherMaxInnerIter(_smootherMaxInnerIter) , kCycle(_kCycle) , kCycleTol(_kCycleTol) , kCycleMaxOuterIter(_kCycleMaxOuterIter) , kCycleMaxInnerIter(_kCycleMaxInnerIter) , coarseSolverTol(_coarseSolverTol) , coarseSolverMaxOuterIter(_coarseSolverMaxOuterIter) , coarseSolverMaxInnerIter(_coarseSolverMaxInnerIter) {} }; // clang-format on void checkParameterValidity(MultiGridParams const ¶ms) { auto correctSize = params.nLevels - 1; assert(correctSize == params.blockSizes.size()); assert(correctSize == params.smootherTol.size()); assert(correctSize == params.smootherMaxOuterIter.size()); assert(correctSize == params.smootherMaxInnerIter.size()); assert(correctSize == params.kCycleTol.size()); assert(correctSize == params.kCycleMaxOuterIter.size()); assert(correctSize == params.kCycleMaxInnerIter.size()); } struct LevelInfo { public: std::vector> Seeds; std::vector Grids; std::vector PRNGs; LevelInfo(GridCartesian *FineGrid, MultiGridParams const &mgParams) { auto nCoarseLevels = mgParams.blockSizes.size(); assert(nCoarseLevels == mgParams.nLevels - 1); // set up values for finest grid Grids.push_back(FineGrid); Seeds.push_back({1, 2, 3, 4}); PRNGs.push_back(GridParallelRNG(Grids.back())); PRNGs.back().SeedFixedIntegers(Seeds.back()); // set up values for coarser grids for(int level = 1; level < mgParams.nLevels; ++level) { auto Nd = Grids[level - 1]->_ndimension; auto tmp = Grids[level - 1]->_fdimensions; assert(tmp.size() == Nd); Seeds.push_back(std::vector(Nd)); for(int d = 0; d < Nd; ++d) { tmp[d] /= mgParams.blockSizes[level - 1][d]; Seeds[level][d] = (level)*Nd + d + 1; } Grids.push_back(SpaceTimeGrid::makeFourDimGrid(tmp, Grids[level - 1]->_simd_layout, GridDefaultMpi())); PRNGs.push_back(GridParallelRNG(Grids[level])); PRNGs[level].SeedFixedIntegers(Seeds[level]); } std::cout << GridLogMessage << "Constructed " << mgParams.nLevels << " levels" << std::endl; for(int level = 0; level < mgParams.nLevels; ++level) { std::cout << GridLogMessage << "level = " << level << ":" << std::endl; Grids[level]->show_decomposition(); } } }; template class MultiGridPreconditionerBase : public LinearFunction { public: using LinearFunction::operator(); virtual ~MultiGridPreconditionerBase() = default; virtual void setup() = 0; virtual void operator()(Field const &in, Field &out) = 0; virtual void runChecks(RealD tolerance) = 0; virtual void reportTimings() = 0; }; template class MultiGridPreconditioner : public MultiGridPreconditionerBase> { public: ///////////////////////////////////////////// // Type Definitions ///////////////////////////////////////////// using MultiGridPreconditionerBase>::operator(); // clang-format off typedef Aggregation Aggregates; typedef CoarsenedMatrix CoarseDiracMatrix; typedef typename Aggregates::CoarseVector CoarseVector; typedef typename Aggregates::siteVector CoarseSiteVector; typedef Matrix FineDiracMatrix; typedef typename Aggregates::FineField FineVector; typedef MultiGridPreconditioner, nBasis, nCoarserLevels - 1, CoarseDiracMatrix> NextPreconditionerLevel; // clang-format on ///////////////////////////////////////////// // Member Data ///////////////////////////////////////////// int _CurrentLevel; int _NextCoarserLevel; MultiGridParams &_MultiGridParams; LevelInfo & _LevelInfo; FineDiracMatrix & _FineMatrix; FineDiracMatrix & _SmootherMatrix; Aggregates _Aggregates; CoarseDiracMatrix _CoarseMatrix; std::unique_ptr _NextPreconditionerLevel; GridStopWatch _SetupTotalTimer; GridStopWatch _SetupCreateSubspaceTimer; GridStopWatch _SetupProjectToChiralitiesTimer; GridStopWatch _SetupCoarsenOperatorTimer; GridStopWatch _SetupNextLevelTimer; GridStopWatch _SolveTotalTimer; GridStopWatch _SolveRestrictionTimer; GridStopWatch _SolveProlongationTimer; GridStopWatch _SolveSmootherTimer; GridStopWatch _SolveNextLevelTimer; ///////////////////////////////////////////// // Member Functions ///////////////////////////////////////////// MultiGridPreconditioner(MultiGridParams &mgParams, LevelInfo &LvlInfo, FineDiracMatrix &FineMat, FineDiracMatrix &SmootherMat) : _CurrentLevel(mgParams.nLevels - (nCoarserLevels + 1)) // _Level = 0 corresponds to finest , _NextCoarserLevel(_CurrentLevel + 1) // incremented for instances on coarser levels , _MultiGridParams(mgParams) , _LevelInfo(LvlInfo) , _FineMatrix(FineMat) , _SmootherMatrix(SmootherMat) , _Aggregates(_LevelInfo.Grids[_NextCoarserLevel], _LevelInfo.Grids[_CurrentLevel], 0) , _CoarseMatrix(*_LevelInfo.Grids[_NextCoarserLevel]) { _NextPreconditionerLevel = std::unique_ptr(new NextPreconditionerLevel(_MultiGridParams, _LevelInfo, _CoarseMatrix, _CoarseMatrix)); resetTimers(); } void setup() { _SetupTotalTimer.Start(); static_assert((nBasis & 0x1) == 0, "MG Preconditioner only supports an even number of basis vectors"); int nb = nBasis / 2; MdagMLinearOperator fineMdagMOp(_FineMatrix); _SetupCreateSubspaceTimer.Start(); _Aggregates.CreateSubspace(_LevelInfo.PRNGs[_CurrentLevel], fineMdagMOp, nb); _SetupCreateSubspaceTimer.Stop(); _SetupProjectToChiralitiesTimer.Start(); FineVector tmp1(_Aggregates.subspace[0].Grid()); FineVector tmp2(_Aggregates.subspace[0].Grid()); for(int n = 0; n < nb; n++) { auto tmp1 = _Aggregates.subspace[n]; G5C(tmp2, _Aggregates.subspace[n]); axpby(_Aggregates.subspace[n], 0.5, 0.5, tmp1, tmp2); axpby(_Aggregates.subspace[n + nb], 0.5, -0.5, tmp1, tmp2); std::cout << GridLogMG << " Level " << _CurrentLevel << ": Chirally doubled vector " << n << ". " << "norm2(vec[" << n << "]) = " << norm2(_Aggregates.subspace[n]) << ". " << "norm2(vec[" << n + nb << "]) = " << norm2(_Aggregates.subspace[n + nb]) << std::endl; } _SetupProjectToChiralitiesTimer.Stop(); _SetupCoarsenOperatorTimer.Start(); _CoarseMatrix.CoarsenOperator(_LevelInfo.Grids[_CurrentLevel], fineMdagMOp, _Aggregates); _SetupCoarsenOperatorTimer.Stop(); _SetupNextLevelTimer.Start(); _NextPreconditionerLevel->setup(); _SetupNextLevelTimer.Stop(); _SetupTotalTimer.Stop(); } virtual void operator()(FineVector const &in, FineVector &out) { conformable(_LevelInfo.Grids[_CurrentLevel], in.Grid()); conformable(in, out); // TODO: implement a W-cycle if(_MultiGridParams.kCycle) kCycle(in, out); else vCycle(in, out); } void vCycle(FineVector const &in, FineVector &out) { _SolveTotalTimer.Start(); RealD inputNorm = norm2(in); CoarseVector coarseSrc(_LevelInfo.Grids[_NextCoarserLevel]); CoarseVector coarseSol(_LevelInfo.Grids[_NextCoarserLevel]); coarseSol = zero; FineVector fineTmp(in.Grid()); auto maxSmootherIter = _MultiGridParams.smootherMaxOuterIter[_CurrentLevel] * _MultiGridParams.smootherMaxInnerIter[_CurrentLevel]; TrivialPrecon fineTrivialPreconditioner; FlexibleGeneralisedMinimalResidual fineFGMRES(_MultiGridParams.smootherTol[_CurrentLevel], maxSmootherIter, fineTrivialPreconditioner, _MultiGridParams.smootherMaxInnerIter[_CurrentLevel], false); MdagMLinearOperator fineMdagMOp(_FineMatrix); MdagMLinearOperator fineSmootherMdagMOp(_SmootherMatrix); _SolveRestrictionTimer.Start(); _Aggregates.ProjectToSubspace(coarseSrc, in); _SolveRestrictionTimer.Stop(); _SolveNextLevelTimer.Start(); (*_NextPreconditionerLevel)(coarseSrc, coarseSol); _SolveNextLevelTimer.Stop(); _SolveProlongationTimer.Start(); _Aggregates.PromoteFromSubspace(coarseSol, out); _SolveProlongationTimer.Stop(); fineMdagMOp.Op(out, fineTmp); fineTmp = in - fineTmp; auto r = norm2(fineTmp); auto residualAfterCoarseGridCorrection = std::sqrt(r / inputNorm); _SolveSmootherTimer.Start(); fineFGMRES(fineSmootherMdagMOp, in, out); _SolveSmootherTimer.Stop(); fineMdagMOp.Op(out, fineTmp); fineTmp = in - fineTmp; r = norm2(fineTmp); auto residualAfterPostSmoother = std::sqrt(r / inputNorm); std::cout << GridLogMG << " Level " << _CurrentLevel << ": V-cycle: Input norm = " << std::sqrt(inputNorm) << " Coarse residual = " << residualAfterCoarseGridCorrection << " Post-Smoother residual = " << residualAfterPostSmoother << std::endl; _SolveTotalTimer.Stop(); } void kCycle(FineVector const &in, FineVector &out) { _SolveTotalTimer.Start(); RealD inputNorm = norm2(in); CoarseVector coarseSrc(_LevelInfo.Grids[_NextCoarserLevel]); CoarseVector coarseSol(_LevelInfo.Grids[_NextCoarserLevel]); coarseSol = zero; FineVector fineTmp(in.Grid()); auto smootherMaxIter = _MultiGridParams.smootherMaxOuterIter[_CurrentLevel] * _MultiGridParams.smootherMaxInnerIter[_CurrentLevel]; auto kCycleMaxIter = _MultiGridParams.kCycleMaxOuterIter[_CurrentLevel] * _MultiGridParams.kCycleMaxInnerIter[_CurrentLevel]; TrivialPrecon fineTrivialPreconditioner; FlexibleGeneralisedMinimalResidual fineFGMRES(_MultiGridParams.smootherTol[_CurrentLevel], smootherMaxIter, fineTrivialPreconditioner, _MultiGridParams.smootherMaxInnerIter[_CurrentLevel], false); FlexibleGeneralisedMinimalResidual coarseFGMRES(_MultiGridParams.kCycleTol[_CurrentLevel], kCycleMaxIter, *_NextPreconditionerLevel, _MultiGridParams.kCycleMaxInnerIter[_CurrentLevel], false); MdagMLinearOperator fineMdagMOp(_FineMatrix); MdagMLinearOperator fineSmootherMdagMOp(_SmootherMatrix); MdagMLinearOperator coarseMdagMOp(_CoarseMatrix); _SolveRestrictionTimer.Start(); _Aggregates.ProjectToSubspace(coarseSrc, in); _SolveRestrictionTimer.Stop(); _SolveNextLevelTimer.Start(); coarseFGMRES(coarseMdagMOp, coarseSrc, coarseSol); _SolveNextLevelTimer.Stop(); _SolveProlongationTimer.Start(); _Aggregates.PromoteFromSubspace(coarseSol, out); _SolveProlongationTimer.Stop(); fineMdagMOp.Op(out, fineTmp); fineTmp = in - fineTmp; auto r = norm2(fineTmp); auto residualAfterCoarseGridCorrection = std::sqrt(r / inputNorm); _SolveSmootherTimer.Start(); fineFGMRES(fineSmootherMdagMOp, in, out); _SolveSmootherTimer.Stop(); fineMdagMOp.Op(out, fineTmp); fineTmp = in - fineTmp; r = norm2(fineTmp); auto residualAfterPostSmoother = std::sqrt(r / inputNorm); std::cout << GridLogMG << " Level " << _CurrentLevel << ": K-cycle: Input norm = " << std::sqrt(inputNorm) << " Coarse residual = " << residualAfterCoarseGridCorrection << " Post-Smoother residual = " << residualAfterPostSmoother << std::endl; _SolveTotalTimer.Stop(); } void runChecks(RealD tolerance) { std::vector fineTmps(7, _LevelInfo.Grids[_CurrentLevel]); std::vector coarseTmps(4, _LevelInfo.Grids[_NextCoarserLevel]); MdagMLinearOperator fineMdagMOp(_FineMatrix); MdagMLinearOperator coarseMdagMOp(_CoarseMatrix); std::cout << GridLogMG << " Level " << _CurrentLevel << ": **************************************************" << std::endl; std::cout << GridLogMG << " Level " << _CurrentLevel << ": MG correctness check: 0 == (M - (Mdiag + Σ_μ Mdir_μ)) * v" << std::endl; std::cout << GridLogMG << " Level " << _CurrentLevel << ": **************************************************" << std::endl; random(_LevelInfo.PRNGs[_CurrentLevel], fineTmps[0]); fineMdagMOp.Op(fineTmps[0], fineTmps[1]); // M * v fineMdagMOp.OpDiag(fineTmps[0], fineTmps[2]); // Mdiag * v fineTmps[4] = zero; for(int dir = 0; dir < 4; dir++) { // Σ_μ Mdir_μ * v for(auto disp : {+1, -1}) { fineMdagMOp.OpDir(fineTmps[0], fineTmps[3], dir, disp); fineTmps[4] = fineTmps[4] + fineTmps[3]; } } fineTmps[5] = fineTmps[2] + fineTmps[4]; // (Mdiag + Σ_μ Mdir_μ) * v fineTmps[6] = fineTmps[1] - fineTmps[5]; auto deviation = std::sqrt(norm2(fineTmps[6]) / norm2(fineTmps[1])); std::cout << GridLogMG << " Level " << _CurrentLevel << ": norm2(M * v) = " << norm2(fineTmps[1]) << std::endl; std::cout << GridLogMG << " Level " << _CurrentLevel << ": norm2(Mdiag * v) = " << norm2(fineTmps[2]) << std::endl; std::cout << GridLogMG << " Level " << _CurrentLevel << ": norm2(Σ_μ Mdir_μ * v) = " << norm2(fineTmps[4]) << std::endl; std::cout << GridLogMG << " Level " << _CurrentLevel << ": norm2((Mdiag + Σ_μ Mdir_μ) * v) = " << norm2(fineTmps[5]) << std::endl; std::cout << GridLogMG << " Level " << _CurrentLevel << ": relative deviation = " << deviation; if(deviation > tolerance) { std::cout << " > " << tolerance << " -> check failed" << std::endl; abort(); } else { std::cout << " < " << tolerance << " -> check passed" << std::endl; } std::cout << GridLogMG << " Level " << _CurrentLevel << ": **************************************************" << std::endl; std::cout << GridLogMG << " Level " << _CurrentLevel << ": MG correctness check: 0 == (1 - P R) v" << std::endl; std::cout << GridLogMG << " Level " << _CurrentLevel << ": **************************************************" << std::endl; for(auto i = 0; i < _Aggregates.subspace.size(); ++i) { _Aggregates.ProjectToSubspace(coarseTmps[0], _Aggregates.subspace[i]); // R v_i _Aggregates.PromoteFromSubspace(coarseTmps[0], fineTmps[0]); // P R v_i fineTmps[1] = _Aggregates.subspace[i] - fineTmps[0]; // v_i - P R v_i deviation = std::sqrt(norm2(fineTmps[1]) / norm2(_Aggregates.subspace[i])); std::cout << GridLogMG << " Level " << _CurrentLevel << ": Vector " << i << ": norm2(v_i) = " << norm2(_Aggregates.subspace[i]) << " | norm2(R v_i) = " << norm2(coarseTmps[0]) << " | norm2(P R v_i) = " << norm2(fineTmps[0]) << " | relative deviation = " << deviation; if(deviation > tolerance) { std::cout << " > " << tolerance << " -> check failed" << std::endl; abort(); } else { std::cout << " < " << tolerance << " -> check passed" << std::endl; } } std::cout << GridLogMG << " Level " << _CurrentLevel << ": **************************************************" << std::endl; std::cout << GridLogMG << " Level " << _CurrentLevel << ": MG correctness check: 0 == (1 - R P) v_c" << std::endl; std::cout << GridLogMG << " Level " << _CurrentLevel << ": **************************************************" << std::endl; random(_LevelInfo.PRNGs[_NextCoarserLevel], coarseTmps[0]); _Aggregates.PromoteFromSubspace(coarseTmps[0], fineTmps[0]); // P v_c _Aggregates.ProjectToSubspace(coarseTmps[1], fineTmps[0]); // R P v_c coarseTmps[2] = coarseTmps[0] - coarseTmps[1]; // v_c - R P v_c deviation = std::sqrt(norm2(coarseTmps[2]) / norm2(coarseTmps[0])); std::cout << GridLogMG << " Level " << _CurrentLevel << ": norm2(v_c) = " << norm2(coarseTmps[0]) << " | norm2(R P v_c) = " << norm2(coarseTmps[1]) << " | norm2(P v_c) = " << norm2(fineTmps[0]) << " | relative deviation = " << deviation; if(deviation > tolerance) { std::cout << " > " << tolerance << " -> check failed" << std::endl; abort(); } else { std::cout << " < " << tolerance << " -> check passed" << std::endl; } std::cout << GridLogMG << " Level " << _CurrentLevel << ": **************************************************" << std::endl; std::cout << GridLogMG << " Level " << _CurrentLevel << ": MG correctness check: 0 == (R D P - D_c) v_c" << std::endl; std::cout << GridLogMG << " Level " << _CurrentLevel << ": **************************************************" << std::endl; random(_LevelInfo.PRNGs[_NextCoarserLevel], coarseTmps[0]); _Aggregates.PromoteFromSubspace(coarseTmps[0], fineTmps[0]); // P v_c fineMdagMOp.Op(fineTmps[0], fineTmps[1]); // D P v_c _Aggregates.ProjectToSubspace(coarseTmps[1], fineTmps[1]); // R D P v_c coarseMdagMOp.Op(coarseTmps[0], coarseTmps[2]); // D_c v_c coarseTmps[3] = coarseTmps[1] - coarseTmps[2]; // R D P v_c - D_c v_c deviation = std::sqrt(norm2(coarseTmps[3]) / norm2(coarseTmps[1])); std::cout << GridLogMG << " Level " << _CurrentLevel << ": norm2(R D P v_c) = " << norm2(coarseTmps[1]) << " | norm2(D_c v_c) = " << norm2(coarseTmps[2]) << " | relative deviation = " << deviation; if(deviation > tolerance) { std::cout << " > " << tolerance << " -> check failed" << std::endl; abort(); } else { std::cout << " < " << tolerance << " -> check passed" << std::endl; } std::cout << GridLogMG << " Level " << _CurrentLevel << ": **************************************************" << std::endl; std::cout << GridLogMG << " Level " << _CurrentLevel << ": MG correctness check: 0 == |(Im(v_c^dag D_c^dag D_c v_c)|" << std::endl; std::cout << GridLogMG << " Level " << _CurrentLevel << ": **************************************************" << std::endl; random(_LevelInfo.PRNGs[_NextCoarserLevel], coarseTmps[0]); coarseMdagMOp.Op(coarseTmps[0], coarseTmps[1]); // D_c v_c coarseMdagMOp.AdjOp(coarseTmps[1], coarseTmps[2]); // D_c^dag D_c v_c auto dot = innerProduct(coarseTmps[0], coarseTmps[2]); //v_c^dag D_c^dag D_c v_c deviation = std::abs(imag(dot)) / std::abs(real(dot)); std::cout << GridLogMG << " Level " << _CurrentLevel << ": Re(v_c^dag D_c^dag D_c v_c) = " << real(dot) << " | Im(v_c^dag D_c^dag D_c v_c) = " << imag(dot) << " | relative deviation = " << deviation; if(deviation > tolerance) { std::cout << " > " << tolerance << " -> check failed" << std::endl; abort(); } else { std::cout << " < " << tolerance << " -> check passed" << std::endl; } _NextPreconditionerLevel->runChecks(tolerance); } void reportTimings() { // clang-format off std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Sum total " << _SetupTotalTimer.Elapsed() + _SolveTotalTimer.Elapsed() << std::endl; std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Setup total " << _SetupTotalTimer.Elapsed() << std::endl; std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Setup create subspace " << _SetupCreateSubspaceTimer.Elapsed() << std::endl; std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Setup project chiral " << _SetupProjectToChiralitiesTimer.Elapsed() << std::endl; std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Setup coarsen operator " << _SetupCoarsenOperatorTimer.Elapsed() << std::endl; std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Setup next level " << _SetupNextLevelTimer.Elapsed() << std::endl; std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Solve total " << _SolveTotalTimer.Elapsed() << std::endl; std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Solve restriction " << _SolveRestrictionTimer.Elapsed() << std::endl; std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Solve prolongation " << _SolveProlongationTimer.Elapsed() << std::endl; std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Solve