#include using namespace std; using namespace Grid; using namespace Grid::QCD; template class DumbOperator : public LinearOperatorBase { public: LatticeComplex scale; LatticeComplex sqrtscale; DumbOperator(GridBase *grid) : scale(grid), sqrtscale(grid) { GridParallelRNG pRNG(grid); std::vector seeds({5,6,7,8}); pRNG.SeedFixedIntegers(seeds); random(pRNG,sqrtscale); sqrtscale = real(sqrtscale)*3.0+0.5;// force real pos def scale = sqrtscale *sqrtscale; //scale should be bounded by 12.25 // // sqrtscale = 2.0; // scale = 4.0; } // Support for coarsening to a multigrid void OpDiag (const Field &in, Field &out) {}; void OpDir (const Field &in, Field &out,int dir,int disp){}; void Op (const Field &in, Field &out){ out = scale * in; } void AdjOp (const Field &in, Field &out){ out = scale * in; } void HermOp(const Field &in, Field &out){ double n1, n2; HermOpAndNorm(in,out,n1,n2); } void HermOpAndNorm(const Field &in, Field &out,double &n1,double &n2){ ComplexD dot; out = scale * in; dot= innerProduct(in,out); n1=real(dot); dot = innerProduct(out,out); n2=real(dot); } void ApplySqrt(const Field &in, Field &out){ out = sqrtscale * in; } void ApplyInverse(const Field &in, Field &out){ out = pow(scale,-1.0) * in; } }; RealD InverseApproximation(RealD x){ return 1.0/x; } RealD SqrtApproximation(RealD x){ return std::sqrt(x); } int main (int argc, char ** argv) { Grid_init(&argc,&argv); GridCartesian *grid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi()); double lo=0.001; double hi=1.0; int precision=64; int degree=10; AlgRemez remez(lo,hi,precision); //////////////////////////////////////// // sqrt and inverse sqrt //////////////////////////////////////// std::cout< seeds({1,2,3,4}); pRNG.SeedFixedIntegers(seeds); LatticeFermion src(grid); random(pRNG,src); LatticeFermion combined(grid); LatticeFermion reference(grid); LatticeFermion error(grid); std::vector result(degree,grid); LatticeFermion summed(grid); ConjugateGradientMultiShift MSCG(10000,Sqrt); DumbOperator Diagonal(grid); MSCG(Diagonal,src,result); // double a = norm; // for(int n=0;n Cheby(0.1,40.0,200,InverseApproximation); std::cout<