/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./lib/qcd/action/scalar/CovariantAdjointLaplacian.h Copyright (C) 2016 Author: Guido Cossu This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #ifndef COVARIANT_ADJOINT_LAPLACIAN_H #define COVARIANT_ADJOINT_LAPLACIAN_H namespace Grid { namespace QCD { struct LaplacianParams : Serializable { GRID_SERIALIZABLE_CLASS_MEMBERS(LaplacianParams, RealD, lo, RealD, hi, int, MaxIter, RealD, tolerance, int, degree, int, precision); // constructor LaplacianParams(RealD lo = 0.0, RealD hi = 1.0, int maxit = 1000, RealD tol = 1.0e-8, int degree = 10, int precision = 64) : lo(lo), hi(hi), MaxIter(maxit), tolerance(tol), degree(degree), precision(precision){}; }; //////////////////////////////////////////////////////////// // Laplacian operator L on adjoint fields // // phi: adjoint field // L: D_mu^dag D_mu // // L phi(x) = Sum_mu [ U_mu(x)phi(x+mu)U_mu(x)^dag + // U_mu(x-mu)^dag phi(x-mu)U_mu(x-mu) // -2phi(x)] // // Operator designed to be encapsulated by // an HermitianLinearOperator<.. , ..> //////////////////////////////////////////////////////////// template class LaplacianAdjointField : public Metric { OperatorFunction &Solver; LaplacianParams param; MultiShiftFunction PowerHalf; MultiShiftFunction PowerInvHalf; public: INHERIT_GIMPL_TYPES(Impl); LaplacianAdjointField(GridBase *grid, OperatorFunction &S, LaplacianParams &p, const RealD k = 1.0) : U(Nd, grid), Solver(S), param(p), kappa(k) { AlgRemez remez(param.lo, param.hi, param.precision); std::cout << GridLogMessage << "Generating degree " << param.degree << " for x^(1/2)" << std::endl; remez.generateApprox(param.degree, 1, 2); PowerHalf.Init(remez, param.tolerance, false); PowerInvHalf.Init(remez, param.tolerance, true); }; void Mdir(const GaugeField &, GaugeField &, int, int) { assert(0); } void Mdiag(const GaugeField &, GaugeField &) { assert(0); } void ImportGauge(const GaugeField &_U) { for (int mu = 0; mu < Nd; mu++) { U[mu] = PeekIndex(_U, mu); } } void M(const GaugeField &in, GaugeField &out) { // in is an antihermitian matrix // test //GaugeField herm = in + adj(in); //std::cout << "AHermiticity: " << norm2(herm) << std::endl; GaugeLinkField tmp(in._grid); GaugeLinkField tmp2(in._grid); GaugeLinkField sum(in._grid); for (int nu = 0; nu < Nd; nu++) { sum = zero; GaugeLinkField in_nu = PeekIndex(in, nu); GaugeLinkField out_nu(out._grid); for (int mu = 0; mu < Nd; mu++) { tmp = U[mu] * Cshift(in_nu, mu, +1) * adj(U[mu]); tmp2 = adj(U[mu]) * in_nu * U[mu]; sum += tmp + Cshift(tmp2, mu, -1) - 2.0 * in_nu; } out_nu = (1.0 - kappa) * in_nu - kappa / (double(4 * Nd)) * sum; PokeIndex(out, out_nu, nu); } } void MDeriv(const GaugeField &in, GaugeField &der) { // in is anti-hermitian RealD factor = -kappa / (double(4 * Nd)); for (int mu = 0; mu < Nd; mu++) { GaugeLinkField der_mu(der._grid); der_mu = zero; for (int nu = 0; nu < Nd; nu++) { GaugeLinkField in_nu = PeekIndex(in, nu); der_mu += U[mu] * Cshift(in_nu, mu, 1) * adj(U[mu]) * in_nu; } // the minus sign comes by using the in_nu instead of the // adjoint in the last multiplication PokeIndex(der, -2.0 * factor * der_mu, mu); } } // separating this temporarily void MDeriv(const GaugeField &left, const GaugeField &right, GaugeField &der) { // in is anti-hermitian RealD factor = -kappa / (double(4 * Nd)); for (int mu = 0; mu < Nd; mu++) { GaugeLinkField der_mu(der._grid); der_mu = zero; for (int nu = 0; nu < Nd; nu++) { GaugeLinkField left_nu = PeekIndex(left, nu); GaugeLinkField right_nu = PeekIndex(right, nu); der_mu += U[mu] * Cshift(left_nu, mu, 1) * adj(U[mu]) * right_nu; der_mu += U[mu] * Cshift(right_nu, mu, 1) * adj(U[mu]) * left_nu; } PokeIndex(der, -factor * der_mu, mu); } } void Minv(const GaugeField &in, GaugeField &inverted) { HermitianLinearOperator, GaugeField> HermOp(*this); Solver(HermOp, in, inverted); } void MSquareRoot(GaugeField &P) { GaugeField Gp(P._grid); HermitianLinearOperator, GaugeField> HermOp(*this); ConjugateGradientMultiShift msCG(param.MaxIter, PowerHalf); msCG(HermOp, P, Gp); P = Gp; } void MInvSquareRoot(GaugeField &P) { GaugeField Gp(P._grid); HermitianLinearOperator, GaugeField> HermOp(*this); ConjugateGradientMultiShift msCG(param.MaxIter, PowerInvHalf); msCG(HermOp, P, Gp); P = Gp; } private: RealD kappa; std::vector U; }; } // QCD } // Grid #endif