/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./lib/qcd/action/pseudofermion/OneFlavourEvenOddRationalRatio.h Copyright (C) 2015 Author: Peter Boyle This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #ifndef QCD_PSEUDOFERMION_ONE_FLAVOUR_EVEN_ODD_RATIONAL_RATIO_H #define QCD_PSEUDOFERMION_ONE_FLAVOUR_EVEN_ODD_RATIONAL_RATIO_H NAMESPACE_BEGIN(Grid); /////////////////////////////////////// // One flavour rational /////////////////////////////////////// // S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi // // Here P/Q \sim R_{1/4} ~ (V^dagV)^{1/4} // Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2} template class OneFlavourEvenOddRatioRationalPseudoFermionAction : public Action { public: INHERIT_IMPL_TYPES(Impl); typedef OneFlavourRationalParams Params; Params param; MultiShiftFunction PowerHalf ; MultiShiftFunction PowerNegHalf; MultiShiftFunction PowerQuarter; MultiShiftFunction PowerNegQuarter; private: FermionOperator & NumOp;// the basic operator FermionOperator & DenOp;// the basic operator FermionField PhiEven; // the pseudo fermion field for this trajectory FermionField PhiOdd; // the pseudo fermion field for this trajectory public: OneFlavourEvenOddRatioRationalPseudoFermionAction(FermionOperator &_NumOp, FermionOperator &_DenOp, Params & p ) : NumOp(_NumOp), DenOp(_DenOp), PhiOdd (_NumOp.FermionRedBlackGrid()), PhiEven(_NumOp.FermionRedBlackGrid()), param(p) { AlgRemez remez(param.lo,param.hi,param.precision); // MdagM^(+- 1/2) std::cout< sig^2 = 0.5. // // So eta should be of width sig = 1/sqrt(2). RealD scale = std::sqrt(0.5); FermionField eta(NumOp.FermionGrid()); FermionField etaOdd (NumOp.FermionRedBlackGrid()); FermionField etaEven(NumOp.FermionRedBlackGrid()); FermionField tmp(NumOp.FermionRedBlackGrid()); gaussian(pRNG,eta); eta=eta*scale; pickCheckerboard(Even,etaEven,eta); pickCheckerboard(Odd,etaOdd,eta); NumOp.ImportGauge(U); DenOp.ImportGauge(U); // MdagM^1/4 eta SchurDifferentiableOperator MdagM(DenOp); ConjugateGradientMultiShift msCG_M(param.MaxIter,PowerQuarter); msCG_M(MdagM,etaOdd,tmp); // VdagV^-1/4 MdagM^1/4 eta SchurDifferentiableOperator VdagV(NumOp); ConjugateGradientMultiShift msCG_V(param.MaxIter,PowerNegQuarter); msCG_V(VdagV,tmp,PhiOdd); assert(NumOp.ConstEE() == 1); assert(DenOp.ConstEE() == 1); PhiEven = Zero(); }; ////////////////////////////////////////////////////// // S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi ////////////////////////////////////////////////////// virtual RealD S(const GaugeField &U) { NumOp.ImportGauge(U); DenOp.ImportGauge(U); FermionField X(NumOp.FermionRedBlackGrid()); FermionField Y(NumOp.FermionRedBlackGrid()); // VdagV^1/4 Phi SchurDifferentiableOperator VdagV(NumOp); ConjugateGradientMultiShift msCG_V(param.MaxIter,PowerQuarter); msCG_V(VdagV,PhiOdd,X); // MdagM^-1/4 VdagV^1/4 Phi SchurDifferentiableOperator MdagM(DenOp); ConjugateGradientMultiShift msCG_M(param.MaxIter,PowerNegQuarter); msCG_M(MdagM,X,Y); // Phidag VdagV^1/4 MdagM^-1/4 MdagM^-1/4 VdagV^1/4 Phi RealD action = norm2(Y); return action; }; // S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi // // Here, M is some 5D operator and V is the Pauli-Villars field // N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term // // Need // dS_f/dU = chi^dag d[P/Q] N/D P/Q chi // + chi^dag P/Q d[N/D] P/Q chi // + chi^dag P/Q N/D d[P/Q] chi // // P/Q is expressed as partial fraction expansion: // // a0 + \sum_k ak/(V^dagV + bk) // // d[P/Q] is then // // \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1} // // and similar for N/D. // // Need // MpvPhi_k = [Vdag V + bk]^{-1} chi // MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi // // MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi // MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi // // MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi // virtual void deriv(const GaugeField &U,GaugeField & dSdU) { const int n_f = PowerNegHalf.poles.size(); const int n_pv = PowerQuarter.poles.size(); std::vector MpvPhi_k (n_pv,NumOp.FermionRedBlackGrid()); std::vector MpvMfMpvPhi_k(n_pv,NumOp.FermionRedBlackGrid()); std::vector MfMpvPhi_k (n_f ,NumOp.FermionRedBlackGrid()); FermionField MpvPhi(NumOp.FermionRedBlackGrid()); FermionField MfMpvPhi(NumOp.FermionRedBlackGrid()); FermionField MpvMfMpvPhi(NumOp.FermionRedBlackGrid()); FermionField Y(NumOp.FermionRedBlackGrid()); GaugeField tmp(NumOp.GaugeGrid()); NumOp.ImportGauge(U); DenOp.ImportGauge(U); SchurDifferentiableOperator VdagV(NumOp); SchurDifferentiableOperator MdagM(DenOp); ConjugateGradientMultiShift msCG_V(param.MaxIter,PowerQuarter); ConjugateGradientMultiShift msCG_M(param.MaxIter,PowerNegHalf); msCG_V(VdagV,PhiOdd,MpvPhi_k,MpvPhi); msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi); msCG_V(VdagV,MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi); RealD ak; dSdU = Zero(); // With these building blocks // // dS/dU = // \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1) // + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2) // -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3) //(1) for(int k=0;k