/* * Policy classes for the HMC * Authors: Guido Cossu, David Preti */ #ifndef SUN2INDEX_H_H #define SUN2INDEX_H_H namespace Grid { namespace QCD { /* * This is an helper class for the HMC * Should contain only the data for the two index representations * and the facility to convert from the fundamental -> two index * The templated parameter TwoIndexSymmetry choses between the * symmetric and antisymmetric representations * * There is an * enum TwoIndexSymmetry { Symmetric = 1, AntiSymmetric = -1 }; * in the SUnTwoIndex.h file */ template class TwoIndexRep { public: // typdef to be used by the Representations class in HMC to get the // types for the higher representation fields typedef typename SU_TwoIndex::LatticeTwoIndexMatrix LatticeMatrix; typedef typename SU_TwoIndex::LatticeTwoIndexField LatticeField; static const int Dimension = ncolour * (ncolour + S) / 2; static const bool isFundamental = false; LatticeField U; explicit TwoIndexRep(GridBase *grid) : U(grid) {} void update_representation(const LatticeGaugeField &Uin) { std::cout << GridLogDebug << "Updating TwoIndex representation\n"; // Uin is in the fundamental representation // get the U in TwoIndexRep // (U)_{(ij)(lk)} = tr [ adj(e^(ij)) U e^(lk) transpose(U) ] conformable(U, Uin); U = zero; LatticeColourMatrix tmp(Uin._grid); Vector::Matrix> eij(Dimension); for (int a = 0; a < Dimension; a++) SU_TwoIndex::base(a, eij[a]); for (int mu = 0; mu < Nd; mu++) { auto Uin_mu = peekLorentz(Uin, mu); auto U_mu = peekLorentz(U, mu); for (int a = 0; a < Dimension; a++) { tmp = transpose(Uin_mu) * adj(eij[a]) * Uin_mu; for (int b = 0; b < Dimension; b++) pokeColour(U_mu, trace(tmp * eij[b]), a, b); } pokeLorentz(U, U_mu, mu); } } LatticeGaugeField RtoFundamentalProject(const LatticeField &in, Real scale = 1.0) const { LatticeGaugeField out(in._grid); out = zero; for (int mu = 0; mu < Nd; mu++) { LatticeColourMatrix out_mu(in._grid); // fundamental representation LatticeMatrix in_mu = peekLorentz(in, mu); out_mu = zero; typename SU::LatticeAlgebraVector h(in._grid); projectOnAlgebra(h, in_mu, double(Nc + 2 * S)); // factor T(r)/T(fund) FundamentalLieAlgebraMatrix(h, out_mu); // apply scale only once pokeLorentz(out, out_mu, mu); } return out; } private: void projectOnAlgebra(typename SU::LatticeAlgebraVector &h_out, const LatticeMatrix &in, Real scale = 1.0) const { SU_TwoIndex::projectOnAlgebra(h_out, in, scale); } void FundamentalLieAlgebraMatrix( typename SU::LatticeAlgebraVector &h, typename SU::LatticeMatrix &out, Real scale = 1.0) const { SU::FundamentalLieAlgebraMatrix(h, out, scale); } }; typedef TwoIndexRep TwoIndexSymmetricRepresentation; typedef TwoIndexRep TwoIndexAntiSymmetricRepresentation; } } #endif