/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./tests/Test_hmc_EODWFRatio.cc Copyright (C) 2015-2016 Author: Peter Boyle <pabobyle@ph.ed.ac.uk> Author: Guido Cossu <guido.cossu@ed.ac.uk> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #include <Grid/Grid.h> int main(int argc, char **argv) { using namespace Grid; Grid_init(&argc, &argv); int threads = GridThread::GetThreads(); // Typedefs to simplify notation typedef WilsonImplR FermionImplPolicy; typedef MobiusFermionR FermionAction; typedef typename FermionAction::FermionField FermionField; typedef Grid::XmlReader Serialiser; //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: IntegratorParameters MD; // typedef GenericHMCRunner<LeapFrog> HMCWrapper; // MD.name = std::string("Leap Frog"); // typedef GenericHMCRunner<ForceGradient> HMCWrapper; // MD.name = std::string("Force Gradient"); typedef GenericHMCRunner<MinimumNorm2> HMCWrapper; MD.name = std::string("MinimumNorm2"); MD.MDsteps = 4; MD.trajL = 1.0; HMCparameters HMCparams; HMCparams.StartTrajectory = 17; HMCparams.Trajectories = 200; HMCparams.NoMetropolisUntil= 0; // "[HotStart, ColdStart, TepidStart, CheckpointStart]\n"; // HMCparams.StartingType =std::string("ColdStart"); HMCparams.StartingType =std::string("CheckpointStart"); HMCparams.MD = MD; HMCWrapper TheHMC(HMCparams); // Grid from the command line arguments --grid and --mpi TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition CheckpointerParameters CPparams; CPparams.config_prefix = "ckpoint_DDHMC_lat"; CPparams.rng_prefix = "ckpoint_DDHMC_rng"; CPparams.saveInterval = 1; CPparams.format = "IEEE64BIG"; TheHMC.Resources.LoadNerscCheckpointer(CPparams); RNGModuleParameters RNGpar; RNGpar.serial_seeds = "1 2 3 4 5"; RNGpar.parallel_seeds = "6 7 8 9 10"; TheHMC.Resources.SetRNGSeeds(RNGpar); // Construct observables // here there is too much indirection typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs; TheHMC.Resources.AddObservable<PlaqObs>(); ////////////////////////////////////////////// const int Ls = 16; RealD M5 = 1.8; RealD b = 1.0; RealD c = 0.0; Real beta = 2.13; Real light_mass = 0.01; Real strange_mass = 0.04; Real pv_mass = 1.0; std::vector<Real> hasenbusch({ light_mass, 0.04, 0.25, 0.4, 0.7 , pv_mass }); // FIXME: // Same in MC and MD // Need to mix precision too OneFlavourRationalParams SFRp; SFRp.lo = 4.0e-3; SFRp.hi = 30.0; SFRp.MaxIter = 10000; SFRp.tolerance= 1.0e-8; SFRp.mdtolerance= 1.0e-5; SFRp.degree = 16; SFRp.precision= 50; SFRp.BoundsCheckFreq=5; OneFlavourRationalParams OFRp; OFRp.lo = 1.0e-4; OFRp.hi = 30.0; OFRp.MaxIter = 10000; OFRp.tolerance= 1.0e-8; OFRp.mdtolerance= 1.0e-5; OFRp.degree = 16; OFRp.precision= 50; OFRp.BoundsCheckFreq=5; auto GridPtr = TheHMC.Resources.GetCartesian(); auto GridRBPtr = TheHMC.Resources.GetRBCartesian(); //////////////////////////////////////////////////////////////// // Domain decomposed //////////////////////////////////////////////////////////////// Coordinate latt4 = GridPtr->GlobalDimensions(); Coordinate mpi = GridPtr->ProcessorGrid(); Coordinate shm; GlobalSharedMemory::GetShmDims(mpi,shm); Coordinate CommDim(Nd); for(int d=0;d<Nd;d++) CommDim[d]= (mpi[d]/shm[d])>1 ? 1 : 0; Coordinate Dirichlet(Nd+1,0); Dirichlet[1] = CommDim[0]*latt4[0]/mpi[0] * shm[0]; Dirichlet[2] = CommDim[1]*latt4[1]/mpi[1] * shm[1]; Dirichlet[3] = CommDim[2]*latt4[2]/mpi[2] * shm[2]; Dirichlet[4] = CommDim[3]*latt4[3]/mpi[3] * shm[3]; Coordinate Block4(Nd); Block4[0] = Dirichlet[1]; Block4[1] = Dirichlet[2]; Block4[2] = Dirichlet[3]; Block4[3] = Dirichlet[4]; int Width=3; TheHMC.Resources.SetMomentumFilter(new DDHMCFilter<WilsonImplR::Field>(Block4,Width)); ////////////////////////// // Fermion Grid ////////////////////////// auto FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtr); auto FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtr); IwasakiGaugeActionR GaugeAction(beta); // temporarily need a gauge field LatticeGaugeField U(GridPtr); // These lines are unecessary if BC are all periodic std::vector<Complex> boundary = {1,1,1,-1}; FermionAction::ImplParams Params(boundary); double StoppingCondition = 1e-8; double MDStoppingCondition = 1e-6; double MaxCGIterations = 30000; ConjugateGradient<FermionField> CG(StoppingCondition,MaxCGIterations); ConjugateGradient<FermionField> MDCG(MDStoppingCondition,MaxCGIterations); //////////////////////////////////// // Collect actions //////////////////////////////////// ActionLevel<HMCWrapper::Field> Level1(1); ActionLevel<HMCWrapper::Field> Level2(4); ActionLevel<HMCWrapper::Field> Level3(8); //////////////////////////////////// // Strange action //////////////////////////////////// FermionAction StrangeOp (U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,strange_mass,M5,b,c, Params); FermionAction StrangePauliVillarsOp(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,pv_mass, M5,b,c, Params); FermionAction StrangeOpDir (U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,strange_mass,M5,b,c, Params); FermionAction StrangePauliVillarsOpDir(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,pv_mass, M5,b,c, Params); StrangeOpDir.DirichletBlock(Dirichlet); StrangePauliVillarsOpDir.DirichletBlock(Dirichlet); OneFlavourEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy> StrangePseudoFermionBdy(StrangeOpDir,StrangeOp,SFRp); OneFlavourEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy> StrangePseudoFermionLocal(StrangePauliVillarsOpDir,StrangeOpDir,SFRp); OneFlavourEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy> StrangePseudoFermionPVBdy(StrangePauliVillarsOp,StrangePauliVillarsOpDir,SFRp); Level1.push_back(&StrangePseudoFermionBdy); Level2.push_back(&StrangePseudoFermionLocal); Level1.push_back(&StrangePseudoFermionPVBdy); //////////////////////////////////// // up down action //////////////////////////////////// std::vector<Real> light_den; std::vector<Real> light_num; std::vector<int> dirichlet_den; std::vector<int> dirichlet_num; int n_hasenbusch = hasenbusch.size(); light_den.push_back(light_mass); dirichlet_den.push_back(0); for(int h=0;h<n_hasenbusch;h++){ light_den.push_back(hasenbusch[h]); dirichlet_den.push_back(1); } for(int h=0;h<n_hasenbusch;h++){ light_num.push_back(hasenbusch[h]); dirichlet_num.push_back(1); } light_num.push_back(pv_mass); dirichlet_num.push_back(0); std::vector<FermionAction *> Numerators; std::vector<FermionAction *> Denominators; std::vector<TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy> *> Quotients; std::vector<OneFlavourEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy> *> Bdys; for(int h=0;h<n_hasenbusch+1;h++){ std::cout << GridLogMessage << " 2f quotient Action "; std::cout << "det D("<<light_den[h]<<")"; if ( dirichlet_den[h] ) std::cout << "^dirichlet "; std::cout << "/ det D("<<light_num[h]<<")"; if ( dirichlet_num[h] ) std::cout << "^dirichlet "; std::cout << std::endl; Numerators.push_back (new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_num[h],M5,b,c, Params)); Denominators.push_back(new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_den[h],M5,b,c, Params)); if(h!=0) { Quotients.push_back (new TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],MDCG,CG)); } else { Bdys.push_back( new OneFlavourEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],OFRp)); Bdys.push_back( new OneFlavourEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],OFRp)); } if ( dirichlet_den[h]==1) Denominators[h]->DirichletBlock(Dirichlet); if ( dirichlet_num[h]==1) Numerators[h]->DirichletBlock(Dirichlet); } int nquo=Quotients.size(); Level1.push_back(Bdys[0]); Level1.push_back(Bdys[1]); for(int h=0;h<nquo-1;h++){ Level2.push_back(Quotients[h]); } Level2.push_back(Quotients[nquo-1]); ///////////////////////////////////////////////////////////// // Gauge action ///////////////////////////////////////////////////////////// Level3.push_back(&GaugeAction); TheHMC.TheAction.push_back(Level1); TheHMC.TheAction.push_back(Level2); TheHMC.TheAction.push_back(Level3); std::cout << GridLogMessage << " Action complete "<< std::endl; ///////////////////////////////////////////////////////////// std::cout << GridLogMessage << " Running the HMC "<< std::endl; TheHMC.ReadCommandLine(argc,argv); // params on CML or from param file TheHMC.Run(); // no smearing Grid_finalize(); } // main