smoother " << _SolveSmootherTimer.Elapsed() << std::endl; std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Solve next level " << _SolveNextLevelTimer.Elapsed() << std::endl; // clang-format on _NextPreconditionerLevel->reportTimings(); } void resetTimers() { _SetupTotalTimer.Reset(); _SetupCreateSubspaceTimer.Reset(); _SetupProjectToChiralitiesTimer.Reset(); _SetupCoarsenOperatorTimer.Reset(); _SetupNextLevelTimer.Reset(); _SolveTotalTimer.Reset(); _SolveRestrictionTimer.Reset(); _SolveProlongationTimer.Reset(); _SolveSmootherTimer.Reset(); _SolveNextLevelTimer.Reset(); _NextPreconditionerLevel->resetTimers(); } }; // Specialization for the coarsest level template class MultiGridPreconditioner : public MultiGridPreconditionerBase> { public: ///////////////////////////////////////////// // Type Definitions ///////////////////////////////////////////// using MultiGridPreconditionerBase>::operator(); typedef Matrix FineDiracMatrix; typedef Lattice FineVector; ///////////////////////////////////////////// // Member Data ///////////////////////////////////////////// int _CurrentLevel; MultiGridParams &_MultiGridParams; LevelInfo & _LevelInfo; FineDiracMatrix &_FineMatrix; FineDiracMatrix &_SmootherMatrix; GridStopWatch _SolveTotalTimer; GridStopWatch _SolveSmootherTimer; ///////////////////////////////////////////// // Member Functions ///////////////////////////////////////////// MultiGridPreconditioner(MultiGridParams &mgParams, LevelInfo &LvlInfo, FineDiracMatrix &FineMat, FineDiracMatrix &SmootherMat) : _CurrentLevel(mgParams.nLevels - (0 + 1)) , _MultiGridParams(mgParams) , _LevelInfo(LvlInfo) , _FineMatrix(FineMat) , _SmootherMatrix(SmootherMat) { resetTimers(); } void setup() {} virtual void operator()(FineVector const &in, FineVector &out) { _SolveTotalTimer.Start(); conformable(_LevelInfo.Grids[_CurrentLevel], in.Grid()); conformable(in, out); auto coarseSolverMaxIter = _MultiGridParams.coarseSolverMaxOuterIter * _MultiGridParams.coarseSolverMaxInnerIter; // On the coarsest level we only have what I above call the fine level, no coarse one TrivialPrecon fineTrivialPreconditioner; FlexibleGeneralisedMinimalResidual fineFGMRES( _MultiGridParams.coarseSolverTol, coarseSolverMaxIter, fineTrivialPreconditioner, _MultiGridParams.coarseSolverMaxInnerIter, false); MdagMLinearOperator fineMdagMOp(_FineMatrix); _SolveSmootherTimer.Start(); fineFGMRES(fineMdagMOp, in, out); _SolveSmootherTimer.Stop(); _SolveTotalTimer.Stop(); } void runChecks(RealD tolerance) {} void reportTimings() { // clang-format off std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Solve total " << _SolveTotalTimer.Elapsed() << std::endl; std::cout << GridLogMG << " Level " << _CurrentLevel << ": Time elapsed: Solve smoother " << _SolveSmootherTimer.Elapsed() << std::endl; // clang-format on } void resetTimers() { _SolveTotalTimer.Reset(); _SolveSmootherTimer.Reset(); } }; template using NLevelMGPreconditioner = MultiGridPreconditioner; template std::unique_ptr>> createMGInstance(MultiGridParams &mgParams, LevelInfo &levelInfo, Matrix &FineMat, Matrix &SmootherMat) { #define CASE_FOR_N_LEVELS(nLevels) \ case nLevels: \ return std::unique_ptr>( \ new NLevelMGPreconditioner(mgParams, levelInfo, FineMat, SmootherMat)); \ break; switch(mgParams.nLevels) { CASE_FOR_N_LEVELS(2); CASE_FOR_N_LEVELS(3); CASE_FOR_N_LEVELS(4); default: std::cout << GridLogError << "We currently only support nLevels ∈ {2, 3, 4}" << std::endl; exit(EXIT_FAILURE); break; } #undef CASE_FOR_N_LEVELS } } #endif