/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./tests/solver/Test_wilsonclover_mg_mp.cc Copyright (C) 2015-2018 Author: Daniel Richtmann This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #include #include using namespace std; using namespace Grid; using namespace Grid::QCD; int main(int argc, char **argv) { Grid_init(&argc, &argv); // clang-format off GridCartesian *FGrid_d = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexD::Nsimd()), GridDefaultMpi()); GridCartesian *FGrid_f = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi()); GridRedBlackCartesian *FrbGrid_d = SpaceTimeGrid::makeFourDimRedBlackGrid(FGrid_d); GridRedBlackCartesian *FrbGrid_f = SpaceTimeGrid::makeFourDimRedBlackGrid(FGrid_f); // clang-format on std::vector fSeeds({1, 2, 3, 4}); GridParallelRNG fPRNG(FGrid_d); fPRNG.SeedFixedIntegers(fSeeds); // clang-format off LatticeFermionD src_d(FGrid_d); gaussian(fPRNG, src_d); LatticeFermionD resultMGD_d(FGrid_d); resultMGD_d = zero; LatticeFermionD resultMGF_d(FGrid_d); resultMGF_d = zero; LatticeGaugeFieldD Umu_d(FGrid_d); SU3::HotConfiguration(fPRNG, Umu_d); LatticeGaugeFieldF Umu_f(FGrid_f); precisionChange(Umu_f, Umu_d); // clang-format on RealD mass = -0.25; RealD csw_r = 1.0; RealD csw_t = 1.0; MultiGridParams mgParams; std::string inputXml{"./mg_params.xml"}; if(GridCmdOptionExists(argv, argv + argc, "--inputxml")) { inputXml = GridCmdOptionPayload(argv, argv + argc, "--inputxml"); assert(inputXml.length() != 0); } { XmlWriter writer("mg_params_template.xml"); write(writer, "Params", mgParams); std::cout << GridLogMessage << "Written mg_params_template.xml" << std::endl; XmlReader reader(inputXml); read(reader, "Params", mgParams); std::cout << GridLogMessage << "Read in " << inputXml << std::endl; } checkParameterValidity(mgParams); std::cout << mgParams << std::endl; LevelInfo levelInfo_d(FGrid_d, mgParams); LevelInfo levelInfo_f(FGrid_f, mgParams); // Note: We do chiral doubling, so actually only nbasis/2 full basis vectors are used const int nbasis = 40; WilsonCloverFermionD Dwc_d(Umu_d, *FGrid_d, *FrbGrid_d, mass, csw_r, csw_t); WilsonCloverFermionF Dwc_f(Umu_f, *FGrid_f, *FrbGrid_f, mass, csw_r, csw_t); MdagMLinearOperator MdagMOpDwc_d(Dwc_d); MdagMLinearOperator MdagMOpDwc_f(Dwc_f); std::cout << GridLogMessage << "**************************************************" << std::endl; std::cout << GridLogMessage << "Testing single-precision Multigrid for Wilson Clover" << std::endl; std::cout << GridLogMessage << "**************************************************" << std::endl; auto MGPreconDwc_f = createMGInstance(mgParams, levelInfo_f, Dwc_f, Dwc_f); MGPreconDwc_f->setup(); if(GridCmdOptionExists(argv, argv + argc, "--runchecks")) { MGPreconDwc_f->runChecks(1e-6); } MixedPrecisionFlexibleGeneralisedMinimalResidual MPFGMRESPREC( 1.0e-12, 50000, FGrid_f, *MGPreconDwc_f, 100, false); std::cout << std::endl << "Starting with a new solver" << std::endl; MPFGMRESPREC(MdagMOpDwc_d, src_d, resultMGF_d); MGPreconDwc_f->reportTimings(); if(GridCmdOptionExists(argv, argv + argc, "--docomparison")) { std::cout << GridLogMessage << "**************************************************" << std::endl; std::cout << GridLogMessage << "Testing double-precision Multigrid for Wilson Clover" << std::endl; std::cout << GridLogMessage << "**************************************************" << std::endl; auto MGPreconDwc_d = createMGInstance(mgParams, levelInfo_d, Dwc_d, Dwc_d); MGPreconDwc_d->setup(); if(GridCmdOptionExists(argv, argv + argc, "--runchecks")) { MGPreconDwc_d->runChecks(1e-13); } FlexibleGeneralisedMinimalResidual FGMRESPREC(1.0e-12, 50000, *MGPreconDwc_d, 100, false); std::cout << std::endl << "Starting with a new solver" << std::endl; FGMRESPREC(MdagMOpDwc_d, src_d, resultMGD_d); MGPreconDwc_d->reportTimings(); std::cout << GridLogMessage << "**************************************************" << std::endl; std::cout << GridLogMessage << "Comparing single-precision Multigrid with double-precision one for Wilson Clover" << std::endl; std::cout << GridLogMessage << "**************************************************" << std::endl; LatticeFermionD diffFullSolver(FGrid_d); RealD deviationFullSolver = axpy_norm(diffFullSolver, -1.0, resultMGF_d, resultMGD_d); // clang-format off LatticeFermionF src_f(FGrid_f); precisionChange(src_f, src_d); LatticeFermionF resMGF_f(FGrid_f); resMGF_f = zero; LatticeFermionD resMGD_d(FGrid_d); resMGD_d = zero; // clang-format on (*MGPreconDwc_f)(src_f, resMGF_f); (*MGPreconDwc_d)(src_d, resMGD_d); LatticeFermionD diffOnlyMG(FGrid_d); LatticeFermionD resMGF_d(FGrid_d); precisionChange(resMGF_d, resMGF_f); RealD deviationOnlyPrec = axpy_norm(diffOnlyMG, -1.0, resMGF_d, resMGD_d); // clang-format off std::cout << GridLogMessage << "Absolute difference between FGMRES preconditioned by double and single precicision MG: " << deviationFullSolver << std::endl; std::cout << GridLogMessage << "Relative deviation between FGMRES preconditioned by double and single precicision MG: " << deviationFullSolver / norm2(resultMGD_d) << std::endl; std::cout << GridLogMessage << "Absolute difference between one iteration of MG Prec in double and single precision: " << deviationOnlyPrec << std::endl; std::cout << GridLogMessage << "Relative deviation between one iteration of MG Prec in double and single precision: " << deviationOnlyPrec / norm2(resMGD_d) << std::endl; // clang-format on } Grid_finalize(); }