/* -*- Mode: C; comment-column: 22; fill-column: 79; -*- */ #ifdef __cplusplus extern "C" { #endif #define HVERSION Header Time-stamp: <14-OCT-2004 09:26:51.00 adk@MISSCONTRARY> #ifndef ZOLOTAREV_INTERNAL #ifndef PRECISION #define PRECISION double #endif #define ZPRECISION PRECISION #define ZOLOTAREV_DATA zolotarev_data #endif /* This struct contains the coefficients which parameterise an optimal rational * approximation to the signum function. * * The parameterisations used are: * * Factored form for type 0 (R0(0) = 0) * * R0(x) = A * x * prod(x^2 - a[j], j = 0 .. dn-1) / prod(x^2 - ap[j], j = 0 * .. dd-1), * * where deg_num = 2*dn + 1 and deg_denom = 2*dd. * * Factored form for type 1 (R1(0) = infinity) * * R1(x) = (A / x) * prod(x^2 - a[j], j = 0 .. dn-1) / prod(x^2 - ap[j], j = 0 * .. dd-1), * * where deg_num = 2*dn and deg_denom = 2*dd + 1. * * Partial fraction form * * R(x) = alpha[da] * x + sum(alpha[j] * x / (x^2 - ap[j]), j = 0 .. da-1) * * where da = dd for type 0 and da = dd + 1 with ap[dd] = 0 for type 1. * * Continued fraction form * * R(x) = beta[db-1] * x + 1 / (beta[db-2] * x + 1 / (beta[db-3] * x + ...)) * * with the final coefficient being beta[0], with d' = 2 * dd + 1 for type 0 * and db = 2 * dd + 2 for type 1. * * Cayley form (Chiu's domain wall formulation) * * R(x) = (1 - T(x)) / (1 + T(x)) * * where T(x) = prod((x - gamma[j]) / (x + gamma[j]), j = 0 .. n-1) */ typedef struct { ZPRECISION *a, /* zeros of numerator, a[0 .. dn-1] */ *ap, /* poles (zeros of denominator), ap[0 .. dd-1] */ A, /* overall factor */ *alpha, /* coefficients of partial fraction, alpha[0 .. da-1] */ *beta, /* coefficients of continued fraction, beta[0 .. db-1] */ *gamma, /* zeros of numerator of T in Cayley form */ Delta, /* maximum error, |R(x) - sgn(x)| <= Delta */ epsilon; /* minimum x value, epsilon < |x| < 1 */ int n, /* approximation degree */ type, /* 0: R(0) = 0, 1: R(0) = infinity */ dn, dd, da, db, /* number of elements of a, ap, alpha, and beta */ deg_num, /* degree of numerator = deg_denom +/- 1 */ deg_denom; /* degree of denominator */ } ZOLOTAREV_DATA; #ifndef ZOLOTAREV_INTERNAL /* zolotarev(epsilon, n, type) returns a pointer to an initialised * zolotarev_data structure. The arguments must satisfy the constraints that * epsilon > 0, n > 0, and type = 0 or 1. */ ZOLOTAREV_DATA* bfm_higham(PRECISION epsilon, int n) ; ZOLOTAREV_DATA* bfm_zolotarev(PRECISION epsilon, int n, int type); #endif #ifdef __cplusplus } #endif