/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./lib/qcd/action/scalar/CovariantLaplacian.h Copyright (C) 2016 Author: Guido Cossu This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #ifndef COVARIANT_LAPLACIAN_H #define COVARIANT_LAPLACIAN_H namespace Grid { namespace QCD { //////////////////////////////////////////////////////////// // Laplacian operator L on adjoint fields // // phi: adjoint field // L: D_mu^dag D_mu // // L phi(x) = Sum_mu [ U_mu(x)phi(x+mu)U_mu(x)^dag + // U_mu(x-mu)^dag phi(x-mu)U_mu(x-mu) // -2phi(x)] // // Operator designed to be encapsulated by // an HermitianLinearOperator<.. , ..> //////////////////////////////////////////////////////////// template class LaplacianAdjointField { public: INHERIT_GIMPL_TYPES(Impl); LaplacianAdjointField(GridBase* grid, const RealD k = 1.0) : U(Nd, grid), kappa(k){}; void ImportGauge(const GaugeField& _U) { for (int mu = 0; mu < Nd; mu++) { U[mu] = PeekIndex(_U, mu); } } void Mdiag(const GaugeLinkField& in, GaugeLinkField& out) { assert(0); } void Mdir(const GaugeLinkField& in, GaugeLinkField& out, int dir, int disp) { assert(0); } void M(const GaugeLinkField& in, GaugeLinkField& out) { GaugeLinkField tmp(in._grid); GaugeLinkField tmp2(in._grid); GaugeLinkField sum(in._grid); sum = zero; for (int mu = 0; mu < Nd; mu++) { tmp = U[mu] * Cshift(in, mu, +1) * adj(U[mu]); tmp2 = adj(U[mu]) * in * U[mu]; sum += tmp + Cshift(tmp2, mu, -1) - 2.0 * in; } out = (1.0 - kappa) * in - kappa / (double(4 * Nd)) * sum; } void MDeriv(const GaugeLinkField& in, GaugeLinkField& out, bool dag){ RealD factor = - kappa / (double(4 * Nd)) if (!dag) out = factor * Cshift(in, mu, +1) * adj(U[mu]) + adj(U[mu]) * in; else out = factor * U[mu] * Cshift(in, mu, +1) + in * U[mu]; } private: RealD kappa; std::vector U; }; // This is just a debug tests // not meant to be used template class LaplacianAlgebraField { public: INHERIT_GIMPL_TYPES(Impl); typedef SU::LatticeAlgebraVector AVector; LaplacianAlgebraField(GridBase* grid, const RealD k) : U(Nd, grid), kappa(k){}; void ImportGauge(const GaugeField& _U) { for (int mu = 0; mu < Nd; mu++) { U[mu] = PeekIndex(_U, mu); } } void Mdiag(const AVector& in, AVector& out) { assert(0); } void Mdir(const AVector& in, AVector& out, int dir, int disp) { assert(0); } // Operator with algebra vector inputs and outputs void M(const AVector& in, AVector& out) { GaugeLinkField tmp(in._grid); GaugeLinkField tmp2(in._grid); GaugeLinkField sum(in._grid); GaugeLinkField out_mat(in._grid); GaugeLinkField in_mat(in._grid); // Reconstruct matrix SU::FundamentalLieAlgebraMatrix(in, in_mat); sum = zero; for (int mu = 0; mu < Nd; mu++) { tmp = U[mu] * Cshift(in_mat, mu, +1) * adj(U[mu]); tmp2 = adj(U[mu]) * in_mat * U[mu]; sum += tmp + Cshift(tmp2, mu, -1) - 2.0 * in_mat; } out_mat = (1.0 - kappa) * in_mat - kappa / (double(4 * Nd)) * sum; // Project SU::projectOnAlgebra(out, out_mat); } private: RealD kappa; std::vector U; }; } } #endif