#ifndef Hadrons_MFermion_GaugeProp_hpp_ #define Hadrons_MFermion_GaugeProp_hpp_ #include #include #include BEGIN_HADRONS_NAMESPACE /****************************************************************************** * GaugeProp * ******************************************************************************/ BEGIN_MODULE_NAMESPACE(MFermion) class GaugePropPar: Serializable { public: GRID_SERIALIZABLE_CLASS_MEMBERS(GaugePropPar, std::string, source, std::string, solver); }; template class TGaugeProp: public Module { public: FGS_TYPE_ALIASES(FImpl,); public: // constructor TGaugeProp(const std::string name); // destructor virtual ~TGaugeProp(void) = default; // dependency relation virtual std::vector getInput(void); virtual std::vector getOutput(void); // setup virtual void setup(void); // execution virtual void execute(void); private: unsigned int Ls_; SolverFn *solver_{nullptr}; }; MODULE_REGISTER_NS(GaugeProp, TGaugeProp, MFermion); /****************************************************************************** * TGaugeProp implementation * ******************************************************************************/ // constructor ///////////////////////////////////////////////////////////////// template TGaugeProp::TGaugeProp(const std::string name) : Module(name) {} // dependencies/products /////////////////////////////////////////////////////// template std::vector TGaugeProp::getInput(void) { std::vector in = {par().source, par().solver}; return in; } template std::vector TGaugeProp::getOutput(void) { std::vector out = {getName(), getName() + "_5d"}; return out; } // setup /////////////////////////////////////////////////////////////////////// template void TGaugeProp::setup(void) { Ls_ = env().getObjectLs(par().solver); env().template registerLattice(getName()); if (Ls_ > 1) { env().template registerLattice(getName() + "_5d", Ls_); } } // execution /////////////////////////////////////////////////////////////////// template void TGaugeProp::execute(void) { LOG(Message) << "Computing quark propagator '" << getName() << "'" << std::endl; FermionField source(env().getGrid(Ls_)), sol(env().getGrid(Ls_)), tmp(env().getGrid()); std::string propName = (Ls_ == 1) ? getName() : (getName() + "_5d"); PropagatorField &prop = *env().template createLattice(propName); PropagatorField &fullSrc = *env().template getObject(par().source); SolverFn &solver = *env().template getObject(par().solver); if (Ls_ > 1) { env().template createLattice(getName()); } LOG(Message) << "Inverting using solver '" << par().solver << "' on source '" << par().source << "'" << std::endl; for (unsigned int s = 0; s < Ns; ++s) for (unsigned int c = 0; c < Nc; ++c) { LOG(Message) << "Inversion for spin= " << s << ", color= " << c << std::endl; // source conversion for 4D sources if (!env().isObject5d(par().source)) { if (Ls_ == 1) { PropToFerm(source, fullSrc, s, c); } else { source = zero; PropToFerm(tmp, fullSrc, s, c); InsertSlice(tmp, source, 0, 0); InsertSlice(tmp, source, Ls_-1, 0); axpby_ssp_pplus(source, 0., source, 1., source, 0, 0); axpby_ssp_pminus(source, 0., source, 1., source, Ls_-1, Ls_-1); } } // source conversion for 5D sources else { if (Ls_ != env().getObjectLs(par().source)) { HADRON_ERROR("Ls mismatch between quark action and source"); } else { PropToFerm(source, fullSrc, s, c); } } sol = zero; solver(sol, source); FermToProp(prop, sol, s, c); // create 4D propagators from 5D one if necessary if (Ls_ > 1) { PropagatorField &p4d = *env().template getObject(getName()); axpby_ssp_pminus(sol, 0., sol, 1., sol, 0, 0); axpby_ssp_pplus(sol, 1., sol, 1., sol, 0, Ls_-1); ExtractSlice(tmp, sol, 0, 0); FermToProp(p4d, tmp, s, c); } } } END_MODULE_NAMESPACE END_HADRONS_NAMESPACE #endif // Hadrons_MFermion_GaugeProp_hpp_